blob: c7f147b8034f0223dac324c0d044bdc30e97761f [file] [log] [blame]
Phong Tran5e1bc932019-11-06 20:09:50 +07001.. _whatisrcu_doc:
2
Paul Gortmaker628c0842018-04-19 13:59:36 -04003What is RCU? -- "Read, Copy, Update"
Phong Tran5e1bc932019-11-06 20:09:50 +07004======================================
Paul Gortmaker628c0842018-04-19 13:59:36 -04005
Paul E. McKenney32300752008-05-12 21:21:05 +02006Please note that the "What is RCU?" LWN series is an excellent place
7to start learning about RCU:
8
Phong Tran5e1bc932019-11-06 20:09:50 +07009| 1. What is RCU, Fundamentally? http://lwn.net/Articles/262464/
10| 2. What is RCU? Part 2: Usage http://lwn.net/Articles/263130/
11| 3. RCU part 3: the RCU API http://lwn.net/Articles/264090/
12| 4. The RCU API, 2010 Edition http://lwn.net/Articles/418853/
13| 2010 Big API Table http://lwn.net/Articles/419086/
14| 5. The RCU API, 2014 Edition http://lwn.net/Articles/609904/
15| 2014 Big API Table http://lwn.net/Articles/609973/
Paul E. McKenney32300752008-05-12 21:21:05 +020016
17
Paul E. McKenneydd81eca2005-09-10 00:26:24 -070018What is RCU?
19
20RCU is a synchronization mechanism that was added to the Linux kernel
21during the 2.5 development effort that is optimized for read-mostly
22situations. Although RCU is actually quite simple once you understand it,
23getting there can sometimes be a challenge. Part of the problem is that
24most of the past descriptions of RCU have been written with the mistaken
25assumption that there is "one true way" to describe RCU. Instead,
26the experience has been that different people must take different paths
27to arrive at an understanding of RCU. This document provides several
28different paths, as follows:
29
Phong Tran5e1bc932019-11-06 20:09:50 +070030:ref:`1. RCU OVERVIEW <1_whatisRCU>`
31
32:ref:`2. WHAT IS RCU'S CORE API? <2_whatisRCU>`
33
34:ref:`3. WHAT ARE SOME EXAMPLE USES OF CORE RCU API? <3_whatisRCU>`
35
36:ref:`4. WHAT IF MY UPDATING THREAD CANNOT BLOCK? <4_whatisRCU>`
37
38:ref:`5. WHAT ARE SOME SIMPLE IMPLEMENTATIONS OF RCU? <5_whatisRCU>`
39
40:ref:`6. ANALOGY WITH READER-WRITER LOCKING <6_whatisRCU>`
41
42:ref:`7. FULL LIST OF RCU APIs <7_whatisRCU>`
43
44:ref:`8. ANSWERS TO QUICK QUIZZES <8_whatisRCU>`
Paul E. McKenneydd81eca2005-09-10 00:26:24 -070045
46People who prefer starting with a conceptual overview should focus on
47Section 1, though most readers will profit by reading this section at
48some point. People who prefer to start with an API that they can then
49experiment with should focus on Section 2. People who prefer to start
50with example uses should focus on Sections 3 and 4. People who need to
51understand the RCU implementation should focus on Section 5, then dive
52into the kernel source code. People who reason best by analogy should
53focus on Section 6. Section 7 serves as an index to the docbook API
54documentation, and Section 8 is the traditional answer key.
55
56So, start with the section that makes the most sense to you and your
57preferred method of learning. If you need to know everything about
58everything, feel free to read the whole thing -- but if you are really
59that type of person, you have perused the source code and will therefore
60never need this document anyway. ;-)
61
Phong Tran5e1bc932019-11-06 20:09:50 +070062.. _1_whatisRCU:
Paul E. McKenneydd81eca2005-09-10 00:26:24 -070063
641. RCU OVERVIEW
Phong Tran5e1bc932019-11-06 20:09:50 +070065----------------
Paul E. McKenneydd81eca2005-09-10 00:26:24 -070066
67The basic idea behind RCU is to split updates into "removal" and
68"reclamation" phases. The removal phase removes references to data items
69within a data structure (possibly by replacing them with references to
70new versions of these data items), and can run concurrently with readers.
71The reason that it is safe to run the removal phase concurrently with
72readers is the semantics of modern CPUs guarantee that readers will see
73either the old or the new version of the data structure rather than a
74partially updated reference. The reclamation phase does the work of reclaiming
75(e.g., freeing) the data items removed from the data structure during the
76removal phase. Because reclaiming data items can disrupt any readers
77concurrently referencing those data items, the reclamation phase must
78not start until readers no longer hold references to those data items.
79
80Splitting the update into removal and reclamation phases permits the
81updater to perform the removal phase immediately, and to defer the
82reclamation phase until all readers active during the removal phase have
83completed, either by blocking until they finish or by registering a
84callback that is invoked after they finish. Only readers that are active
85during the removal phase need be considered, because any reader starting
86after the removal phase will be unable to gain a reference to the removed
87data items, and therefore cannot be disrupted by the reclamation phase.
88
89So the typical RCU update sequence goes something like the following:
90
91a. Remove pointers to a data structure, so that subsequent
92 readers cannot gain a reference to it.
93
94b. Wait for all previous readers to complete their RCU read-side
95 critical sections.
96
97c. At this point, there cannot be any readers who hold references
98 to the data structure, so it now may safely be reclaimed
99 (e.g., kfree()d).
100
101Step (b) above is the key idea underlying RCU's deferred destruction.
102The ability to wait until all readers are done allows RCU readers to
103use much lighter-weight synchronization, in some cases, absolutely no
104synchronization at all. In contrast, in more conventional lock-based
105schemes, readers must use heavy-weight synchronization in order to
106prevent an updater from deleting the data structure out from under them.
107This is because lock-based updaters typically update data items in place,
108and must therefore exclude readers. In contrast, RCU-based updaters
109typically take advantage of the fact that writes to single aligned
110pointers are atomic on modern CPUs, allowing atomic insertion, removal,
111and replacement of data items in a linked structure without disrupting
112readers. Concurrent RCU readers can then continue accessing the old
113versions, and can dispense with the atomic operations, memory barriers,
114and communications cache misses that are so expensive on present-day
115SMP computer systems, even in absence of lock contention.
116
117In the three-step procedure shown above, the updater is performing both
118the removal and the reclamation step, but it is often helpful for an
119entirely different thread to do the reclamation, as is in fact the case
120in the Linux kernel's directory-entry cache (dcache). Even if the same
121thread performs both the update step (step (a) above) and the reclamation
122step (step (c) above), it is often helpful to think of them separately.
123For example, RCU readers and updaters need not communicate at all,
124but RCU provides implicit low-overhead communication between readers
125and reclaimers, namely, in step (b) above.
126
127So how the heck can a reclaimer tell when a reader is done, given
128that readers are not doing any sort of synchronization operations???
129Read on to learn about how RCU's API makes this easy.
130
Phong Tran5e1bc932019-11-06 20:09:50 +0700131.. _2_whatisRCU:
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700132
1332. WHAT IS RCU'S CORE API?
Phong Tran5e1bc932019-11-06 20:09:50 +0700134---------------------------
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700135
136The core RCU API is quite small:
137
138a. rcu_read_lock()
139b. rcu_read_unlock()
140c. synchronize_rcu() / call_rcu()
141d. rcu_assign_pointer()
142e. rcu_dereference()
143
144There are many other members of the RCU API, but the rest can be
145expressed in terms of these five, though most implementations instead
146express synchronize_rcu() in terms of the call_rcu() callback API.
147
148The five core RCU APIs are described below, the other 18 will be enumerated
149later. See the kernel docbook documentation for more info, or look directly
150at the function header comments.
151
152rcu_read_lock()
Phong Tran5e1bc932019-11-06 20:09:50 +0700153^^^^^^^^^^^^^^^
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700154 void rcu_read_lock(void);
155
156 Used by a reader to inform the reclaimer that the reader is
157 entering an RCU read-side critical section. It is illegal
158 to block while in an RCU read-side critical section, though
Pranith Kumar28f65692014-09-22 14:00:48 -0400159 kernels built with CONFIG_PREEMPT_RCU can preempt RCU
Paul E. McKenney6b3ef482009-08-22 13:56:53 -0700160 read-side critical sections. Any RCU-protected data structure
161 accessed during an RCU read-side critical section is guaranteed to
162 remain unreclaimed for the full duration of that critical section.
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700163 Reference counts may be used in conjunction with RCU to maintain
164 longer-term references to data structures.
165
166rcu_read_unlock()
Phong Tran5e1bc932019-11-06 20:09:50 +0700167^^^^^^^^^^^^^^^^^
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700168 void rcu_read_unlock(void);
169
170 Used by a reader to inform the reclaimer that the reader is
171 exiting an RCU read-side critical section. Note that RCU
172 read-side critical sections may be nested and/or overlapping.
173
174synchronize_rcu()
Phong Tran5e1bc932019-11-06 20:09:50 +0700175^^^^^^^^^^^^^^^^^
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700176 void synchronize_rcu(void);
177
178 Marks the end of updater code and the beginning of reclaimer
179 code. It does this by blocking until all pre-existing RCU
180 read-side critical sections on all CPUs have completed.
Phong Tran5e1bc932019-11-06 20:09:50 +0700181 Note that synchronize_rcu() will **not** necessarily wait for
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700182 any subsequent RCU read-side critical sections to complete.
Phong Tran5e1bc932019-11-06 20:09:50 +0700183 For example, consider the following sequence of events::
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700184
185 CPU 0 CPU 1 CPU 2
186 ----------------- ------------------------- ---------------
187 1. rcu_read_lock()
188 2. enters synchronize_rcu()
189 3. rcu_read_lock()
190 4. rcu_read_unlock()
191 5. exits synchronize_rcu()
192 6. rcu_read_unlock()
193
194 To reiterate, synchronize_rcu() waits only for ongoing RCU
195 read-side critical sections to complete, not necessarily for
196 any that begin after synchronize_rcu() is invoked.
197
198 Of course, synchronize_rcu() does not necessarily return
Phong Tran5e1bc932019-11-06 20:09:50 +0700199 **immediately** after the last pre-existing RCU read-side critical
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700200 section completes. For one thing, there might well be scheduling
201 delays. For another thing, many RCU implementations process
202 requests in batches in order to improve efficiencies, which can
203 further delay synchronize_rcu().
204
205 Since synchronize_rcu() is the API that must figure out when
206 readers are done, its implementation is key to RCU. For RCU
207 to be useful in all but the most read-intensive situations,
208 synchronize_rcu()'s overhead must also be quite small.
209
210 The call_rcu() API is a callback form of synchronize_rcu(),
211 and is described in more detail in a later section. Instead of
212 blocking, it registers a function and argument which are invoked
213 after all ongoing RCU read-side critical sections have completed.
214 This callback variant is particularly useful in situations where
Paul E. McKenney165d6c72006-06-25 05:48:44 -0700215 it is illegal to block or where update-side performance is
216 critically important.
217
218 However, the call_rcu() API should not be used lightly, as use
219 of the synchronize_rcu() API generally results in simpler code.
220 In addition, the synchronize_rcu() API has the nice property
221 of automatically limiting update rate should grace periods
222 be delayed. This property results in system resilience in face
223 of denial-of-service attacks. Code using call_rcu() should limit
224 update rate in order to gain this same sort of resilience. See
225 checklist.txt for some approaches to limiting the update rate.
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700226
227rcu_assign_pointer()
Phong Tran5e1bc932019-11-06 20:09:50 +0700228^^^^^^^^^^^^^^^^^^^^
Andrea Parri9129b012019-05-27 10:49:57 +0200229 void rcu_assign_pointer(p, typeof(p) v);
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700230
Phong Tran5e1bc932019-11-06 20:09:50 +0700231 Yes, rcu_assign_pointer() **is** implemented as a macro, though it
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700232 would be cool to be able to declare a function in this manner.
233 (Compiler experts will no doubt disagree.)
234
235 The updater uses this function to assign a new value to an
236 RCU-protected pointer, in order to safely communicate the change
Andrea Parri9129b012019-05-27 10:49:57 +0200237 in value from the updater to the reader. This macro does not
238 evaluate to an rvalue, but it does execute any memory-barrier
239 instructions required for a given CPU architecture.
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700240
Paul E. McKenneyd19720a2006-02-01 03:06:42 -0800241 Perhaps just as important, it serves to document (1) which
242 pointers are protected by RCU and (2) the point at which a
243 given structure becomes accessible to other CPUs. That said,
244 rcu_assign_pointer() is most frequently used indirectly, via
245 the _rcu list-manipulation primitives such as list_add_rcu().
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700246
247rcu_dereference()
Phong Tran5e1bc932019-11-06 20:09:50 +0700248^^^^^^^^^^^^^^^^^
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700249 typeof(p) rcu_dereference(p);
250
251 Like rcu_assign_pointer(), rcu_dereference() must be implemented
252 as a macro.
253
254 The reader uses rcu_dereference() to fetch an RCU-protected
255 pointer, which returns a value that may then be safely
Pranith Kumar8cf503d2016-10-18 00:54:03 -0400256 dereferenced. Note that rcu_dereference() does not actually
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700257 dereference the pointer, instead, it protects the pointer for
258 later dereferencing. It also executes any needed memory-barrier
259 instructions for a given CPU architecture. Currently, only Alpha
260 needs memory barriers within rcu_dereference() -- on other CPUs,
261 it compiles to nothing, not even a compiler directive.
262
263 Common coding practice uses rcu_dereference() to copy an
264 RCU-protected pointer to a local variable, then dereferences
Phong Tran5e1bc932019-11-06 20:09:50 +0700265 this local variable, for example as follows::
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700266
267 p = rcu_dereference(head.next);
268 return p->data;
269
270 However, in this case, one could just as easily combine these
Phong Tran5e1bc932019-11-06 20:09:50 +0700271 into one statement::
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700272
273 return rcu_dereference(head.next)->data;
274
275 If you are going to be fetching multiple fields from the
276 RCU-protected structure, using the local variable is of
277 course preferred. Repeated rcu_dereference() calls look
Milos Vyleteled384462015-04-17 16:38:04 +0200278 ugly, do not guarantee that the same pointer will be returned
279 if an update happened while in the critical section, and incur
280 unnecessary overhead on Alpha CPUs.
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700281
282 Note that the value returned by rcu_dereference() is valid
Phong Tran5e1bc932019-11-06 20:09:50 +0700283 only within the enclosing RCU read-side critical section [1]_.
284 For example, the following is **not** legal::
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700285
286 rcu_read_lock();
287 p = rcu_dereference(head.next);
288 rcu_read_unlock();
Paul E. McKenney4357fb52013-02-12 07:56:27 -0800289 x = p->address; /* BUG!!! */
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700290 rcu_read_lock();
Paul E. McKenney4357fb52013-02-12 07:56:27 -0800291 y = p->data; /* BUG!!! */
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700292 rcu_read_unlock();
293
294 Holding a reference from one RCU read-side critical section
295 to another is just as illegal as holding a reference from
296 one lock-based critical section to another! Similarly,
297 using a reference outside of the critical section in which
298 it was acquired is just as illegal as doing so with normal
299 locking.
300
301 As with rcu_assign_pointer(), an important function of
Paul E. McKenneyd19720a2006-02-01 03:06:42 -0800302 rcu_dereference() is to document which pointers are protected by
303 RCU, in particular, flagging a pointer that is subject to changing
304 at any time, including immediately after the rcu_dereference().
305 And, again like rcu_assign_pointer(), rcu_dereference() is
306 typically used indirectly, via the _rcu list-manipulation
Phong Tran5e1bc932019-11-06 20:09:50 +0700307 primitives, such as list_for_each_entry_rcu() [2]_.
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700308
Phong Tran5e1bc932019-11-06 20:09:50 +0700309.. [1] The variant rcu_dereference_protected() can be used outside
Joel Fernandes (Google)93eb14202018-10-08 18:33:41 -0700310 of an RCU read-side critical section as long as the usage is
311 protected by locks acquired by the update-side code. This variant
312 avoids the lockdep warning that would happen when using (for
313 example) rcu_dereference() without rcu_read_lock() protection.
314 Using rcu_dereference_protected() also has the advantage
315 of permitting compiler optimizations that rcu_dereference()
316 must prohibit. The rcu_dereference_protected() variant takes
317 a lockdep expression to indicate which locks must be acquired
318 by the caller. If the indicated protection is not provided,
Mauro Carvalho Chehabccc99712019-08-01 17:39:18 -0400319 a lockdep splat is emitted. See Documentation/RCU/Design/Requirements/Requirements.rst
Joel Fernandes (Google)93eb14202018-10-08 18:33:41 -0700320 and the API's code comments for more details and example usage.
321
Phong Tran5e1bc932019-11-06 20:09:50 +0700322.. [2] If the list_for_each_entry_rcu() instance might be used by
Joel Fernandes (Google)45271062019-08-11 18:11:10 -0400323 update-side code as well as by RCU readers, then an additional
324 lockdep expression can be added to its list of arguments.
325 For example, given an additional "lock_is_held(&mylock)" argument,
326 the RCU lockdep code would complain only if this instance was
327 invoked outside of an RCU read-side critical section and without
328 the protection of mylock.
329
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700330The following diagram shows how each API communicates among the
331reader, updater, and reclaimer.
Phong Tran5e1bc932019-11-06 20:09:50 +0700332::
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700333
334
335 rcu_assign_pointer()
Tycho Andersen0fa201d2019-01-29 15:05:46 -0700336 +--------+
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700337 +---------------------->| reader |---------+
338 | +--------+ |
339 | | |
340 | | | Protect:
341 | | | rcu_read_lock()
342 | | | rcu_read_unlock()
343 | rcu_dereference() | |
Tycho Andersen0fa201d2019-01-29 15:05:46 -0700344 +---------+ | |
345 | updater |<----------------+ |
346 +---------+ V
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700347 | +-----------+
348 +----------------------------------->| reclaimer |
Tycho Andersen0fa201d2019-01-29 15:05:46 -0700349 +-----------+
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700350 Defer:
351 synchronize_rcu() & call_rcu()
352
353
354The RCU infrastructure observes the time sequence of rcu_read_lock(),
355rcu_read_unlock(), synchronize_rcu(), and call_rcu() invocations in
356order to determine when (1) synchronize_rcu() invocations may return
357to their callers and (2) call_rcu() callbacks may be invoked. Efficient
358implementations of the RCU infrastructure make heavy use of batching in
359order to amortize their overhead over many uses of the corresponding APIs.
360
Joel Fernandes (Google)33984962018-10-05 16:18:10 -0700361There are at least three flavors of RCU usage in the Linux kernel. The diagram
362above shows the most common one. On the updater side, the rcu_assign_pointer(),
363sychronize_rcu() and call_rcu() primitives used are the same for all three
364flavors. However for protection (on the reader side), the primitives used vary
365depending on the flavor:
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700366
Joel Fernandes (Google)33984962018-10-05 16:18:10 -0700367a. rcu_read_lock() / rcu_read_unlock()
368 rcu_dereference()
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700369
Joel Fernandes (Google)33984962018-10-05 16:18:10 -0700370b. rcu_read_lock_bh() / rcu_read_unlock_bh()
371 local_bh_disable() / local_bh_enable()
372 rcu_dereference_bh()
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700373
Joel Fernandes (Google)33984962018-10-05 16:18:10 -0700374c. rcu_read_lock_sched() / rcu_read_unlock_sched()
375 preempt_disable() / preempt_enable()
376 local_irq_save() / local_irq_restore()
377 hardirq enter / hardirq exit
378 NMI enter / NMI exit
379 rcu_dereference_sched()
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700380
Joel Fernandes (Google)33984962018-10-05 16:18:10 -0700381These three flavors are used as follows:
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700382
383a. RCU applied to normal data structures.
384
385b. RCU applied to networking data structures that may be subjected
386 to remote denial-of-service attacks.
387
388c. RCU applied to scheduler and interrupt/NMI-handler tasks.
389
390Again, most uses will be of (a). The (b) and (c) cases are important
391for specialized uses, but are relatively uncommon.
392
Phong Tran5e1bc932019-11-06 20:09:50 +0700393.. _3_whatisRCU:
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700394
3953. WHAT ARE SOME EXAMPLE USES OF CORE RCU API?
Phong Tran5e1bc932019-11-06 20:09:50 +0700396-----------------------------------------------
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700397
398This section shows a simple use of the core RCU API to protect a
Paul E. McKenneyd19720a2006-02-01 03:06:42 -0800399global pointer to a dynamically allocated structure. More-typical
Phong Tran5e1bc932019-11-06 20:09:50 +0700400uses of RCU may be found in :ref:`listRCU.rst <list_rcu_doc>`,
401:ref:`arrayRCU.rst <array_rcu_doc>`, and :ref:`NMI-RCU.rst <NMI_rcu_doc>`.
402::
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700403
404 struct foo {
405 int a;
406 char b;
407 long c;
408 };
409 DEFINE_SPINLOCK(foo_mutex);
410
Jason A. Donenfeld2c4ac342015-08-11 14:26:33 +0200411 struct foo __rcu *gbl_foo;
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700412
413 /*
414 * Create a new struct foo that is the same as the one currently
415 * pointed to by gbl_foo, except that field "a" is replaced
416 * with "new_a". Points gbl_foo to the new structure, and
417 * frees up the old structure after a grace period.
418 *
419 * Uses rcu_assign_pointer() to ensure that concurrent readers
420 * see the initialized version of the new structure.
421 *
422 * Uses synchronize_rcu() to ensure that any readers that might
423 * have references to the old structure complete before freeing
424 * the old structure.
425 */
426 void foo_update_a(int new_a)
427 {
428 struct foo *new_fp;
429 struct foo *old_fp;
430
Baruch Evende0dfcd2006-03-24 18:25:25 +0100431 new_fp = kmalloc(sizeof(*new_fp), GFP_KERNEL);
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700432 spin_lock(&foo_mutex);
Jason A. Donenfeld2c4ac342015-08-11 14:26:33 +0200433 old_fp = rcu_dereference_protected(gbl_foo, lockdep_is_held(&foo_mutex));
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700434 *new_fp = *old_fp;
435 new_fp->a = new_a;
436 rcu_assign_pointer(gbl_foo, new_fp);
437 spin_unlock(&foo_mutex);
438 synchronize_rcu();
439 kfree(old_fp);
440 }
441
442 /*
443 * Return the value of field "a" of the current gbl_foo
444 * structure. Use rcu_read_lock() and rcu_read_unlock()
445 * to ensure that the structure does not get deleted out
446 * from under us, and use rcu_dereference() to ensure that
447 * we see the initialized version of the structure (important
448 * for DEC Alpha and for people reading the code).
449 */
450 int foo_get_a(void)
451 {
452 int retval;
453
454 rcu_read_lock();
455 retval = rcu_dereference(gbl_foo)->a;
456 rcu_read_unlock();
457 return retval;
458 }
459
460So, to sum up:
461
Phong Tran5e1bc932019-11-06 20:09:50 +0700462- Use rcu_read_lock() and rcu_read_unlock() to guard RCU
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700463 read-side critical sections.
464
Phong Tran5e1bc932019-11-06 20:09:50 +0700465- Within an RCU read-side critical section, use rcu_dereference()
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700466 to dereference RCU-protected pointers.
467
Phong Tran5e1bc932019-11-06 20:09:50 +0700468- Use some solid scheme (such as locks or semaphores) to
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700469 keep concurrent updates from interfering with each other.
470
Phong Tran5e1bc932019-11-06 20:09:50 +0700471- Use rcu_assign_pointer() to update an RCU-protected pointer.
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700472 This primitive protects concurrent readers from the updater,
Phong Tran5e1bc932019-11-06 20:09:50 +0700473 **not** concurrent updates from each other! You therefore still
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700474 need to use locking (or something similar) to keep concurrent
475 rcu_assign_pointer() primitives from interfering with each other.
476
Phong Tran5e1bc932019-11-06 20:09:50 +0700477- Use synchronize_rcu() **after** removing a data element from an
478 RCU-protected data structure, but **before** reclaiming/freeing
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700479 the data element, in order to wait for the completion of all
480 RCU read-side critical sections that might be referencing that
481 data item.
482
483See checklist.txt for additional rules to follow when using RCU.
Phong Tran5e1bc932019-11-06 20:09:50 +0700484And again, more-typical uses of RCU may be found in :ref:`listRCU.rst
485<list_rcu_doc>`, :ref:`arrayRCU.rst <array_rcu_doc>`, and :ref:`NMI-RCU.rst
486<NMI_rcu_doc>`.
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700487
Phong Tran5e1bc932019-11-06 20:09:50 +0700488.. _4_whatisRCU:
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700489
4904. WHAT IF MY UPDATING THREAD CANNOT BLOCK?
Phong Tran5e1bc932019-11-06 20:09:50 +0700491--------------------------------------------
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700492
493In the example above, foo_update_a() blocks until a grace period elapses.
494This is quite simple, but in some cases one cannot afford to wait so
495long -- there might be other high-priority work to be done.
496
497In such cases, one uses call_rcu() rather than synchronize_rcu().
Phong Tran5e1bc932019-11-06 20:09:50 +0700498The call_rcu() API is as follows::
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700499
500 void call_rcu(struct rcu_head * head,
501 void (*func)(struct rcu_head *head));
502
503This function invokes func(head) after a grace period has elapsed.
504This invocation might happen from either softirq or process context,
505so the function is not permitted to block. The foo struct needs to
Phong Tran5e1bc932019-11-06 20:09:50 +0700506have an rcu_head structure added, perhaps as follows::
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700507
508 struct foo {
509 int a;
510 char b;
511 long c;
512 struct rcu_head rcu;
513 };
514
Phong Tran5e1bc932019-11-06 20:09:50 +0700515The foo_update_a() function might then be written as follows::
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700516
517 /*
518 * Create a new struct foo that is the same as the one currently
519 * pointed to by gbl_foo, except that field "a" is replaced
520 * with "new_a". Points gbl_foo to the new structure, and
521 * frees up the old structure after a grace period.
522 *
523 * Uses rcu_assign_pointer() to ensure that concurrent readers
524 * see the initialized version of the new structure.
525 *
526 * Uses call_rcu() to ensure that any readers that might have
527 * references to the old structure complete before freeing the
528 * old structure.
529 */
530 void foo_update_a(int new_a)
531 {
532 struct foo *new_fp;
533 struct foo *old_fp;
534
Baruch Evende0dfcd2006-03-24 18:25:25 +0100535 new_fp = kmalloc(sizeof(*new_fp), GFP_KERNEL);
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700536 spin_lock(&foo_mutex);
Jason A. Donenfeld2c4ac342015-08-11 14:26:33 +0200537 old_fp = rcu_dereference_protected(gbl_foo, lockdep_is_held(&foo_mutex));
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700538 *new_fp = *old_fp;
539 new_fp->a = new_a;
540 rcu_assign_pointer(gbl_foo, new_fp);
541 spin_unlock(&foo_mutex);
542 call_rcu(&old_fp->rcu, foo_reclaim);
543 }
544
Phong Tran5e1bc932019-11-06 20:09:50 +0700545The foo_reclaim() function might appear as follows::
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700546
547 void foo_reclaim(struct rcu_head *rp)
548 {
549 struct foo *fp = container_of(rp, struct foo, rcu);
550
Kees Cook57d34a62012-10-19 09:48:30 -0700551 foo_cleanup(fp->a);
552
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700553 kfree(fp);
554 }
555
556The container_of() primitive is a macro that, given a pointer into a
557struct, the type of the struct, and the pointed-to field within the
558struct, returns a pointer to the beginning of the struct.
559
560The use of call_rcu() permits the caller of foo_update_a() to
561immediately regain control, without needing to worry further about the
562old version of the newly updated element. It also clearly shows the
563RCU distinction between updater, namely foo_update_a(), and reclaimer,
564namely foo_reclaim().
565
566The summary of advice is the same as for the previous section, except
567that we are now using call_rcu() rather than synchronize_rcu():
568
Phong Tran5e1bc932019-11-06 20:09:50 +0700569- Use call_rcu() **after** removing a data element from an
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700570 RCU-protected data structure in order to register a callback
571 function that will be invoked after the completion of all RCU
572 read-side critical sections that might be referencing that
573 data item.
574
Kees Cook57d34a62012-10-19 09:48:30 -0700575If the callback for call_rcu() is not doing anything more than calling
576kfree() on the structure, you can use kfree_rcu() instead of call_rcu()
Phong Tran5e1bc932019-11-06 20:09:50 +0700577to avoid having to write your own callback::
Kees Cook57d34a62012-10-19 09:48:30 -0700578
579 kfree_rcu(old_fp, rcu);
580
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700581Again, see checklist.txt for additional rules governing the use of RCU.
582
Phong Tran5e1bc932019-11-06 20:09:50 +0700583.. _5_whatisRCU:
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700584
5855. WHAT ARE SOME SIMPLE IMPLEMENTATIONS OF RCU?
Phong Tran5e1bc932019-11-06 20:09:50 +0700586------------------------------------------------
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700587
588One of the nice things about RCU is that it has extremely simple "toy"
589implementations that are a good first step towards understanding the
590production-quality implementations in the Linux kernel. This section
591presents two such "toy" implementations of RCU, one that is implemented
592in terms of familiar locking primitives, and another that more closely
593resembles "classic" RCU. Both are way too simple for real-world use,
594lacking both functionality and performance. However, they are useful
Junchang Wang87d17792019-01-01 22:03:19 +0800595in getting a feel for how RCU works. See kernel/rcu/update.c for a
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700596production-quality implementation, and see:
597
598 http://www.rdrop.com/users/paulmck/RCU
599
600for papers describing the Linux kernel RCU implementation. The OLS'01
601and OLS'02 papers are a good introduction, and the dissertation provides
Paul E. McKenneyd19720a2006-02-01 03:06:42 -0800602more details on the current implementation as of early 2004.
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700603
604
6055A. "TOY" IMPLEMENTATION #1: LOCKING
Phong Tran5e1bc932019-11-06 20:09:50 +0700606^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700607This section presents a "toy" RCU implementation that is based on
608familiar locking primitives. Its overhead makes it a non-starter for
609real-life use, as does its lack of scalability. It is also unsuitable
610for realtime use, since it allows scheduling latency to "bleed" from
Paul E. McKenneyd3d3a3c2017-03-28 19:57:45 -0700611one read-side critical section to another. It also assumes recursive
612reader-writer locks: If you try this with non-recursive locks, and
613you allow nested rcu_read_lock() calls, you can deadlock.
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700614
615However, it is probably the easiest implementation to relate to, so is
616a good starting point.
617
Phong Tran5e1bc932019-11-06 20:09:50 +0700618It is extremely simple::
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700619
620 static DEFINE_RWLOCK(rcu_gp_mutex);
621
622 void rcu_read_lock(void)
623 {
624 read_lock(&rcu_gp_mutex);
625 }
626
627 void rcu_read_unlock(void)
628 {
629 read_unlock(&rcu_gp_mutex);
630 }
631
632 void synchronize_rcu(void)
633 {
634 write_lock(&rcu_gp_mutex);
Andrea Parri264d4f82018-06-07 12:01:57 +0200635 smp_mb__after_spinlock();
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700636 write_unlock(&rcu_gp_mutex);
637 }
638
Paul E. McKenney066bb1c2017-03-07 07:30:58 -0800639[You can ignore rcu_assign_pointer() and rcu_dereference() without missing
640much. But here are simplified versions anyway. And whatever you do,
Phong Tran5e1bc932019-11-06 20:09:50 +0700641don't forget about them when submitting patches making use of RCU!]::
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700642
Paul E. McKenney066bb1c2017-03-07 07:30:58 -0800643 #define rcu_assign_pointer(p, v) \
644 ({ \
645 smp_store_release(&(p), (v)); \
646 })
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700647
Paul E. McKenney066bb1c2017-03-07 07:30:58 -0800648 #define rcu_dereference(p) \
649 ({ \
Paul E. McKenney9ad3c142017-11-27 09:20:40 -0800650 typeof(p) _________p1 = READ_ONCE(p); \
Paul E. McKenney066bb1c2017-03-07 07:30:58 -0800651 (_________p1); \
652 })
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700653
654
655The rcu_read_lock() and rcu_read_unlock() primitive read-acquire
656and release a global reader-writer lock. The synchronize_rcu()
Andrea Parri264d4f82018-06-07 12:01:57 +0200657primitive write-acquires this same lock, then releases it. This means
658that once synchronize_rcu() exits, all RCU read-side critical sections
659that were in progress before synchronize_rcu() was called are guaranteed
660to have completed -- there is no way that synchronize_rcu() would have
661been able to write-acquire the lock otherwise. The smp_mb__after_spinlock()
662promotes synchronize_rcu() to a full memory barrier in compliance with
663the "Memory-Barrier Guarantees" listed in:
664
Mauro Carvalho Chehabccc99712019-08-01 17:39:18 -0400665 Documentation/RCU/Design/Requirements/Requirements.rst
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700666
667It is possible to nest rcu_read_lock(), since reader-writer locks may
668be recursively acquired. Note also that rcu_read_lock() is immune
669from deadlock (an important property of RCU). The reason for this is
670that the only thing that can block rcu_read_lock() is a synchronize_rcu().
671But synchronize_rcu() does not acquire any locks while holding rcu_gp_mutex,
672so there can be no deadlock cycle.
673
Phong Tran5e1bc932019-11-06 20:09:50 +0700674.. _quiz_1:
675
676Quick Quiz #1:
677 Why is this argument naive? How could a deadlock
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700678 occur when using this algorithm in a real-world Linux
679 kernel? How could this deadlock be avoided?
680
Phong Tran5e1bc932019-11-06 20:09:50 +0700681:ref:`Answers to Quick Quiz <8_whatisRCU>`
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700682
6835B. "TOY" EXAMPLE #2: CLASSIC RCU
Phong Tran5e1bc932019-11-06 20:09:50 +0700684^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700685This section presents a "toy" RCU implementation that is based on
686"classic RCU". It is also short on performance (but only for updates) and
687on features such as hotplug CPU and the ability to run in CONFIG_PREEMPT
688kernels. The definitions of rcu_dereference() and rcu_assign_pointer()
689are the same as those shown in the preceding section, so they are omitted.
Phong Tran5e1bc932019-11-06 20:09:50 +0700690::
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700691
692 void rcu_read_lock(void) { }
693
694 void rcu_read_unlock(void) { }
695
696 void synchronize_rcu(void)
697 {
698 int cpu;
699
KAMEZAWA Hiroyuki3c30a752006-03-28 01:56:39 -0800700 for_each_possible_cpu(cpu)
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700701 run_on(cpu);
702 }
703
704Note that rcu_read_lock() and rcu_read_unlock() do absolutely nothing.
705This is the great strength of classic RCU in a non-preemptive kernel:
706read-side overhead is precisely zero, at least on non-Alpha CPUs.
707And there is absolutely no way that rcu_read_lock() can possibly
708participate in a deadlock cycle!
709
710The implementation of synchronize_rcu() simply schedules itself on each
711CPU in turn. The run_on() primitive can be implemented straightforwardly
712in terms of the sched_setaffinity() primitive. Of course, a somewhat less
713"toy" implementation would restore the affinity upon completion rather
714than just leaving all tasks running on the last CPU, but when I said
Phong Tran5e1bc932019-11-06 20:09:50 +0700715"toy", I meant **toy**!
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700716
717So how the heck is this supposed to work???
718
719Remember that it is illegal to block while in an RCU read-side critical
720section. Therefore, if a given CPU executes a context switch, we know
721that it must have completed all preceding RCU read-side critical sections.
Phong Tran5e1bc932019-11-06 20:09:50 +0700722Once **all** CPUs have executed a context switch, then **all** preceding
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700723RCU read-side critical sections will have completed.
724
725So, suppose that we remove a data item from its structure and then invoke
726synchronize_rcu(). Once synchronize_rcu() returns, we are guaranteed
727that there are no RCU read-side critical sections holding a reference
728to that data item, so we can safely reclaim it.
729
Phong Tran5e1bc932019-11-06 20:09:50 +0700730.. _quiz_2:
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700731
Phong Tran5e1bc932019-11-06 20:09:50 +0700732Quick Quiz #2:
733 Give an example where Classic RCU's read-side
734 overhead is **negative**.
735
736:ref:`Answers to Quick Quiz <8_whatisRCU>`
737
738.. _quiz_3:
739
740Quick Quiz #3:
741 If it is illegal to block in an RCU read-side
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700742 critical section, what the heck do you do in
743 PREEMPT_RT, where normal spinlocks can block???
744
Phong Tran5e1bc932019-11-06 20:09:50 +0700745:ref:`Answers to Quick Quiz <8_whatisRCU>`
746
747.. _6_whatisRCU:
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700748
7496. ANALOGY WITH READER-WRITER LOCKING
Phong Tran5e1bc932019-11-06 20:09:50 +0700750--------------------------------------
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700751
752Although RCU can be used in many different ways, a very common use of
753RCU is analogous to reader-writer locking. The following unified
754diff shows how closely related RCU and reader-writer locking can be.
Phong Tran5e1bc932019-11-06 20:09:50 +0700755::
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700756
Yao Dongdong70946a42016-03-07 16:02:14 +0800757 @@ -5,5 +5,5 @@ struct el {
758 int data;
759 /* Other data fields */
760 };
761 -rwlock_t listmutex;
762 +spinlock_t listmutex;
763 struct el head;
764
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700765 @@ -13,15 +14,15 @@
766 struct list_head *lp;
767 struct el *p;
768
Yao Dongdong70946a42016-03-07 16:02:14 +0800769 - read_lock(&listmutex);
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700770 - list_for_each_entry(p, head, lp) {
771 + rcu_read_lock();
772 + list_for_each_entry_rcu(p, head, lp) {
773 if (p->key == key) {
774 *result = p->data;
Yao Dongdong70946a42016-03-07 16:02:14 +0800775 - read_unlock(&listmutex);
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700776 + rcu_read_unlock();
777 return 1;
778 }
779 }
Yao Dongdong70946a42016-03-07 16:02:14 +0800780 - read_unlock(&listmutex);
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700781 + rcu_read_unlock();
782 return 0;
783 }
784
785 @@ -29,15 +30,16 @@
786 {
787 struct el *p;
788
789 - write_lock(&listmutex);
790 + spin_lock(&listmutex);
791 list_for_each_entry(p, head, lp) {
792 if (p->key == key) {
Urs Thuermann82a854e2006-07-10 04:44:06 -0700793 - list_del(&p->list);
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700794 - write_unlock(&listmutex);
Urs Thuermann82a854e2006-07-10 04:44:06 -0700795 + list_del_rcu(&p->list);
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700796 + spin_unlock(&listmutex);
797 + synchronize_rcu();
798 kfree(p);
799 return 1;
800 }
801 }
802 - write_unlock(&listmutex);
803 + spin_unlock(&listmutex);
804 return 0;
805 }
806
Phong Tran5e1bc932019-11-06 20:09:50 +0700807Or, for those who prefer a side-by-side listing::
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700808
809 1 struct el { 1 struct el {
810 2 struct list_head list; 2 struct list_head list;
811 3 long key; 3 long key;
812 4 spinlock_t mutex; 4 spinlock_t mutex;
813 5 int data; 5 int data;
814 6 /* Other data fields */ 6 /* Other data fields */
815 7 }; 7 };
Yao Dongdong70946a42016-03-07 16:02:14 +0800816 8 rwlock_t listmutex; 8 spinlock_t listmutex;
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700817 9 struct el head; 9 struct el head;
818
Phong Tran5e1bc932019-11-06 20:09:50 +0700819::
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700820
Phong Tran5e1bc932019-11-06 20:09:50 +0700821 1 int search(long key, int *result) 1 int search(long key, int *result)
822 2 { 2 {
823 3 struct list_head *lp; 3 struct list_head *lp;
824 4 struct el *p; 4 struct el *p;
825 5 5
826 6 read_lock(&listmutex); 6 rcu_read_lock();
827 7 list_for_each_entry(p, head, lp) { 7 list_for_each_entry_rcu(p, head, lp) {
828 8 if (p->key == key) { 8 if (p->key == key) {
829 9 *result = p->data; 9 *result = p->data;
830 10 read_unlock(&listmutex); 10 rcu_read_unlock();
831 11 return 1; 11 return 1;
832 12 } 12 }
833 13 } 13 }
834 14 read_unlock(&listmutex); 14 rcu_read_unlock();
835 15 return 0; 15 return 0;
836 16 } 16 }
837
838::
839
840 1 int delete(long key) 1 int delete(long key)
841 2 { 2 {
842 3 struct el *p; 3 struct el *p;
843 4 4
844 5 write_lock(&listmutex); 5 spin_lock(&listmutex);
845 6 list_for_each_entry(p, head, lp) { 6 list_for_each_entry(p, head, lp) {
846 7 if (p->key == key) { 7 if (p->key == key) {
847 8 list_del(&p->list); 8 list_del_rcu(&p->list);
848 9 write_unlock(&listmutex); 9 spin_unlock(&listmutex);
849 10 synchronize_rcu();
850 10 kfree(p); 11 kfree(p);
851 11 return 1; 12 return 1;
852 12 } 13 }
853 13 } 14 }
854 14 write_unlock(&listmutex); 15 spin_unlock(&listmutex);
855 15 return 0; 16 return 0;
856 16 } 17 }
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700857
858Either way, the differences are quite small. Read-side locking moves
859to rcu_read_lock() and rcu_read_unlock, update-side locking moves from
Paolo Ornati670e9f32006-10-03 22:57:56 +0200860a reader-writer lock to a simple spinlock, and a synchronize_rcu()
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700861precedes the kfree().
862
863However, there is one potential catch: the read-side and update-side
864critical sections can now run concurrently. In many cases, this will
865not be a problem, but it is necessary to check carefully regardless.
866For example, if multiple independent list updates must be seen as
867a single atomic update, converting to RCU will require special care.
868
869Also, the presence of synchronize_rcu() means that the RCU version of
870delete() can now block. If this is a problem, there is a callback-based
Kees Cook57d34a62012-10-19 09:48:30 -0700871mechanism that never blocks, namely call_rcu() or kfree_rcu(), that can
872be used in place of synchronize_rcu().
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700873
Phong Tran5e1bc932019-11-06 20:09:50 +0700874.. _7_whatisRCU:
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700875
8767. FULL LIST OF RCU APIs
Phong Tran5e1bc932019-11-06 20:09:50 +0700877-------------------------
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700878
879The RCU APIs are documented in docbook-format header comments in the
880Linux-kernel source code, but it helps to have a full list of the
881APIs, since there does not appear to be a way to categorize them
882in docbook. Here is the list, by category.
883
Phong Tran5e1bc932019-11-06 20:09:50 +0700884RCU list traversal::
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700885
Paul E. McKenneyd07e6d02014-03-31 13:36:33 -0700886 list_entry_rcu
Madhuparna Bhowmik17f0da12019-11-11 23:41:22 +0530887 list_entry_lockless
Paul E. McKenneyd07e6d02014-03-31 13:36:33 -0700888 list_first_entry_rcu
889 list_next_rcu
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700890 list_for_each_entry_rcu
Paul E. McKenneybb08f762012-10-20 12:33:37 -0700891 list_for_each_entry_continue_rcu
NeilBrownb7b6f942018-06-18 14:22:40 +1000892 list_for_each_entry_from_rcu
Madhuparna Bhowmik17f0da12019-11-11 23:41:22 +0530893 list_first_or_null_rcu
894 list_next_or_null_rcu
Paul E. McKenneyd07e6d02014-03-31 13:36:33 -0700895 hlist_first_rcu
896 hlist_next_rcu
897 hlist_pprev_rcu
898 hlist_for_each_entry_rcu
899 hlist_for_each_entry_rcu_bh
NeilBrownb7b6f942018-06-18 14:22:40 +1000900 hlist_for_each_entry_from_rcu
Paul E. McKenneyd07e6d02014-03-31 13:36:33 -0700901 hlist_for_each_entry_continue_rcu
902 hlist_for_each_entry_continue_rcu_bh
903 hlist_nulls_first_rcu
904 hlist_nulls_for_each_entry_rcu
905 hlist_bl_first_rcu
906 hlist_bl_for_each_entry_rcu
Paul E. McKenney32300752008-05-12 21:21:05 +0200907
Madhuparna Bhowmik17f0da12019-11-11 23:41:22 +0530908RCU pointer/list update::
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700909
910 rcu_assign_pointer
911 list_add_rcu
912 list_add_tail_rcu
913 list_del_rcu
914 list_replace_rcu
Ken Helias1d023282014-08-06 16:09:16 -0700915 hlist_add_behind_rcu
Paul E. McKenney32300752008-05-12 21:21:05 +0200916 hlist_add_before_rcu
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700917 hlist_add_head_rcu
Madhuparna Bhowmik17f0da12019-11-11 23:41:22 +0530918 hlist_add_tail_rcu
Paul E. McKenneyd07e6d02014-03-31 13:36:33 -0700919 hlist_del_rcu
920 hlist_del_init_rcu
Paul E. McKenney32300752008-05-12 21:21:05 +0200921 hlist_replace_rcu
Madhuparna Bhowmik17f0da12019-11-11 23:41:22 +0530922 list_splice_init_rcu
923 list_splice_tail_init_rcu
Paul E. McKenneyd07e6d02014-03-31 13:36:33 -0700924 hlist_nulls_del_init_rcu
925 hlist_nulls_del_rcu
926 hlist_nulls_add_head_rcu
927 hlist_bl_add_head_rcu
928 hlist_bl_del_init_rcu
929 hlist_bl_del_rcu
930 hlist_bl_set_first_rcu
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700931
Phong Tran5e1bc932019-11-06 20:09:50 +0700932RCU::
933
934 Critical sections Grace period Barrier
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700935
Paul E. McKenney32300752008-05-12 21:21:05 +0200936 rcu_read_lock synchronize_net rcu_barrier
937 rcu_read_unlock synchronize_rcu
Paul E. McKenneyc598a072010-02-22 17:04:57 -0800938 rcu_dereference synchronize_rcu_expedited
Paul E. McKenneyd07e6d02014-03-31 13:36:33 -0700939 rcu_read_lock_held call_rcu
940 rcu_dereference_check kfree_rcu
941 rcu_dereference_protected
Paul E. McKenney32300752008-05-12 21:21:05 +0200942
Phong Tran5e1bc932019-11-06 20:09:50 +0700943bh::
944
945 Critical sections Grace period Barrier
Paul E. McKenney32300752008-05-12 21:21:05 +0200946
Joel Fernandes (Google)33984962018-10-05 16:18:10 -0700947 rcu_read_lock_bh call_rcu rcu_barrier
948 rcu_read_unlock_bh synchronize_rcu
949 [local_bh_disable] synchronize_rcu_expedited
950 [and friends]
951 rcu_dereference_bh
Paul E. McKenneyd07e6d02014-03-31 13:36:33 -0700952 rcu_dereference_bh_check
953 rcu_dereference_bh_protected
954 rcu_read_lock_bh_held
Paul E. McKenney32300752008-05-12 21:21:05 +0200955
Phong Tran5e1bc932019-11-06 20:09:50 +0700956sched::
957
958 Critical sections Grace period Barrier
Paul E. McKenney32300752008-05-12 21:21:05 +0200959
Joel Fernandes (Google)33984962018-10-05 16:18:10 -0700960 rcu_read_lock_sched call_rcu rcu_barrier
961 rcu_read_unlock_sched synchronize_rcu
962 [preempt_disable] synchronize_rcu_expedited
Paul E. McKenney240ebbf2009-06-25 09:08:18 -0700963 [and friends]
Paul E. McKenneyd07e6d02014-03-31 13:36:33 -0700964 rcu_read_lock_sched_notrace
965 rcu_read_unlock_sched_notrace
Paul E. McKenneyc598a072010-02-22 17:04:57 -0800966 rcu_dereference_sched
Paul E. McKenneyd07e6d02014-03-31 13:36:33 -0700967 rcu_dereference_sched_check
968 rcu_dereference_sched_protected
969 rcu_read_lock_sched_held
Paul E. McKenney32300752008-05-12 21:21:05 +0200970
971
Phong Tran5e1bc932019-11-06 20:09:50 +0700972SRCU::
973
974 Critical sections Grace period Barrier
Paul E. McKenney32300752008-05-12 21:21:05 +0200975
Joel Fernandes (Google)33984962018-10-05 16:18:10 -0700976 srcu_read_lock call_srcu srcu_barrier
977 srcu_read_unlock synchronize_srcu
Paul E. McKenney99f88912013-03-12 16:54:14 -0700978 srcu_dereference synchronize_srcu_expedited
Paul E. McKenneyd07e6d02014-03-31 13:36:33 -0700979 srcu_dereference_check
980 srcu_read_lock_held
Paul E. McKenney32300752008-05-12 21:21:05 +0200981
Phong Tran5e1bc932019-11-06 20:09:50 +0700982SRCU: Initialization/cleanup::
983
Paul E. McKenney4de5f892017-06-06 15:04:03 -0700984 DEFINE_SRCU
985 DEFINE_STATIC_SRCU
Paul E. McKenney240ebbf2009-06-25 09:08:18 -0700986 init_srcu_struct
987 cleanup_srcu_struct
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700988
Phong Tran5e1bc932019-11-06 20:09:50 +0700989All: lockdep-checked RCU-protected pointer access::
Paul E. McKenney50aec002010-04-09 15:39:12 -0700990
Paul E. McKenney50aec002010-04-09 15:39:12 -0700991 rcu_access_pointer
Paul E. McKenneyd07e6d02014-03-31 13:36:33 -0700992 rcu_dereference_raw
Paul E. McKenneyf78f5b92015-06-18 15:50:02 -0700993 RCU_LOCKDEP_WARN
Paul E. McKenneyd07e6d02014-03-31 13:36:33 -0700994 rcu_sleep_check
995 RCU_NONIDLE
Paul E. McKenney50aec002010-04-09 15:39:12 -0700996
Paul E. McKenneydd81eca2005-09-10 00:26:24 -0700997See the comment headers in the source code (or the docbook generated
998from them) for more information.
999
Paul E. McKenneyfea65122011-01-23 22:35:45 -08001000However, given that there are no fewer than four families of RCU APIs
1001in the Linux kernel, how do you choose which one to use? The following
1002list can be helpful:
1003
1004a. Will readers need to block? If so, you need SRCU.
1005
Paul E. McKenney99f88912013-03-12 16:54:14 -07001006b. What about the -rt patchset? If readers would need to block
Paul E. McKenneyfea65122011-01-23 22:35:45 -08001007 in an non-rt kernel, you need SRCU. If readers would block
1008 in a -rt kernel, but not in a non-rt kernel, SRCU is not
Paul E. McKenney4de5f892017-06-06 15:04:03 -07001009 necessary. (The -rt patchset turns spinlocks into sleeplocks,
1010 hence this distinction.)
Paul E. McKenneyfea65122011-01-23 22:35:45 -08001011
Paul E. McKenney99f88912013-03-12 16:54:14 -07001012c. Do you need to treat NMI handlers, hardirq handlers,
Paul E. McKenneyfea65122011-01-23 22:35:45 -08001013 and code segments with preemption disabled (whether
1014 via preempt_disable(), local_irq_save(), local_bh_disable(),
1015 or some other mechanism) as if they were explicit RCU readers?
Paul E. McKenney2aef6192012-08-03 16:41:23 -07001016 If so, RCU-sched is the only choice that will work for you.
Paul E. McKenneyfea65122011-01-23 22:35:45 -08001017
Paul E. McKenney99f88912013-03-12 16:54:14 -07001018d. Do you need RCU grace periods to complete even in the face
Paul E. McKenneyfea65122011-01-23 22:35:45 -08001019 of softirq monopolization of one or more of the CPUs? For
1020 example, is your code subject to network-based denial-of-service
Paul E. McKenney77095902018-07-02 08:25:57 -07001021 attacks? If so, you should disable softirq across your readers,
1022 for example, by using rcu_read_lock_bh().
Paul E. McKenneyfea65122011-01-23 22:35:45 -08001023
Paul E. McKenney99f88912013-03-12 16:54:14 -07001024e. Is your workload too update-intensive for normal use of
Paul E. McKenneyfea65122011-01-23 22:35:45 -08001025 RCU, but inappropriate for other synchronization mechanisms?
Paul E. McKenney5f0d5a32017-01-18 02:53:44 -08001026 If so, consider SLAB_TYPESAFE_BY_RCU (which was originally
1027 named SLAB_DESTROY_BY_RCU). But please be careful!
Paul E. McKenneyfea65122011-01-23 22:35:45 -08001028
Paul E. McKenney99f88912013-03-12 16:54:14 -07001029f. Do you need read-side critical sections that are respected
Paul E. McKenney2aef6192012-08-03 16:41:23 -07001030 even though they are in the middle of the idle loop, during
1031 user-mode execution, or on an offlined CPU? If so, SRCU is the
1032 only choice that will work for you.
1033
Paul E. McKenney99f88912013-03-12 16:54:14 -07001034g. Otherwise, use RCU.
Paul E. McKenneyfea65122011-01-23 22:35:45 -08001035
1036Of course, this all assumes that you have determined that RCU is in fact
1037the right tool for your job.
1038
Phong Tran5e1bc932019-11-06 20:09:50 +07001039.. _8_whatisRCU:
Paul E. McKenneydd81eca2005-09-10 00:26:24 -07001040
10418. ANSWERS TO QUICK QUIZZES
Phong Tran5e1bc932019-11-06 20:09:50 +07001042----------------------------
Paul E. McKenneydd81eca2005-09-10 00:26:24 -07001043
Phong Tran5e1bc932019-11-06 20:09:50 +07001044Quick Quiz #1:
1045 Why is this argument naive? How could a deadlock
Paul E. McKenneydd81eca2005-09-10 00:26:24 -07001046 occur when using this algorithm in a real-world Linux
1047 kernel? [Referring to the lock-based "toy" RCU
1048 algorithm.]
1049
Phong Tran5e1bc932019-11-06 20:09:50 +07001050Answer:
1051 Consider the following sequence of events:
Paul E. McKenneydd81eca2005-09-10 00:26:24 -07001052
1053 1. CPU 0 acquires some unrelated lock, call it
Paul E. McKenneyd19720a2006-02-01 03:06:42 -08001054 "problematic_lock", disabling irq via
1055 spin_lock_irqsave().
Paul E. McKenneydd81eca2005-09-10 00:26:24 -07001056
1057 2. CPU 1 enters synchronize_rcu(), write-acquiring
1058 rcu_gp_mutex.
1059
1060 3. CPU 0 enters rcu_read_lock(), but must wait
1061 because CPU 1 holds rcu_gp_mutex.
1062
1063 4. CPU 1 is interrupted, and the irq handler
1064 attempts to acquire problematic_lock.
1065
1066 The system is now deadlocked.
1067
1068 One way to avoid this deadlock is to use an approach like
1069 that of CONFIG_PREEMPT_RT, where all normal spinlocks
1070 become blocking locks, and all irq handlers execute in
1071 the context of special tasks. In this case, in step 4
1072 above, the irq handler would block, allowing CPU 1 to
1073 release rcu_gp_mutex, avoiding the deadlock.
1074
1075 Even in the absence of deadlock, this RCU implementation
1076 allows latency to "bleed" from readers to other
1077 readers through synchronize_rcu(). To see this,
1078 consider task A in an RCU read-side critical section
1079 (thus read-holding rcu_gp_mutex), task B blocked
1080 attempting to write-acquire rcu_gp_mutex, and
1081 task C blocked in rcu_read_lock() attempting to
1082 read_acquire rcu_gp_mutex. Task A's RCU read-side
1083 latency is holding up task C, albeit indirectly via
1084 task B.
1085
1086 Realtime RCU implementations therefore use a counter-based
1087 approach where tasks in RCU read-side critical sections
1088 cannot be blocked by tasks executing synchronize_rcu().
1089
Phong Tran5e1bc932019-11-06 20:09:50 +07001090:ref:`Back to Quick Quiz #1 <quiz_1>`
Paul E. McKenneydd81eca2005-09-10 00:26:24 -07001091
Phong Tran5e1bc932019-11-06 20:09:50 +07001092Quick Quiz #2:
1093 Give an example where Classic RCU's read-side
1094 overhead is **negative**.
1095
1096Answer:
1097 Imagine a single-CPU system with a non-CONFIG_PREEMPT
Paul E. McKenneydd81eca2005-09-10 00:26:24 -07001098 kernel where a routing table is used by process-context
1099 code, but can be updated by irq-context code (for example,
1100 by an "ICMP REDIRECT" packet). The usual way of handling
1101 this would be to have the process-context code disable
1102 interrupts while searching the routing table. Use of
1103 RCU allows such interrupt-disabling to be dispensed with.
1104 Thus, without RCU, you pay the cost of disabling interrupts,
1105 and with RCU you don't.
1106
1107 One can argue that the overhead of RCU in this
1108 case is negative with respect to the single-CPU
1109 interrupt-disabling approach. Others might argue that
1110 the overhead of RCU is merely zero, and that replacing
1111 the positive overhead of the interrupt-disabling scheme
1112 with the zero-overhead RCU scheme does not constitute
1113 negative overhead.
1114
1115 In real life, of course, things are more complex. But
1116 even the theoretical possibility of negative overhead for
1117 a synchronization primitive is a bit unexpected. ;-)
1118
Phong Tran5e1bc932019-11-06 20:09:50 +07001119:ref:`Back to Quick Quiz #2 <quiz_2>`
1120
1121Quick Quiz #3:
1122 If it is illegal to block in an RCU read-side
Paul E. McKenneydd81eca2005-09-10 00:26:24 -07001123 critical section, what the heck do you do in
1124 PREEMPT_RT, where normal spinlocks can block???
1125
Phong Tran5e1bc932019-11-06 20:09:50 +07001126Answer:
1127 Just as PREEMPT_RT permits preemption of spinlock
Paul E. McKenneydd81eca2005-09-10 00:26:24 -07001128 critical sections, it permits preemption of RCU
1129 read-side critical sections. It also permits
1130 spinlocks blocking while in RCU read-side critical
1131 sections.
1132
Joel Fernandes (Google)33984962018-10-05 16:18:10 -07001133 Why the apparent inconsistency? Because it is
Paul E. McKenneydd81eca2005-09-10 00:26:24 -07001134 possible to use priority boosting to keep the RCU
1135 grace periods short if need be (for example, if running
1136 short of memory). In contrast, if blocking waiting
1137 for (say) network reception, there is no way to know
1138 what should be boosted. Especially given that the
1139 process we need to boost might well be a human being
1140 who just went out for a pizza or something. And although
1141 a computer-operated cattle prod might arouse serious
1142 interest, it might also provoke serious objections.
1143 Besides, how does the computer know what pizza parlor
1144 the human being went to???
1145
Phong Tran5e1bc932019-11-06 20:09:50 +07001146:ref:`Back to Quick Quiz #3 <quiz_3>`
Paul E. McKenneydd81eca2005-09-10 00:26:24 -07001147
1148ACKNOWLEDGEMENTS
1149
1150My thanks to the people who helped make this human-readable, including
Paul E. McKenneyd19720a2006-02-01 03:06:42 -08001151Jon Walpole, Josh Triplett, Serge Hallyn, Suzanne Wood, and Alan Stern.
Paul E. McKenneydd81eca2005-09-10 00:26:24 -07001152
1153
1154For more information, see http://www.rdrop.com/users/paulmck/RCU.