Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 1 | /* |
Vitaly Chikunov | 0d7a786 | 2019-04-11 18:51:20 +0300 | [diff] [blame] | 2 | * Copyright (c) 2013, 2014 Kenneth MacKay. All rights reserved. |
| 3 | * Copyright (c) 2019 Vitaly Chikunov <vt@altlinux.org> |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 4 | * |
| 5 | * Redistribution and use in source and binary forms, with or without |
| 6 | * modification, are permitted provided that the following conditions are |
| 7 | * met: |
| 8 | * * Redistributions of source code must retain the above copyright |
| 9 | * notice, this list of conditions and the following disclaimer. |
| 10 | * * Redistributions in binary form must reproduce the above copyright |
| 11 | * notice, this list of conditions and the following disclaimer in the |
| 12 | * documentation and/or other materials provided with the distribution. |
| 13 | * |
| 14 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 15 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 16 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 17 | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 18 | * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 19 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 20 | * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 21 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 22 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 23 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 24 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 25 | */ |
| 26 | |
Vitaly Chikunov | 4a2289d | 2019-04-11 18:51:19 +0300 | [diff] [blame] | 27 | #include <linux/module.h> |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 28 | #include <linux/random.h> |
| 29 | #include <linux/slab.h> |
| 30 | #include <linux/swab.h> |
| 31 | #include <linux/fips.h> |
| 32 | #include <crypto/ecdh.h> |
Tudor-Dan Ambarus | 6755fd2 | 2017-05-30 17:52:48 +0300 | [diff] [blame] | 33 | #include <crypto/rng.h> |
Vitaly Chikunov | 0d7a786 | 2019-04-11 18:51:20 +0300 | [diff] [blame] | 34 | #include <asm/unaligned.h> |
| 35 | #include <linux/ratelimit.h> |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 36 | |
| 37 | #include "ecc.h" |
| 38 | #include "ecc_curve_defs.h" |
| 39 | |
| 40 | typedef struct { |
| 41 | u64 m_low; |
| 42 | u64 m_high; |
| 43 | } uint128_t; |
| 44 | |
| 45 | static inline const struct ecc_curve *ecc_get_curve(unsigned int curve_id) |
| 46 | { |
| 47 | switch (curve_id) { |
| 48 | /* In FIPS mode only allow P256 and higher */ |
| 49 | case ECC_CURVE_NIST_P192: |
| 50 | return fips_enabled ? NULL : &nist_p192; |
| 51 | case ECC_CURVE_NIST_P256: |
| 52 | return &nist_p256; |
| 53 | default: |
| 54 | return NULL; |
| 55 | } |
| 56 | } |
| 57 | |
| 58 | static u64 *ecc_alloc_digits_space(unsigned int ndigits) |
| 59 | { |
| 60 | size_t len = ndigits * sizeof(u64); |
| 61 | |
| 62 | if (!len) |
| 63 | return NULL; |
| 64 | |
| 65 | return kmalloc(len, GFP_KERNEL); |
| 66 | } |
| 67 | |
| 68 | static void ecc_free_digits_space(u64 *space) |
| 69 | { |
| 70 | kzfree(space); |
| 71 | } |
| 72 | |
| 73 | static struct ecc_point *ecc_alloc_point(unsigned int ndigits) |
| 74 | { |
| 75 | struct ecc_point *p = kmalloc(sizeof(*p), GFP_KERNEL); |
| 76 | |
| 77 | if (!p) |
| 78 | return NULL; |
| 79 | |
| 80 | p->x = ecc_alloc_digits_space(ndigits); |
| 81 | if (!p->x) |
| 82 | goto err_alloc_x; |
| 83 | |
| 84 | p->y = ecc_alloc_digits_space(ndigits); |
| 85 | if (!p->y) |
| 86 | goto err_alloc_y; |
| 87 | |
| 88 | p->ndigits = ndigits; |
| 89 | |
| 90 | return p; |
| 91 | |
| 92 | err_alloc_y: |
| 93 | ecc_free_digits_space(p->x); |
| 94 | err_alloc_x: |
| 95 | kfree(p); |
| 96 | return NULL; |
| 97 | } |
| 98 | |
| 99 | static void ecc_free_point(struct ecc_point *p) |
| 100 | { |
| 101 | if (!p) |
| 102 | return; |
| 103 | |
| 104 | kzfree(p->x); |
| 105 | kzfree(p->y); |
| 106 | kzfree(p); |
| 107 | } |
| 108 | |
| 109 | static void vli_clear(u64 *vli, unsigned int ndigits) |
| 110 | { |
| 111 | int i; |
| 112 | |
| 113 | for (i = 0; i < ndigits; i++) |
| 114 | vli[i] = 0; |
| 115 | } |
| 116 | |
| 117 | /* Returns true if vli == 0, false otherwise. */ |
Vitaly Chikunov | 4a2289d | 2019-04-11 18:51:19 +0300 | [diff] [blame] | 118 | bool vli_is_zero(const u64 *vli, unsigned int ndigits) |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 119 | { |
| 120 | int i; |
| 121 | |
| 122 | for (i = 0; i < ndigits; i++) { |
| 123 | if (vli[i]) |
| 124 | return false; |
| 125 | } |
| 126 | |
| 127 | return true; |
| 128 | } |
Vitaly Chikunov | 4a2289d | 2019-04-11 18:51:19 +0300 | [diff] [blame] | 129 | EXPORT_SYMBOL(vli_is_zero); |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 130 | |
| 131 | /* Returns nonzero if bit bit of vli is set. */ |
| 132 | static u64 vli_test_bit(const u64 *vli, unsigned int bit) |
| 133 | { |
| 134 | return (vli[bit / 64] & ((u64)1 << (bit % 64))); |
| 135 | } |
| 136 | |
Vitaly Chikunov | 0d7a786 | 2019-04-11 18:51:20 +0300 | [diff] [blame] | 137 | static bool vli_is_negative(const u64 *vli, unsigned int ndigits) |
| 138 | { |
| 139 | return vli_test_bit(vli, ndigits * 64 - 1); |
| 140 | } |
| 141 | |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 142 | /* Counts the number of 64-bit "digits" in vli. */ |
| 143 | static unsigned int vli_num_digits(const u64 *vli, unsigned int ndigits) |
| 144 | { |
| 145 | int i; |
| 146 | |
| 147 | /* Search from the end until we find a non-zero digit. |
| 148 | * We do it in reverse because we expect that most digits will |
| 149 | * be nonzero. |
| 150 | */ |
| 151 | for (i = ndigits - 1; i >= 0 && vli[i] == 0; i--); |
| 152 | |
| 153 | return (i + 1); |
| 154 | } |
| 155 | |
| 156 | /* Counts the number of bits required for vli. */ |
| 157 | static unsigned int vli_num_bits(const u64 *vli, unsigned int ndigits) |
| 158 | { |
| 159 | unsigned int i, num_digits; |
| 160 | u64 digit; |
| 161 | |
| 162 | num_digits = vli_num_digits(vli, ndigits); |
| 163 | if (num_digits == 0) |
| 164 | return 0; |
| 165 | |
| 166 | digit = vli[num_digits - 1]; |
| 167 | for (i = 0; digit; i++) |
| 168 | digit >>= 1; |
| 169 | |
| 170 | return ((num_digits - 1) * 64 + i); |
| 171 | } |
| 172 | |
Vitaly Chikunov | 0d7a786 | 2019-04-11 18:51:20 +0300 | [diff] [blame] | 173 | /* Set dest from unaligned bit string src. */ |
| 174 | void vli_from_be64(u64 *dest, const void *src, unsigned int ndigits) |
| 175 | { |
| 176 | int i; |
| 177 | const u64 *from = src; |
| 178 | |
| 179 | for (i = 0; i < ndigits; i++) |
| 180 | dest[i] = get_unaligned_be64(&from[ndigits - 1 - i]); |
| 181 | } |
| 182 | EXPORT_SYMBOL(vli_from_be64); |
| 183 | |
| 184 | void vli_from_le64(u64 *dest, const void *src, unsigned int ndigits) |
| 185 | { |
| 186 | int i; |
| 187 | const u64 *from = src; |
| 188 | |
| 189 | for (i = 0; i < ndigits; i++) |
| 190 | dest[i] = get_unaligned_le64(&from[i]); |
| 191 | } |
| 192 | EXPORT_SYMBOL(vli_from_le64); |
| 193 | |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 194 | /* Sets dest = src. */ |
| 195 | static void vli_set(u64 *dest, const u64 *src, unsigned int ndigits) |
| 196 | { |
| 197 | int i; |
| 198 | |
| 199 | for (i = 0; i < ndigits; i++) |
| 200 | dest[i] = src[i]; |
| 201 | } |
| 202 | |
| 203 | /* Returns sign of left - right. */ |
Vitaly Chikunov | 4a2289d | 2019-04-11 18:51:19 +0300 | [diff] [blame] | 204 | int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits) |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 205 | { |
| 206 | int i; |
| 207 | |
| 208 | for (i = ndigits - 1; i >= 0; i--) { |
| 209 | if (left[i] > right[i]) |
| 210 | return 1; |
| 211 | else if (left[i] < right[i]) |
| 212 | return -1; |
| 213 | } |
| 214 | |
| 215 | return 0; |
| 216 | } |
Vitaly Chikunov | 4a2289d | 2019-04-11 18:51:19 +0300 | [diff] [blame] | 217 | EXPORT_SYMBOL(vli_cmp); |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 218 | |
| 219 | /* Computes result = in << c, returning carry. Can modify in place |
| 220 | * (if result == in). 0 < shift < 64. |
| 221 | */ |
| 222 | static u64 vli_lshift(u64 *result, const u64 *in, unsigned int shift, |
| 223 | unsigned int ndigits) |
| 224 | { |
| 225 | u64 carry = 0; |
| 226 | int i; |
| 227 | |
| 228 | for (i = 0; i < ndigits; i++) { |
| 229 | u64 temp = in[i]; |
| 230 | |
| 231 | result[i] = (temp << shift) | carry; |
| 232 | carry = temp >> (64 - shift); |
| 233 | } |
| 234 | |
| 235 | return carry; |
| 236 | } |
| 237 | |
| 238 | /* Computes vli = vli >> 1. */ |
| 239 | static void vli_rshift1(u64 *vli, unsigned int ndigits) |
| 240 | { |
| 241 | u64 *end = vli; |
| 242 | u64 carry = 0; |
| 243 | |
| 244 | vli += ndigits; |
| 245 | |
| 246 | while (vli-- > end) { |
| 247 | u64 temp = *vli; |
| 248 | *vli = (temp >> 1) | carry; |
| 249 | carry = temp << 63; |
| 250 | } |
| 251 | } |
| 252 | |
| 253 | /* Computes result = left + right, returning carry. Can modify in place. */ |
| 254 | static u64 vli_add(u64 *result, const u64 *left, const u64 *right, |
| 255 | unsigned int ndigits) |
| 256 | { |
| 257 | u64 carry = 0; |
| 258 | int i; |
| 259 | |
| 260 | for (i = 0; i < ndigits; i++) { |
| 261 | u64 sum; |
| 262 | |
| 263 | sum = left[i] + right[i] + carry; |
| 264 | if (sum != left[i]) |
| 265 | carry = (sum < left[i]); |
| 266 | |
| 267 | result[i] = sum; |
| 268 | } |
| 269 | |
| 270 | return carry; |
| 271 | } |
| 272 | |
Vitaly Chikunov | 0d7a786 | 2019-04-11 18:51:20 +0300 | [diff] [blame] | 273 | /* Computes result = left + right, returning carry. Can modify in place. */ |
| 274 | static u64 vli_uadd(u64 *result, const u64 *left, u64 right, |
| 275 | unsigned int ndigits) |
| 276 | { |
| 277 | u64 carry = right; |
| 278 | int i; |
| 279 | |
| 280 | for (i = 0; i < ndigits; i++) { |
| 281 | u64 sum; |
| 282 | |
| 283 | sum = left[i] + carry; |
| 284 | if (sum != left[i]) |
| 285 | carry = (sum < left[i]); |
| 286 | else |
| 287 | carry = !!carry; |
| 288 | |
| 289 | result[i] = sum; |
| 290 | } |
| 291 | |
| 292 | return carry; |
| 293 | } |
| 294 | |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 295 | /* Computes result = left - right, returning borrow. Can modify in place. */ |
Vitaly Chikunov | 4a2289d | 2019-04-11 18:51:19 +0300 | [diff] [blame] | 296 | u64 vli_sub(u64 *result, const u64 *left, const u64 *right, |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 297 | unsigned int ndigits) |
| 298 | { |
| 299 | u64 borrow = 0; |
| 300 | int i; |
| 301 | |
| 302 | for (i = 0; i < ndigits; i++) { |
| 303 | u64 diff; |
| 304 | |
| 305 | diff = left[i] - right[i] - borrow; |
| 306 | if (diff != left[i]) |
| 307 | borrow = (diff > left[i]); |
| 308 | |
| 309 | result[i] = diff; |
| 310 | } |
| 311 | |
| 312 | return borrow; |
| 313 | } |
Vitaly Chikunov | 4a2289d | 2019-04-11 18:51:19 +0300 | [diff] [blame] | 314 | EXPORT_SYMBOL(vli_sub); |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 315 | |
Vitaly Chikunov | 0d7a786 | 2019-04-11 18:51:20 +0300 | [diff] [blame] | 316 | /* Computes result = left - right, returning borrow. Can modify in place. */ |
| 317 | static u64 vli_usub(u64 *result, const u64 *left, u64 right, |
| 318 | unsigned int ndigits) |
| 319 | { |
| 320 | u64 borrow = right; |
| 321 | int i; |
| 322 | |
| 323 | for (i = 0; i < ndigits; i++) { |
| 324 | u64 diff; |
| 325 | |
| 326 | diff = left[i] - borrow; |
| 327 | if (diff != left[i]) |
| 328 | borrow = (diff > left[i]); |
| 329 | |
| 330 | result[i] = diff; |
| 331 | } |
| 332 | |
| 333 | return borrow; |
| 334 | } |
| 335 | |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 336 | static uint128_t mul_64_64(u64 left, u64 right) |
| 337 | { |
Vitaly Chikunov | 0d7a786 | 2019-04-11 18:51:20 +0300 | [diff] [blame] | 338 | uint128_t result; |
Ard Biesheuvel | c12d336 | 2019-11-08 13:22:27 +0100 | [diff] [blame] | 339 | #if defined(CONFIG_ARCH_SUPPORTS_INT128) |
Vitaly Chikunov | 0d7a786 | 2019-04-11 18:51:20 +0300 | [diff] [blame] | 340 | unsigned __int128 m = (unsigned __int128)left * right; |
| 341 | |
| 342 | result.m_low = m; |
| 343 | result.m_high = m >> 64; |
| 344 | #else |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 345 | u64 a0 = left & 0xffffffffull; |
| 346 | u64 a1 = left >> 32; |
| 347 | u64 b0 = right & 0xffffffffull; |
| 348 | u64 b1 = right >> 32; |
| 349 | u64 m0 = a0 * b0; |
| 350 | u64 m1 = a0 * b1; |
| 351 | u64 m2 = a1 * b0; |
| 352 | u64 m3 = a1 * b1; |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 353 | |
| 354 | m2 += (m0 >> 32); |
| 355 | m2 += m1; |
| 356 | |
| 357 | /* Overflow */ |
| 358 | if (m2 < m1) |
| 359 | m3 += 0x100000000ull; |
| 360 | |
| 361 | result.m_low = (m0 & 0xffffffffull) | (m2 << 32); |
| 362 | result.m_high = m3 + (m2 >> 32); |
Vitaly Chikunov | 0d7a786 | 2019-04-11 18:51:20 +0300 | [diff] [blame] | 363 | #endif |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 364 | return result; |
| 365 | } |
| 366 | |
| 367 | static uint128_t add_128_128(uint128_t a, uint128_t b) |
| 368 | { |
| 369 | uint128_t result; |
| 370 | |
| 371 | result.m_low = a.m_low + b.m_low; |
| 372 | result.m_high = a.m_high + b.m_high + (result.m_low < a.m_low); |
| 373 | |
| 374 | return result; |
| 375 | } |
| 376 | |
| 377 | static void vli_mult(u64 *result, const u64 *left, const u64 *right, |
| 378 | unsigned int ndigits) |
| 379 | { |
| 380 | uint128_t r01 = { 0, 0 }; |
| 381 | u64 r2 = 0; |
| 382 | unsigned int i, k; |
| 383 | |
| 384 | /* Compute each digit of result in sequence, maintaining the |
| 385 | * carries. |
| 386 | */ |
| 387 | for (k = 0; k < ndigits * 2 - 1; k++) { |
| 388 | unsigned int min; |
| 389 | |
| 390 | if (k < ndigits) |
| 391 | min = 0; |
| 392 | else |
| 393 | min = (k + 1) - ndigits; |
| 394 | |
| 395 | for (i = min; i <= k && i < ndigits; i++) { |
| 396 | uint128_t product; |
| 397 | |
| 398 | product = mul_64_64(left[i], right[k - i]); |
| 399 | |
| 400 | r01 = add_128_128(r01, product); |
| 401 | r2 += (r01.m_high < product.m_high); |
| 402 | } |
| 403 | |
| 404 | result[k] = r01.m_low; |
| 405 | r01.m_low = r01.m_high; |
| 406 | r01.m_high = r2; |
| 407 | r2 = 0; |
| 408 | } |
| 409 | |
| 410 | result[ndigits * 2 - 1] = r01.m_low; |
| 411 | } |
| 412 | |
Vitaly Chikunov | 0d7a786 | 2019-04-11 18:51:20 +0300 | [diff] [blame] | 413 | /* Compute product = left * right, for a small right value. */ |
| 414 | static void vli_umult(u64 *result, const u64 *left, u32 right, |
| 415 | unsigned int ndigits) |
| 416 | { |
| 417 | uint128_t r01 = { 0 }; |
| 418 | unsigned int k; |
| 419 | |
| 420 | for (k = 0; k < ndigits; k++) { |
| 421 | uint128_t product; |
| 422 | |
| 423 | product = mul_64_64(left[k], right); |
| 424 | r01 = add_128_128(r01, product); |
| 425 | /* no carry */ |
| 426 | result[k] = r01.m_low; |
| 427 | r01.m_low = r01.m_high; |
| 428 | r01.m_high = 0; |
| 429 | } |
| 430 | result[k] = r01.m_low; |
| 431 | for (++k; k < ndigits * 2; k++) |
| 432 | result[k] = 0; |
| 433 | } |
| 434 | |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 435 | static void vli_square(u64 *result, const u64 *left, unsigned int ndigits) |
| 436 | { |
| 437 | uint128_t r01 = { 0, 0 }; |
| 438 | u64 r2 = 0; |
| 439 | int i, k; |
| 440 | |
| 441 | for (k = 0; k < ndigits * 2 - 1; k++) { |
| 442 | unsigned int min; |
| 443 | |
| 444 | if (k < ndigits) |
| 445 | min = 0; |
| 446 | else |
| 447 | min = (k + 1) - ndigits; |
| 448 | |
| 449 | for (i = min; i <= k && i <= k - i; i++) { |
| 450 | uint128_t product; |
| 451 | |
| 452 | product = mul_64_64(left[i], left[k - i]); |
| 453 | |
| 454 | if (i < k - i) { |
| 455 | r2 += product.m_high >> 63; |
| 456 | product.m_high = (product.m_high << 1) | |
| 457 | (product.m_low >> 63); |
| 458 | product.m_low <<= 1; |
| 459 | } |
| 460 | |
| 461 | r01 = add_128_128(r01, product); |
| 462 | r2 += (r01.m_high < product.m_high); |
| 463 | } |
| 464 | |
| 465 | result[k] = r01.m_low; |
| 466 | r01.m_low = r01.m_high; |
| 467 | r01.m_high = r2; |
| 468 | r2 = 0; |
| 469 | } |
| 470 | |
| 471 | result[ndigits * 2 - 1] = r01.m_low; |
| 472 | } |
| 473 | |
| 474 | /* Computes result = (left + right) % mod. |
| 475 | * Assumes that left < mod and right < mod, result != mod. |
| 476 | */ |
| 477 | static void vli_mod_add(u64 *result, const u64 *left, const u64 *right, |
| 478 | const u64 *mod, unsigned int ndigits) |
| 479 | { |
| 480 | u64 carry; |
| 481 | |
| 482 | carry = vli_add(result, left, right, ndigits); |
| 483 | |
| 484 | /* result > mod (result = mod + remainder), so subtract mod to |
| 485 | * get remainder. |
| 486 | */ |
| 487 | if (carry || vli_cmp(result, mod, ndigits) >= 0) |
| 488 | vli_sub(result, result, mod, ndigits); |
| 489 | } |
| 490 | |
| 491 | /* Computes result = (left - right) % mod. |
| 492 | * Assumes that left < mod and right < mod, result != mod. |
| 493 | */ |
| 494 | static void vli_mod_sub(u64 *result, const u64 *left, const u64 *right, |
| 495 | const u64 *mod, unsigned int ndigits) |
| 496 | { |
| 497 | u64 borrow = vli_sub(result, left, right, ndigits); |
| 498 | |
| 499 | /* In this case, p_result == -diff == (max int) - diff. |
| 500 | * Since -x % d == d - x, we can get the correct result from |
| 501 | * result + mod (with overflow). |
| 502 | */ |
| 503 | if (borrow) |
| 504 | vli_add(result, result, mod, ndigits); |
| 505 | } |
| 506 | |
Vitaly Chikunov | 0d7a786 | 2019-04-11 18:51:20 +0300 | [diff] [blame] | 507 | /* |
| 508 | * Computes result = product % mod |
| 509 | * for special form moduli: p = 2^k-c, for small c (note the minus sign) |
| 510 | * |
| 511 | * References: |
| 512 | * R. Crandall, C. Pomerance. Prime Numbers: A Computational Perspective. |
| 513 | * 9 Fast Algorithms for Large-Integer Arithmetic. 9.2.3 Moduli of special form |
| 514 | * Algorithm 9.2.13 (Fast mod operation for special-form moduli). |
| 515 | */ |
| 516 | static void vli_mmod_special(u64 *result, const u64 *product, |
| 517 | const u64 *mod, unsigned int ndigits) |
| 518 | { |
| 519 | u64 c = -mod[0]; |
| 520 | u64 t[ECC_MAX_DIGITS * 2]; |
| 521 | u64 r[ECC_MAX_DIGITS * 2]; |
| 522 | |
| 523 | vli_set(r, product, ndigits * 2); |
| 524 | while (!vli_is_zero(r + ndigits, ndigits)) { |
| 525 | vli_umult(t, r + ndigits, c, ndigits); |
| 526 | vli_clear(r + ndigits, ndigits); |
| 527 | vli_add(r, r, t, ndigits * 2); |
| 528 | } |
| 529 | vli_set(t, mod, ndigits); |
| 530 | vli_clear(t + ndigits, ndigits); |
| 531 | while (vli_cmp(r, t, ndigits * 2) >= 0) |
| 532 | vli_sub(r, r, t, ndigits * 2); |
| 533 | vli_set(result, r, ndigits); |
| 534 | } |
| 535 | |
| 536 | /* |
| 537 | * Computes result = product % mod |
| 538 | * for special form moduli: p = 2^{k-1}+c, for small c (note the plus sign) |
| 539 | * where k-1 does not fit into qword boundary by -1 bit (such as 255). |
| 540 | |
| 541 | * References (loosely based on): |
| 542 | * A. Menezes, P. van Oorschot, S. Vanstone. Handbook of Applied Cryptography. |
| 543 | * 14.3.4 Reduction methods for moduli of special form. Algorithm 14.47. |
| 544 | * URL: http://cacr.uwaterloo.ca/hac/about/chap14.pdf |
| 545 | * |
| 546 | * H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, F. Vercauteren. |
| 547 | * Handbook of Elliptic and Hyperelliptic Curve Cryptography. |
| 548 | * Algorithm 10.25 Fast reduction for special form moduli |
| 549 | */ |
| 550 | static void vli_mmod_special2(u64 *result, const u64 *product, |
| 551 | const u64 *mod, unsigned int ndigits) |
| 552 | { |
| 553 | u64 c2 = mod[0] * 2; |
| 554 | u64 q[ECC_MAX_DIGITS]; |
| 555 | u64 r[ECC_MAX_DIGITS * 2]; |
| 556 | u64 m[ECC_MAX_DIGITS * 2]; /* expanded mod */ |
| 557 | int carry; /* last bit that doesn't fit into q */ |
| 558 | int i; |
| 559 | |
| 560 | vli_set(m, mod, ndigits); |
| 561 | vli_clear(m + ndigits, ndigits); |
| 562 | |
| 563 | vli_set(r, product, ndigits); |
| 564 | /* q and carry are top bits */ |
| 565 | vli_set(q, product + ndigits, ndigits); |
| 566 | vli_clear(r + ndigits, ndigits); |
| 567 | carry = vli_is_negative(r, ndigits); |
| 568 | if (carry) |
| 569 | r[ndigits - 1] &= (1ull << 63) - 1; |
| 570 | for (i = 1; carry || !vli_is_zero(q, ndigits); i++) { |
| 571 | u64 qc[ECC_MAX_DIGITS * 2]; |
| 572 | |
| 573 | vli_umult(qc, q, c2, ndigits); |
| 574 | if (carry) |
| 575 | vli_uadd(qc, qc, mod[0], ndigits * 2); |
| 576 | vli_set(q, qc + ndigits, ndigits); |
| 577 | vli_clear(qc + ndigits, ndigits); |
| 578 | carry = vli_is_negative(qc, ndigits); |
| 579 | if (carry) |
| 580 | qc[ndigits - 1] &= (1ull << 63) - 1; |
| 581 | if (i & 1) |
| 582 | vli_sub(r, r, qc, ndigits * 2); |
| 583 | else |
| 584 | vli_add(r, r, qc, ndigits * 2); |
| 585 | } |
| 586 | while (vli_is_negative(r, ndigits * 2)) |
| 587 | vli_add(r, r, m, ndigits * 2); |
| 588 | while (vli_cmp(r, m, ndigits * 2) >= 0) |
| 589 | vli_sub(r, r, m, ndigits * 2); |
| 590 | |
| 591 | vli_set(result, r, ndigits); |
| 592 | } |
| 593 | |
| 594 | /* |
| 595 | * Computes result = product % mod, where product is 2N words long. |
| 596 | * Reference: Ken MacKay's micro-ecc. |
| 597 | * Currently only designed to work for curve_p or curve_n. |
| 598 | */ |
| 599 | static void vli_mmod_slow(u64 *result, u64 *product, const u64 *mod, |
| 600 | unsigned int ndigits) |
| 601 | { |
| 602 | u64 mod_m[2 * ECC_MAX_DIGITS]; |
| 603 | u64 tmp[2 * ECC_MAX_DIGITS]; |
| 604 | u64 *v[2] = { tmp, product }; |
| 605 | u64 carry = 0; |
| 606 | unsigned int i; |
| 607 | /* Shift mod so its highest set bit is at the maximum position. */ |
| 608 | int shift = (ndigits * 2 * 64) - vli_num_bits(mod, ndigits); |
| 609 | int word_shift = shift / 64; |
| 610 | int bit_shift = shift % 64; |
| 611 | |
| 612 | vli_clear(mod_m, word_shift); |
| 613 | if (bit_shift > 0) { |
| 614 | for (i = 0; i < ndigits; ++i) { |
| 615 | mod_m[word_shift + i] = (mod[i] << bit_shift) | carry; |
| 616 | carry = mod[i] >> (64 - bit_shift); |
| 617 | } |
| 618 | } else |
| 619 | vli_set(mod_m + word_shift, mod, ndigits); |
| 620 | |
| 621 | for (i = 1; shift >= 0; --shift) { |
| 622 | u64 borrow = 0; |
| 623 | unsigned int j; |
| 624 | |
| 625 | for (j = 0; j < ndigits * 2; ++j) { |
| 626 | u64 diff = v[i][j] - mod_m[j] - borrow; |
| 627 | |
| 628 | if (diff != v[i][j]) |
| 629 | borrow = (diff > v[i][j]); |
| 630 | v[1 - i][j] = diff; |
| 631 | } |
| 632 | i = !(i ^ borrow); /* Swap the index if there was no borrow */ |
| 633 | vli_rshift1(mod_m, ndigits); |
| 634 | mod_m[ndigits - 1] |= mod_m[ndigits] << (64 - 1); |
| 635 | vli_rshift1(mod_m + ndigits, ndigits); |
| 636 | } |
| 637 | vli_set(result, v[i], ndigits); |
| 638 | } |
| 639 | |
| 640 | /* Computes result = product % mod using Barrett's reduction with precomputed |
| 641 | * value mu appended to the mod after ndigits, mu = (2^{2w} / mod) and have |
| 642 | * length ndigits + 1, where mu * (2^w - 1) should not overflow ndigits |
| 643 | * boundary. |
| 644 | * |
| 645 | * Reference: |
| 646 | * R. Brent, P. Zimmermann. Modern Computer Arithmetic. 2010. |
| 647 | * 2.4.1 Barrett's algorithm. Algorithm 2.5. |
| 648 | */ |
| 649 | static void vli_mmod_barrett(u64 *result, u64 *product, const u64 *mod, |
| 650 | unsigned int ndigits) |
| 651 | { |
| 652 | u64 q[ECC_MAX_DIGITS * 2]; |
| 653 | u64 r[ECC_MAX_DIGITS * 2]; |
| 654 | const u64 *mu = mod + ndigits; |
| 655 | |
| 656 | vli_mult(q, product + ndigits, mu, ndigits); |
| 657 | if (mu[ndigits]) |
| 658 | vli_add(q + ndigits, q + ndigits, product + ndigits, ndigits); |
| 659 | vli_mult(r, mod, q + ndigits, ndigits); |
| 660 | vli_sub(r, product, r, ndigits * 2); |
| 661 | while (!vli_is_zero(r + ndigits, ndigits) || |
| 662 | vli_cmp(r, mod, ndigits) != -1) { |
| 663 | u64 carry; |
| 664 | |
| 665 | carry = vli_sub(r, r, mod, ndigits); |
| 666 | vli_usub(r + ndigits, r + ndigits, carry, ndigits); |
| 667 | } |
| 668 | vli_set(result, r, ndigits); |
| 669 | } |
| 670 | |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 671 | /* Computes p_result = p_product % curve_p. |
| 672 | * See algorithm 5 and 6 from |
| 673 | * http://www.isys.uni-klu.ac.at/PDF/2001-0126-MT.pdf |
| 674 | */ |
| 675 | static void vli_mmod_fast_192(u64 *result, const u64 *product, |
| 676 | const u64 *curve_prime, u64 *tmp) |
| 677 | { |
| 678 | const unsigned int ndigits = 3; |
| 679 | int carry; |
| 680 | |
| 681 | vli_set(result, product, ndigits); |
| 682 | |
| 683 | vli_set(tmp, &product[3], ndigits); |
| 684 | carry = vli_add(result, result, tmp, ndigits); |
| 685 | |
| 686 | tmp[0] = 0; |
| 687 | tmp[1] = product[3]; |
| 688 | tmp[2] = product[4]; |
| 689 | carry += vli_add(result, result, tmp, ndigits); |
| 690 | |
| 691 | tmp[0] = tmp[1] = product[5]; |
| 692 | tmp[2] = 0; |
| 693 | carry += vli_add(result, result, tmp, ndigits); |
| 694 | |
| 695 | while (carry || vli_cmp(curve_prime, result, ndigits) != 1) |
| 696 | carry -= vli_sub(result, result, curve_prime, ndigits); |
| 697 | } |
| 698 | |
| 699 | /* Computes result = product % curve_prime |
| 700 | * from http://www.nsa.gov/ia/_files/nist-routines.pdf |
| 701 | */ |
| 702 | static void vli_mmod_fast_256(u64 *result, const u64 *product, |
| 703 | const u64 *curve_prime, u64 *tmp) |
| 704 | { |
| 705 | int carry; |
| 706 | const unsigned int ndigits = 4; |
| 707 | |
| 708 | /* t */ |
| 709 | vli_set(result, product, ndigits); |
| 710 | |
| 711 | /* s1 */ |
| 712 | tmp[0] = 0; |
| 713 | tmp[1] = product[5] & 0xffffffff00000000ull; |
| 714 | tmp[2] = product[6]; |
| 715 | tmp[3] = product[7]; |
| 716 | carry = vli_lshift(tmp, tmp, 1, ndigits); |
| 717 | carry += vli_add(result, result, tmp, ndigits); |
| 718 | |
| 719 | /* s2 */ |
| 720 | tmp[1] = product[6] << 32; |
| 721 | tmp[2] = (product[6] >> 32) | (product[7] << 32); |
| 722 | tmp[3] = product[7] >> 32; |
| 723 | carry += vli_lshift(tmp, tmp, 1, ndigits); |
| 724 | carry += vli_add(result, result, tmp, ndigits); |
| 725 | |
| 726 | /* s3 */ |
| 727 | tmp[0] = product[4]; |
| 728 | tmp[1] = product[5] & 0xffffffff; |
| 729 | tmp[2] = 0; |
| 730 | tmp[3] = product[7]; |
| 731 | carry += vli_add(result, result, tmp, ndigits); |
| 732 | |
| 733 | /* s4 */ |
| 734 | tmp[0] = (product[4] >> 32) | (product[5] << 32); |
| 735 | tmp[1] = (product[5] >> 32) | (product[6] & 0xffffffff00000000ull); |
| 736 | tmp[2] = product[7]; |
| 737 | tmp[3] = (product[6] >> 32) | (product[4] << 32); |
| 738 | carry += vli_add(result, result, tmp, ndigits); |
| 739 | |
| 740 | /* d1 */ |
| 741 | tmp[0] = (product[5] >> 32) | (product[6] << 32); |
| 742 | tmp[1] = (product[6] >> 32); |
| 743 | tmp[2] = 0; |
| 744 | tmp[3] = (product[4] & 0xffffffff) | (product[5] << 32); |
| 745 | carry -= vli_sub(result, result, tmp, ndigits); |
| 746 | |
| 747 | /* d2 */ |
| 748 | tmp[0] = product[6]; |
| 749 | tmp[1] = product[7]; |
| 750 | tmp[2] = 0; |
| 751 | tmp[3] = (product[4] >> 32) | (product[5] & 0xffffffff00000000ull); |
| 752 | carry -= vli_sub(result, result, tmp, ndigits); |
| 753 | |
| 754 | /* d3 */ |
| 755 | tmp[0] = (product[6] >> 32) | (product[7] << 32); |
| 756 | tmp[1] = (product[7] >> 32) | (product[4] << 32); |
| 757 | tmp[2] = (product[4] >> 32) | (product[5] << 32); |
| 758 | tmp[3] = (product[6] << 32); |
| 759 | carry -= vli_sub(result, result, tmp, ndigits); |
| 760 | |
| 761 | /* d4 */ |
| 762 | tmp[0] = product[7]; |
| 763 | tmp[1] = product[4] & 0xffffffff00000000ull; |
| 764 | tmp[2] = product[5]; |
| 765 | tmp[3] = product[6] & 0xffffffff00000000ull; |
| 766 | carry -= vli_sub(result, result, tmp, ndigits); |
| 767 | |
| 768 | if (carry < 0) { |
| 769 | do { |
| 770 | carry += vli_add(result, result, curve_prime, ndigits); |
| 771 | } while (carry < 0); |
| 772 | } else { |
| 773 | while (carry || vli_cmp(curve_prime, result, ndigits) != 1) |
| 774 | carry -= vli_sub(result, result, curve_prime, ndigits); |
| 775 | } |
| 776 | } |
| 777 | |
Vitaly Chikunov | 0d7a786 | 2019-04-11 18:51:20 +0300 | [diff] [blame] | 778 | /* Computes result = product % curve_prime for different curve_primes. |
| 779 | * |
| 780 | * Note that curve_primes are distinguished just by heuristic check and |
| 781 | * not by complete conformance check. |
| 782 | */ |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 783 | static bool vli_mmod_fast(u64 *result, u64 *product, |
| 784 | const u64 *curve_prime, unsigned int ndigits) |
| 785 | { |
Kees Cook | d5c3b17 | 2018-03-30 09:55:44 -0700 | [diff] [blame] | 786 | u64 tmp[2 * ECC_MAX_DIGITS]; |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 787 | |
Vitaly Chikunov | 0d7a786 | 2019-04-11 18:51:20 +0300 | [diff] [blame] | 788 | /* Currently, both NIST primes have -1 in lowest qword. */ |
| 789 | if (curve_prime[0] != -1ull) { |
| 790 | /* Try to handle Pseudo-Marsenne primes. */ |
| 791 | if (curve_prime[ndigits - 1] == -1ull) { |
| 792 | vli_mmod_special(result, product, curve_prime, |
| 793 | ndigits); |
| 794 | return true; |
| 795 | } else if (curve_prime[ndigits - 1] == 1ull << 63 && |
| 796 | curve_prime[ndigits - 2] == 0) { |
| 797 | vli_mmod_special2(result, product, curve_prime, |
| 798 | ndigits); |
| 799 | return true; |
| 800 | } |
| 801 | vli_mmod_barrett(result, product, curve_prime, ndigits); |
| 802 | return true; |
| 803 | } |
| 804 | |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 805 | switch (ndigits) { |
| 806 | case 3: |
| 807 | vli_mmod_fast_192(result, product, curve_prime, tmp); |
| 808 | break; |
| 809 | case 4: |
| 810 | vli_mmod_fast_256(result, product, curve_prime, tmp); |
| 811 | break; |
| 812 | default: |
Vitaly Chikunov | 0d7a786 | 2019-04-11 18:51:20 +0300 | [diff] [blame] | 813 | pr_err_ratelimited("ecc: unsupported digits size!\n"); |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 814 | return false; |
| 815 | } |
| 816 | |
| 817 | return true; |
| 818 | } |
| 819 | |
Vitaly Chikunov | 0d7a786 | 2019-04-11 18:51:20 +0300 | [diff] [blame] | 820 | /* Computes result = (left * right) % mod. |
| 821 | * Assumes that mod is big enough curve order. |
| 822 | */ |
| 823 | void vli_mod_mult_slow(u64 *result, const u64 *left, const u64 *right, |
| 824 | const u64 *mod, unsigned int ndigits) |
| 825 | { |
| 826 | u64 product[ECC_MAX_DIGITS * 2]; |
| 827 | |
| 828 | vli_mult(product, left, right, ndigits); |
| 829 | vli_mmod_slow(result, product, mod, ndigits); |
| 830 | } |
| 831 | EXPORT_SYMBOL(vli_mod_mult_slow); |
| 832 | |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 833 | /* Computes result = (left * right) % curve_prime. */ |
| 834 | static void vli_mod_mult_fast(u64 *result, const u64 *left, const u64 *right, |
| 835 | const u64 *curve_prime, unsigned int ndigits) |
| 836 | { |
Kees Cook | d5c3b17 | 2018-03-30 09:55:44 -0700 | [diff] [blame] | 837 | u64 product[2 * ECC_MAX_DIGITS]; |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 838 | |
| 839 | vli_mult(product, left, right, ndigits); |
| 840 | vli_mmod_fast(result, product, curve_prime, ndigits); |
| 841 | } |
| 842 | |
| 843 | /* Computes result = left^2 % curve_prime. */ |
| 844 | static void vli_mod_square_fast(u64 *result, const u64 *left, |
| 845 | const u64 *curve_prime, unsigned int ndigits) |
| 846 | { |
Kees Cook | d5c3b17 | 2018-03-30 09:55:44 -0700 | [diff] [blame] | 847 | u64 product[2 * ECC_MAX_DIGITS]; |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 848 | |
| 849 | vli_square(product, left, ndigits); |
| 850 | vli_mmod_fast(result, product, curve_prime, ndigits); |
| 851 | } |
| 852 | |
| 853 | #define EVEN(vli) (!(vli[0] & 1)) |
| 854 | /* Computes result = (1 / p_input) % mod. All VLIs are the same size. |
| 855 | * See "From Euclid's GCD to Montgomery Multiplication to the Great Divide" |
| 856 | * https://labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf |
| 857 | */ |
Vitaly Chikunov | 4a2289d | 2019-04-11 18:51:19 +0300 | [diff] [blame] | 858 | void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod, |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 859 | unsigned int ndigits) |
| 860 | { |
Kees Cook | d5c3b17 | 2018-03-30 09:55:44 -0700 | [diff] [blame] | 861 | u64 a[ECC_MAX_DIGITS], b[ECC_MAX_DIGITS]; |
| 862 | u64 u[ECC_MAX_DIGITS], v[ECC_MAX_DIGITS]; |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 863 | u64 carry; |
| 864 | int cmp_result; |
| 865 | |
| 866 | if (vli_is_zero(input, ndigits)) { |
| 867 | vli_clear(result, ndigits); |
| 868 | return; |
| 869 | } |
| 870 | |
| 871 | vli_set(a, input, ndigits); |
| 872 | vli_set(b, mod, ndigits); |
| 873 | vli_clear(u, ndigits); |
| 874 | u[0] = 1; |
| 875 | vli_clear(v, ndigits); |
| 876 | |
| 877 | while ((cmp_result = vli_cmp(a, b, ndigits)) != 0) { |
| 878 | carry = 0; |
| 879 | |
| 880 | if (EVEN(a)) { |
| 881 | vli_rshift1(a, ndigits); |
| 882 | |
| 883 | if (!EVEN(u)) |
| 884 | carry = vli_add(u, u, mod, ndigits); |
| 885 | |
| 886 | vli_rshift1(u, ndigits); |
| 887 | if (carry) |
| 888 | u[ndigits - 1] |= 0x8000000000000000ull; |
| 889 | } else if (EVEN(b)) { |
| 890 | vli_rshift1(b, ndigits); |
| 891 | |
| 892 | if (!EVEN(v)) |
| 893 | carry = vli_add(v, v, mod, ndigits); |
| 894 | |
| 895 | vli_rshift1(v, ndigits); |
| 896 | if (carry) |
| 897 | v[ndigits - 1] |= 0x8000000000000000ull; |
| 898 | } else if (cmp_result > 0) { |
| 899 | vli_sub(a, a, b, ndigits); |
| 900 | vli_rshift1(a, ndigits); |
| 901 | |
| 902 | if (vli_cmp(u, v, ndigits) < 0) |
| 903 | vli_add(u, u, mod, ndigits); |
| 904 | |
| 905 | vli_sub(u, u, v, ndigits); |
| 906 | if (!EVEN(u)) |
| 907 | carry = vli_add(u, u, mod, ndigits); |
| 908 | |
| 909 | vli_rshift1(u, ndigits); |
| 910 | if (carry) |
| 911 | u[ndigits - 1] |= 0x8000000000000000ull; |
| 912 | } else { |
| 913 | vli_sub(b, b, a, ndigits); |
| 914 | vli_rshift1(b, ndigits); |
| 915 | |
| 916 | if (vli_cmp(v, u, ndigits) < 0) |
| 917 | vli_add(v, v, mod, ndigits); |
| 918 | |
| 919 | vli_sub(v, v, u, ndigits); |
| 920 | if (!EVEN(v)) |
| 921 | carry = vli_add(v, v, mod, ndigits); |
| 922 | |
| 923 | vli_rshift1(v, ndigits); |
| 924 | if (carry) |
| 925 | v[ndigits - 1] |= 0x8000000000000000ull; |
| 926 | } |
| 927 | } |
| 928 | |
| 929 | vli_set(result, u, ndigits); |
| 930 | } |
Vitaly Chikunov | 4a2289d | 2019-04-11 18:51:19 +0300 | [diff] [blame] | 931 | EXPORT_SYMBOL(vli_mod_inv); |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 932 | |
| 933 | /* ------ Point operations ------ */ |
| 934 | |
| 935 | /* Returns true if p_point is the point at infinity, false otherwise. */ |
| 936 | static bool ecc_point_is_zero(const struct ecc_point *point) |
| 937 | { |
| 938 | return (vli_is_zero(point->x, point->ndigits) && |
| 939 | vli_is_zero(point->y, point->ndigits)); |
| 940 | } |
| 941 | |
| 942 | /* Point multiplication algorithm using Montgomery's ladder with co-Z |
Alexander A. Klimov | 9332a9e | 2020-07-19 18:49:59 +0200 | [diff] [blame^] | 943 | * coordinates. From https://eprint.iacr.org/2011/338.pdf |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 944 | */ |
| 945 | |
| 946 | /* Double in place */ |
| 947 | static void ecc_point_double_jacobian(u64 *x1, u64 *y1, u64 *z1, |
| 948 | u64 *curve_prime, unsigned int ndigits) |
| 949 | { |
| 950 | /* t1 = x, t2 = y, t3 = z */ |
Kees Cook | d5c3b17 | 2018-03-30 09:55:44 -0700 | [diff] [blame] | 951 | u64 t4[ECC_MAX_DIGITS]; |
| 952 | u64 t5[ECC_MAX_DIGITS]; |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 953 | |
| 954 | if (vli_is_zero(z1, ndigits)) |
| 955 | return; |
| 956 | |
| 957 | /* t4 = y1^2 */ |
| 958 | vli_mod_square_fast(t4, y1, curve_prime, ndigits); |
| 959 | /* t5 = x1*y1^2 = A */ |
| 960 | vli_mod_mult_fast(t5, x1, t4, curve_prime, ndigits); |
| 961 | /* t4 = y1^4 */ |
| 962 | vli_mod_square_fast(t4, t4, curve_prime, ndigits); |
| 963 | /* t2 = y1*z1 = z3 */ |
| 964 | vli_mod_mult_fast(y1, y1, z1, curve_prime, ndigits); |
| 965 | /* t3 = z1^2 */ |
| 966 | vli_mod_square_fast(z1, z1, curve_prime, ndigits); |
| 967 | |
| 968 | /* t1 = x1 + z1^2 */ |
| 969 | vli_mod_add(x1, x1, z1, curve_prime, ndigits); |
| 970 | /* t3 = 2*z1^2 */ |
| 971 | vli_mod_add(z1, z1, z1, curve_prime, ndigits); |
| 972 | /* t3 = x1 - z1^2 */ |
| 973 | vli_mod_sub(z1, x1, z1, curve_prime, ndigits); |
| 974 | /* t1 = x1^2 - z1^4 */ |
| 975 | vli_mod_mult_fast(x1, x1, z1, curve_prime, ndigits); |
| 976 | |
| 977 | /* t3 = 2*(x1^2 - z1^4) */ |
| 978 | vli_mod_add(z1, x1, x1, curve_prime, ndigits); |
| 979 | /* t1 = 3*(x1^2 - z1^4) */ |
| 980 | vli_mod_add(x1, x1, z1, curve_prime, ndigits); |
| 981 | if (vli_test_bit(x1, 0)) { |
| 982 | u64 carry = vli_add(x1, x1, curve_prime, ndigits); |
| 983 | |
| 984 | vli_rshift1(x1, ndigits); |
| 985 | x1[ndigits - 1] |= carry << 63; |
| 986 | } else { |
| 987 | vli_rshift1(x1, ndigits); |
| 988 | } |
| 989 | /* t1 = 3/2*(x1^2 - z1^4) = B */ |
| 990 | |
| 991 | /* t3 = B^2 */ |
| 992 | vli_mod_square_fast(z1, x1, curve_prime, ndigits); |
| 993 | /* t3 = B^2 - A */ |
| 994 | vli_mod_sub(z1, z1, t5, curve_prime, ndigits); |
| 995 | /* t3 = B^2 - 2A = x3 */ |
| 996 | vli_mod_sub(z1, z1, t5, curve_prime, ndigits); |
| 997 | /* t5 = A - x3 */ |
| 998 | vli_mod_sub(t5, t5, z1, curve_prime, ndigits); |
| 999 | /* t1 = B * (A - x3) */ |
| 1000 | vli_mod_mult_fast(x1, x1, t5, curve_prime, ndigits); |
| 1001 | /* t4 = B * (A - x3) - y1^4 = y3 */ |
| 1002 | vli_mod_sub(t4, x1, t4, curve_prime, ndigits); |
| 1003 | |
| 1004 | vli_set(x1, z1, ndigits); |
| 1005 | vli_set(z1, y1, ndigits); |
| 1006 | vli_set(y1, t4, ndigits); |
| 1007 | } |
| 1008 | |
| 1009 | /* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */ |
| 1010 | static void apply_z(u64 *x1, u64 *y1, u64 *z, u64 *curve_prime, |
| 1011 | unsigned int ndigits) |
| 1012 | { |
Kees Cook | d5c3b17 | 2018-03-30 09:55:44 -0700 | [diff] [blame] | 1013 | u64 t1[ECC_MAX_DIGITS]; |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 1014 | |
| 1015 | vli_mod_square_fast(t1, z, curve_prime, ndigits); /* z^2 */ |
| 1016 | vli_mod_mult_fast(x1, x1, t1, curve_prime, ndigits); /* x1 * z^2 */ |
| 1017 | vli_mod_mult_fast(t1, t1, z, curve_prime, ndigits); /* z^3 */ |
| 1018 | vli_mod_mult_fast(y1, y1, t1, curve_prime, ndigits); /* y1 * z^3 */ |
| 1019 | } |
| 1020 | |
| 1021 | /* P = (x1, y1) => 2P, (x2, y2) => P' */ |
| 1022 | static void xycz_initial_double(u64 *x1, u64 *y1, u64 *x2, u64 *y2, |
| 1023 | u64 *p_initial_z, u64 *curve_prime, |
| 1024 | unsigned int ndigits) |
| 1025 | { |
Kees Cook | d5c3b17 | 2018-03-30 09:55:44 -0700 | [diff] [blame] | 1026 | u64 z[ECC_MAX_DIGITS]; |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 1027 | |
| 1028 | vli_set(x2, x1, ndigits); |
| 1029 | vli_set(y2, y1, ndigits); |
| 1030 | |
| 1031 | vli_clear(z, ndigits); |
| 1032 | z[0] = 1; |
| 1033 | |
| 1034 | if (p_initial_z) |
| 1035 | vli_set(z, p_initial_z, ndigits); |
| 1036 | |
| 1037 | apply_z(x1, y1, z, curve_prime, ndigits); |
| 1038 | |
| 1039 | ecc_point_double_jacobian(x1, y1, z, curve_prime, ndigits); |
| 1040 | |
| 1041 | apply_z(x2, y2, z, curve_prime, ndigits); |
| 1042 | } |
| 1043 | |
| 1044 | /* Input P = (x1, y1, Z), Q = (x2, y2, Z) |
| 1045 | * Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3) |
| 1046 | * or P => P', Q => P + Q |
| 1047 | */ |
| 1048 | static void xycz_add(u64 *x1, u64 *y1, u64 *x2, u64 *y2, u64 *curve_prime, |
| 1049 | unsigned int ndigits) |
| 1050 | { |
| 1051 | /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */ |
Kees Cook | d5c3b17 | 2018-03-30 09:55:44 -0700 | [diff] [blame] | 1052 | u64 t5[ECC_MAX_DIGITS]; |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 1053 | |
| 1054 | /* t5 = x2 - x1 */ |
| 1055 | vli_mod_sub(t5, x2, x1, curve_prime, ndigits); |
| 1056 | /* t5 = (x2 - x1)^2 = A */ |
| 1057 | vli_mod_square_fast(t5, t5, curve_prime, ndigits); |
| 1058 | /* t1 = x1*A = B */ |
| 1059 | vli_mod_mult_fast(x1, x1, t5, curve_prime, ndigits); |
| 1060 | /* t3 = x2*A = C */ |
| 1061 | vli_mod_mult_fast(x2, x2, t5, curve_prime, ndigits); |
| 1062 | /* t4 = y2 - y1 */ |
| 1063 | vli_mod_sub(y2, y2, y1, curve_prime, ndigits); |
| 1064 | /* t5 = (y2 - y1)^2 = D */ |
| 1065 | vli_mod_square_fast(t5, y2, curve_prime, ndigits); |
| 1066 | |
| 1067 | /* t5 = D - B */ |
| 1068 | vli_mod_sub(t5, t5, x1, curve_prime, ndigits); |
| 1069 | /* t5 = D - B - C = x3 */ |
| 1070 | vli_mod_sub(t5, t5, x2, curve_prime, ndigits); |
| 1071 | /* t3 = C - B */ |
| 1072 | vli_mod_sub(x2, x2, x1, curve_prime, ndigits); |
| 1073 | /* t2 = y1*(C - B) */ |
| 1074 | vli_mod_mult_fast(y1, y1, x2, curve_prime, ndigits); |
| 1075 | /* t3 = B - x3 */ |
| 1076 | vli_mod_sub(x2, x1, t5, curve_prime, ndigits); |
| 1077 | /* t4 = (y2 - y1)*(B - x3) */ |
| 1078 | vli_mod_mult_fast(y2, y2, x2, curve_prime, ndigits); |
| 1079 | /* t4 = y3 */ |
| 1080 | vli_mod_sub(y2, y2, y1, curve_prime, ndigits); |
| 1081 | |
| 1082 | vli_set(x2, t5, ndigits); |
| 1083 | } |
| 1084 | |
| 1085 | /* Input P = (x1, y1, Z), Q = (x2, y2, Z) |
| 1086 | * Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3) |
| 1087 | * or P => P - Q, Q => P + Q |
| 1088 | */ |
| 1089 | static void xycz_add_c(u64 *x1, u64 *y1, u64 *x2, u64 *y2, u64 *curve_prime, |
| 1090 | unsigned int ndigits) |
| 1091 | { |
| 1092 | /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */ |
Kees Cook | d5c3b17 | 2018-03-30 09:55:44 -0700 | [diff] [blame] | 1093 | u64 t5[ECC_MAX_DIGITS]; |
| 1094 | u64 t6[ECC_MAX_DIGITS]; |
| 1095 | u64 t7[ECC_MAX_DIGITS]; |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 1096 | |
| 1097 | /* t5 = x2 - x1 */ |
| 1098 | vli_mod_sub(t5, x2, x1, curve_prime, ndigits); |
| 1099 | /* t5 = (x2 - x1)^2 = A */ |
| 1100 | vli_mod_square_fast(t5, t5, curve_prime, ndigits); |
| 1101 | /* t1 = x1*A = B */ |
| 1102 | vli_mod_mult_fast(x1, x1, t5, curve_prime, ndigits); |
| 1103 | /* t3 = x2*A = C */ |
| 1104 | vli_mod_mult_fast(x2, x2, t5, curve_prime, ndigits); |
| 1105 | /* t4 = y2 + y1 */ |
| 1106 | vli_mod_add(t5, y2, y1, curve_prime, ndigits); |
| 1107 | /* t4 = y2 - y1 */ |
| 1108 | vli_mod_sub(y2, y2, y1, curve_prime, ndigits); |
| 1109 | |
| 1110 | /* t6 = C - B */ |
| 1111 | vli_mod_sub(t6, x2, x1, curve_prime, ndigits); |
| 1112 | /* t2 = y1 * (C - B) */ |
| 1113 | vli_mod_mult_fast(y1, y1, t6, curve_prime, ndigits); |
| 1114 | /* t6 = B + C */ |
| 1115 | vli_mod_add(t6, x1, x2, curve_prime, ndigits); |
| 1116 | /* t3 = (y2 - y1)^2 */ |
| 1117 | vli_mod_square_fast(x2, y2, curve_prime, ndigits); |
| 1118 | /* t3 = x3 */ |
| 1119 | vli_mod_sub(x2, x2, t6, curve_prime, ndigits); |
| 1120 | |
| 1121 | /* t7 = B - x3 */ |
| 1122 | vli_mod_sub(t7, x1, x2, curve_prime, ndigits); |
| 1123 | /* t4 = (y2 - y1)*(B - x3) */ |
| 1124 | vli_mod_mult_fast(y2, y2, t7, curve_prime, ndigits); |
| 1125 | /* t4 = y3 */ |
| 1126 | vli_mod_sub(y2, y2, y1, curve_prime, ndigits); |
| 1127 | |
| 1128 | /* t7 = (y2 + y1)^2 = F */ |
| 1129 | vli_mod_square_fast(t7, t5, curve_prime, ndigits); |
| 1130 | /* t7 = x3' */ |
| 1131 | vli_mod_sub(t7, t7, t6, curve_prime, ndigits); |
| 1132 | /* t6 = x3' - B */ |
| 1133 | vli_mod_sub(t6, t7, x1, curve_prime, ndigits); |
| 1134 | /* t6 = (y2 + y1)*(x3' - B) */ |
| 1135 | vli_mod_mult_fast(t6, t6, t5, curve_prime, ndigits); |
| 1136 | /* t2 = y3' */ |
| 1137 | vli_mod_sub(y1, t6, y1, curve_prime, ndigits); |
| 1138 | |
| 1139 | vli_set(x1, t7, ndigits); |
| 1140 | } |
| 1141 | |
| 1142 | static void ecc_point_mult(struct ecc_point *result, |
| 1143 | const struct ecc_point *point, const u64 *scalar, |
Vitaly Chikunov | 3da2c1d | 2018-11-11 20:40:02 +0300 | [diff] [blame] | 1144 | u64 *initial_z, const struct ecc_curve *curve, |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 1145 | unsigned int ndigits) |
| 1146 | { |
| 1147 | /* R0 and R1 */ |
Kees Cook | d5c3b17 | 2018-03-30 09:55:44 -0700 | [diff] [blame] | 1148 | u64 rx[2][ECC_MAX_DIGITS]; |
| 1149 | u64 ry[2][ECC_MAX_DIGITS]; |
| 1150 | u64 z[ECC_MAX_DIGITS]; |
Vitaly Chikunov | 3da2c1d | 2018-11-11 20:40:02 +0300 | [diff] [blame] | 1151 | u64 sk[2][ECC_MAX_DIGITS]; |
| 1152 | u64 *curve_prime = curve->p; |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 1153 | int i, nb; |
Vitaly Chikunov | 3da2c1d | 2018-11-11 20:40:02 +0300 | [diff] [blame] | 1154 | int num_bits; |
| 1155 | int carry; |
| 1156 | |
| 1157 | carry = vli_add(sk[0], scalar, curve->n, ndigits); |
| 1158 | vli_add(sk[1], sk[0], curve->n, ndigits); |
| 1159 | scalar = sk[!carry]; |
| 1160 | num_bits = sizeof(u64) * ndigits * 8 + 1; |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 1161 | |
| 1162 | vli_set(rx[1], point->x, ndigits); |
| 1163 | vli_set(ry[1], point->y, ndigits); |
| 1164 | |
| 1165 | xycz_initial_double(rx[1], ry[1], rx[0], ry[0], initial_z, curve_prime, |
| 1166 | ndigits); |
| 1167 | |
| 1168 | for (i = num_bits - 2; i > 0; i--) { |
| 1169 | nb = !vli_test_bit(scalar, i); |
| 1170 | xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve_prime, |
| 1171 | ndigits); |
| 1172 | xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve_prime, |
| 1173 | ndigits); |
| 1174 | } |
| 1175 | |
| 1176 | nb = !vli_test_bit(scalar, 0); |
| 1177 | xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve_prime, |
| 1178 | ndigits); |
| 1179 | |
| 1180 | /* Find final 1/Z value. */ |
| 1181 | /* X1 - X0 */ |
| 1182 | vli_mod_sub(z, rx[1], rx[0], curve_prime, ndigits); |
| 1183 | /* Yb * (X1 - X0) */ |
| 1184 | vli_mod_mult_fast(z, z, ry[1 - nb], curve_prime, ndigits); |
| 1185 | /* xP * Yb * (X1 - X0) */ |
| 1186 | vli_mod_mult_fast(z, z, point->x, curve_prime, ndigits); |
| 1187 | |
| 1188 | /* 1 / (xP * Yb * (X1 - X0)) */ |
| 1189 | vli_mod_inv(z, z, curve_prime, point->ndigits); |
| 1190 | |
| 1191 | /* yP / (xP * Yb * (X1 - X0)) */ |
| 1192 | vli_mod_mult_fast(z, z, point->y, curve_prime, ndigits); |
| 1193 | /* Xb * yP / (xP * Yb * (X1 - X0)) */ |
| 1194 | vli_mod_mult_fast(z, z, rx[1 - nb], curve_prime, ndigits); |
| 1195 | /* End 1/Z calculation */ |
| 1196 | |
| 1197 | xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve_prime, ndigits); |
| 1198 | |
| 1199 | apply_z(rx[0], ry[0], z, curve_prime, ndigits); |
| 1200 | |
| 1201 | vli_set(result->x, rx[0], ndigits); |
| 1202 | vli_set(result->y, ry[0], ndigits); |
| 1203 | } |
| 1204 | |
Vitaly Chikunov | 0d7a786 | 2019-04-11 18:51:20 +0300 | [diff] [blame] | 1205 | /* Computes R = P + Q mod p */ |
| 1206 | static void ecc_point_add(const struct ecc_point *result, |
| 1207 | const struct ecc_point *p, const struct ecc_point *q, |
| 1208 | const struct ecc_curve *curve) |
| 1209 | { |
| 1210 | u64 z[ECC_MAX_DIGITS]; |
| 1211 | u64 px[ECC_MAX_DIGITS]; |
| 1212 | u64 py[ECC_MAX_DIGITS]; |
| 1213 | unsigned int ndigits = curve->g.ndigits; |
| 1214 | |
| 1215 | vli_set(result->x, q->x, ndigits); |
| 1216 | vli_set(result->y, q->y, ndigits); |
| 1217 | vli_mod_sub(z, result->x, p->x, curve->p, ndigits); |
| 1218 | vli_set(px, p->x, ndigits); |
| 1219 | vli_set(py, p->y, ndigits); |
| 1220 | xycz_add(px, py, result->x, result->y, curve->p, ndigits); |
| 1221 | vli_mod_inv(z, z, curve->p, ndigits); |
| 1222 | apply_z(result->x, result->y, z, curve->p, ndigits); |
| 1223 | } |
| 1224 | |
| 1225 | /* Computes R = u1P + u2Q mod p using Shamir's trick. |
| 1226 | * Based on: Kenneth MacKay's micro-ecc (2014). |
| 1227 | */ |
| 1228 | void ecc_point_mult_shamir(const struct ecc_point *result, |
| 1229 | const u64 *u1, const struct ecc_point *p, |
| 1230 | const u64 *u2, const struct ecc_point *q, |
| 1231 | const struct ecc_curve *curve) |
| 1232 | { |
| 1233 | u64 z[ECC_MAX_DIGITS]; |
| 1234 | u64 sump[2][ECC_MAX_DIGITS]; |
| 1235 | u64 *rx = result->x; |
| 1236 | u64 *ry = result->y; |
| 1237 | unsigned int ndigits = curve->g.ndigits; |
| 1238 | unsigned int num_bits; |
| 1239 | struct ecc_point sum = ECC_POINT_INIT(sump[0], sump[1], ndigits); |
| 1240 | const struct ecc_point *points[4]; |
| 1241 | const struct ecc_point *point; |
| 1242 | unsigned int idx; |
| 1243 | int i; |
| 1244 | |
| 1245 | ecc_point_add(&sum, p, q, curve); |
| 1246 | points[0] = NULL; |
| 1247 | points[1] = p; |
| 1248 | points[2] = q; |
| 1249 | points[3] = ∑ |
| 1250 | |
| 1251 | num_bits = max(vli_num_bits(u1, ndigits), |
| 1252 | vli_num_bits(u2, ndigits)); |
| 1253 | i = num_bits - 1; |
| 1254 | idx = (!!vli_test_bit(u1, i)) | ((!!vli_test_bit(u2, i)) << 1); |
| 1255 | point = points[idx]; |
| 1256 | |
| 1257 | vli_set(rx, point->x, ndigits); |
| 1258 | vli_set(ry, point->y, ndigits); |
| 1259 | vli_clear(z + 1, ndigits - 1); |
| 1260 | z[0] = 1; |
| 1261 | |
| 1262 | for (--i; i >= 0; i--) { |
| 1263 | ecc_point_double_jacobian(rx, ry, z, curve->p, ndigits); |
| 1264 | idx = (!!vli_test_bit(u1, i)) | ((!!vli_test_bit(u2, i)) << 1); |
| 1265 | point = points[idx]; |
| 1266 | if (point) { |
| 1267 | u64 tx[ECC_MAX_DIGITS]; |
| 1268 | u64 ty[ECC_MAX_DIGITS]; |
| 1269 | u64 tz[ECC_MAX_DIGITS]; |
| 1270 | |
| 1271 | vli_set(tx, point->x, ndigits); |
| 1272 | vli_set(ty, point->y, ndigits); |
| 1273 | apply_z(tx, ty, z, curve->p, ndigits); |
| 1274 | vli_mod_sub(tz, rx, tx, curve->p, ndigits); |
| 1275 | xycz_add(tx, ty, rx, ry, curve->p, ndigits); |
| 1276 | vli_mod_mult_fast(z, z, tz, curve->p, ndigits); |
| 1277 | } |
| 1278 | } |
| 1279 | vli_mod_inv(z, z, curve->p, ndigits); |
| 1280 | apply_z(rx, ry, z, curve->p, ndigits); |
| 1281 | } |
| 1282 | EXPORT_SYMBOL(ecc_point_mult_shamir); |
| 1283 | |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 1284 | static inline void ecc_swap_digits(const u64 *in, u64 *out, |
| 1285 | unsigned int ndigits) |
| 1286 | { |
Ard Biesheuvel | f398243 | 2019-10-23 11:50:44 +0200 | [diff] [blame] | 1287 | const __be64 *src = (__force __be64 *)in; |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 1288 | int i; |
| 1289 | |
| 1290 | for (i = 0; i < ndigits; i++) |
Ard Biesheuvel | f398243 | 2019-10-23 11:50:44 +0200 | [diff] [blame] | 1291 | out[i] = be64_to_cpu(src[ndigits - 1 - i]); |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 1292 | } |
| 1293 | |
Vitaly Chikunov | 2eb4942 | 2018-11-05 11:36:18 +0300 | [diff] [blame] | 1294 | static int __ecc_is_key_valid(const struct ecc_curve *curve, |
| 1295 | const u64 *private_key, unsigned int ndigits) |
| 1296 | { |
| 1297 | u64 one[ECC_MAX_DIGITS] = { 1, }; |
| 1298 | u64 res[ECC_MAX_DIGITS]; |
| 1299 | |
| 1300 | if (!private_key) |
| 1301 | return -EINVAL; |
| 1302 | |
| 1303 | if (curve->g.ndigits != ndigits) |
| 1304 | return -EINVAL; |
| 1305 | |
| 1306 | /* Make sure the private key is in the range [2, n-3]. */ |
| 1307 | if (vli_cmp(one, private_key, ndigits) != -1) |
| 1308 | return -EINVAL; |
| 1309 | vli_sub(res, curve->n, one, ndigits); |
| 1310 | vli_sub(res, res, one, ndigits); |
| 1311 | if (vli_cmp(res, private_key, ndigits) != 1) |
| 1312 | return -EINVAL; |
| 1313 | |
| 1314 | return 0; |
| 1315 | } |
| 1316 | |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 1317 | int ecc_is_key_valid(unsigned int curve_id, unsigned int ndigits, |
Tudor-Dan Ambarus | ad26959 | 2017-05-25 10:18:05 +0300 | [diff] [blame] | 1318 | const u64 *private_key, unsigned int private_key_len) |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 1319 | { |
| 1320 | int nbytes; |
| 1321 | const struct ecc_curve *curve = ecc_get_curve(curve_id); |
| 1322 | |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 1323 | nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT; |
| 1324 | |
| 1325 | if (private_key_len != nbytes) |
| 1326 | return -EINVAL; |
| 1327 | |
Vitaly Chikunov | 2eb4942 | 2018-11-05 11:36:18 +0300 | [diff] [blame] | 1328 | return __ecc_is_key_valid(curve, private_key, ndigits); |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 1329 | } |
Vitaly Chikunov | 4a2289d | 2019-04-11 18:51:19 +0300 | [diff] [blame] | 1330 | EXPORT_SYMBOL(ecc_is_key_valid); |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 1331 | |
Tudor-Dan Ambarus | 6755fd2 | 2017-05-30 17:52:48 +0300 | [diff] [blame] | 1332 | /* |
| 1333 | * ECC private keys are generated using the method of extra random bits, |
| 1334 | * equivalent to that described in FIPS 186-4, Appendix B.4.1. |
| 1335 | * |
| 1336 | * d = (c mod(n–1)) + 1 where c is a string of random bits, 64 bits longer |
| 1337 | * than requested |
| 1338 | * 0 <= c mod(n-1) <= n-2 and implies that |
| 1339 | * 1 <= d <= n-1 |
| 1340 | * |
| 1341 | * This method generates a private key uniformly distributed in the range |
| 1342 | * [1, n-1]. |
| 1343 | */ |
| 1344 | int ecc_gen_privkey(unsigned int curve_id, unsigned int ndigits, u64 *privkey) |
| 1345 | { |
| 1346 | const struct ecc_curve *curve = ecc_get_curve(curve_id); |
Kees Cook | d5c3b17 | 2018-03-30 09:55:44 -0700 | [diff] [blame] | 1347 | u64 priv[ECC_MAX_DIGITS]; |
Tudor-Dan Ambarus | 6755fd2 | 2017-05-30 17:52:48 +0300 | [diff] [blame] | 1348 | unsigned int nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT; |
| 1349 | unsigned int nbits = vli_num_bits(curve->n, ndigits); |
| 1350 | int err; |
| 1351 | |
| 1352 | /* Check that N is included in Table 1 of FIPS 186-4, section 6.1.1 */ |
Kees Cook | d5c3b17 | 2018-03-30 09:55:44 -0700 | [diff] [blame] | 1353 | if (nbits < 160 || ndigits > ARRAY_SIZE(priv)) |
Tudor-Dan Ambarus | 6755fd2 | 2017-05-30 17:52:48 +0300 | [diff] [blame] | 1354 | return -EINVAL; |
| 1355 | |
| 1356 | /* |
| 1357 | * FIPS 186-4 recommends that the private key should be obtained from a |
| 1358 | * RBG with a security strength equal to or greater than the security |
| 1359 | * strength associated with N. |
| 1360 | * |
| 1361 | * The maximum security strength identified by NIST SP800-57pt1r4 for |
| 1362 | * ECC is 256 (N >= 512). |
| 1363 | * |
| 1364 | * This condition is met by the default RNG because it selects a favored |
| 1365 | * DRBG with a security strength of 256. |
| 1366 | */ |
| 1367 | if (crypto_get_default_rng()) |
Pierre | 4c0e22c | 2017-11-12 15:24:32 +0100 | [diff] [blame] | 1368 | return -EFAULT; |
Tudor-Dan Ambarus | 6755fd2 | 2017-05-30 17:52:48 +0300 | [diff] [blame] | 1369 | |
| 1370 | err = crypto_rng_get_bytes(crypto_default_rng, (u8 *)priv, nbytes); |
| 1371 | crypto_put_default_rng(); |
| 1372 | if (err) |
| 1373 | return err; |
| 1374 | |
Vitaly Chikunov | 2eb4942 | 2018-11-05 11:36:18 +0300 | [diff] [blame] | 1375 | /* Make sure the private key is in the valid range. */ |
| 1376 | if (__ecc_is_key_valid(curve, priv, ndigits)) |
Tudor-Dan Ambarus | 6755fd2 | 2017-05-30 17:52:48 +0300 | [diff] [blame] | 1377 | return -EINVAL; |
| 1378 | |
| 1379 | ecc_swap_digits(priv, privkey, ndigits); |
| 1380 | |
| 1381 | return 0; |
| 1382 | } |
Vitaly Chikunov | 4a2289d | 2019-04-11 18:51:19 +0300 | [diff] [blame] | 1383 | EXPORT_SYMBOL(ecc_gen_privkey); |
Tudor-Dan Ambarus | 6755fd2 | 2017-05-30 17:52:48 +0300 | [diff] [blame] | 1384 | |
Tudor-Dan Ambarus | 7380c56 | 2017-05-30 15:37:56 +0300 | [diff] [blame] | 1385 | int ecc_make_pub_key(unsigned int curve_id, unsigned int ndigits, |
| 1386 | const u64 *private_key, u64 *public_key) |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 1387 | { |
| 1388 | int ret = 0; |
| 1389 | struct ecc_point *pk; |
Kees Cook | d5c3b17 | 2018-03-30 09:55:44 -0700 | [diff] [blame] | 1390 | u64 priv[ECC_MAX_DIGITS]; |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 1391 | const struct ecc_curve *curve = ecc_get_curve(curve_id); |
| 1392 | |
Kees Cook | d5c3b17 | 2018-03-30 09:55:44 -0700 | [diff] [blame] | 1393 | if (!private_key || !curve || ndigits > ARRAY_SIZE(priv)) { |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 1394 | ret = -EINVAL; |
| 1395 | goto out; |
| 1396 | } |
| 1397 | |
Tudor-Dan Ambarus | ad26959 | 2017-05-25 10:18:05 +0300 | [diff] [blame] | 1398 | ecc_swap_digits(private_key, priv, ndigits); |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 1399 | |
| 1400 | pk = ecc_alloc_point(ndigits); |
| 1401 | if (!pk) { |
| 1402 | ret = -ENOMEM; |
| 1403 | goto out; |
| 1404 | } |
| 1405 | |
Vitaly Chikunov | 3da2c1d | 2018-11-11 20:40:02 +0300 | [diff] [blame] | 1406 | ecc_point_mult(pk, &curve->g, priv, NULL, curve, ndigits); |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 1407 | if (ecc_point_is_zero(pk)) { |
| 1408 | ret = -EAGAIN; |
| 1409 | goto err_free_point; |
| 1410 | } |
| 1411 | |
Tudor-Dan Ambarus | ad26959 | 2017-05-25 10:18:05 +0300 | [diff] [blame] | 1412 | ecc_swap_digits(pk->x, public_key, ndigits); |
| 1413 | ecc_swap_digits(pk->y, &public_key[ndigits], ndigits); |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 1414 | |
| 1415 | err_free_point: |
| 1416 | ecc_free_point(pk); |
| 1417 | out: |
| 1418 | return ret; |
| 1419 | } |
Vitaly Chikunov | 4a2289d | 2019-04-11 18:51:19 +0300 | [diff] [blame] | 1420 | EXPORT_SYMBOL(ecc_make_pub_key); |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 1421 | |
Stephan Mueller | ea169a3 | 2018-06-25 12:00:18 +0200 | [diff] [blame] | 1422 | /* SP800-56A section 5.6.2.3.4 partial verification: ephemeral keys only */ |
Vitaly Chikunov | 4a2289d | 2019-04-11 18:51:19 +0300 | [diff] [blame] | 1423 | int ecc_is_pubkey_valid_partial(const struct ecc_curve *curve, |
| 1424 | struct ecc_point *pk) |
Stephan Mueller | ea169a3 | 2018-06-25 12:00:18 +0200 | [diff] [blame] | 1425 | { |
| 1426 | u64 yy[ECC_MAX_DIGITS], xxx[ECC_MAX_DIGITS], w[ECC_MAX_DIGITS]; |
| 1427 | |
Vitaly Chikunov | 0d7a786 | 2019-04-11 18:51:20 +0300 | [diff] [blame] | 1428 | if (WARN_ON(pk->ndigits != curve->g.ndigits)) |
| 1429 | return -EINVAL; |
| 1430 | |
Stephan Mueller | ea169a3 | 2018-06-25 12:00:18 +0200 | [diff] [blame] | 1431 | /* Check 1: Verify key is not the zero point. */ |
| 1432 | if (ecc_point_is_zero(pk)) |
| 1433 | return -EINVAL; |
| 1434 | |
| 1435 | /* Check 2: Verify key is in the range [1, p-1]. */ |
| 1436 | if (vli_cmp(curve->p, pk->x, pk->ndigits) != 1) |
| 1437 | return -EINVAL; |
| 1438 | if (vli_cmp(curve->p, pk->y, pk->ndigits) != 1) |
| 1439 | return -EINVAL; |
| 1440 | |
| 1441 | /* Check 3: Verify that y^2 == (x^3 + a·x + b) mod p */ |
| 1442 | vli_mod_square_fast(yy, pk->y, curve->p, pk->ndigits); /* y^2 */ |
| 1443 | vli_mod_square_fast(xxx, pk->x, curve->p, pk->ndigits); /* x^2 */ |
| 1444 | vli_mod_mult_fast(xxx, xxx, pk->x, curve->p, pk->ndigits); /* x^3 */ |
| 1445 | vli_mod_mult_fast(w, curve->a, pk->x, curve->p, pk->ndigits); /* a·x */ |
| 1446 | vli_mod_add(w, w, curve->b, curve->p, pk->ndigits); /* a·x + b */ |
| 1447 | vli_mod_add(w, w, xxx, curve->p, pk->ndigits); /* x^3 + a·x + b */ |
| 1448 | if (vli_cmp(yy, w, pk->ndigits) != 0) /* Equation */ |
| 1449 | return -EINVAL; |
| 1450 | |
| 1451 | return 0; |
Stephan Mueller | ea169a3 | 2018-06-25 12:00:18 +0200 | [diff] [blame] | 1452 | } |
Vitaly Chikunov | 4a2289d | 2019-04-11 18:51:19 +0300 | [diff] [blame] | 1453 | EXPORT_SYMBOL(ecc_is_pubkey_valid_partial); |
Stephan Mueller | ea169a3 | 2018-06-25 12:00:18 +0200 | [diff] [blame] | 1454 | |
Stephen Rothwell | 8f44df1 | 2016-06-24 16:20:22 +1000 | [diff] [blame] | 1455 | int crypto_ecdh_shared_secret(unsigned int curve_id, unsigned int ndigits, |
Tudor-Dan Ambarus | ad26959 | 2017-05-25 10:18:05 +0300 | [diff] [blame] | 1456 | const u64 *private_key, const u64 *public_key, |
| 1457 | u64 *secret) |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 1458 | { |
| 1459 | int ret = 0; |
| 1460 | struct ecc_point *product, *pk; |
Kees Cook | d5c3b17 | 2018-03-30 09:55:44 -0700 | [diff] [blame] | 1461 | u64 priv[ECC_MAX_DIGITS]; |
| 1462 | u64 rand_z[ECC_MAX_DIGITS]; |
| 1463 | unsigned int nbytes; |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 1464 | const struct ecc_curve *curve = ecc_get_curve(curve_id); |
| 1465 | |
Kees Cook | d5c3b17 | 2018-03-30 09:55:44 -0700 | [diff] [blame] | 1466 | if (!private_key || !public_key || !curve || |
| 1467 | ndigits > ARRAY_SIZE(priv) || ndigits > ARRAY_SIZE(rand_z)) { |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 1468 | ret = -EINVAL; |
| 1469 | goto out; |
| 1470 | } |
| 1471 | |
Kees Cook | d5c3b17 | 2018-03-30 09:55:44 -0700 | [diff] [blame] | 1472 | nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT; |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 1473 | |
Kees Cook | d5c3b17 | 2018-03-30 09:55:44 -0700 | [diff] [blame] | 1474 | get_random_bytes(rand_z, nbytes); |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 1475 | |
| 1476 | pk = ecc_alloc_point(ndigits); |
| 1477 | if (!pk) { |
| 1478 | ret = -ENOMEM; |
Kees Cook | d5c3b17 | 2018-03-30 09:55:44 -0700 | [diff] [blame] | 1479 | goto out; |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 1480 | } |
| 1481 | |
Stephan Mueller | ea169a3 | 2018-06-25 12:00:18 +0200 | [diff] [blame] | 1482 | ecc_swap_digits(public_key, pk->x, ndigits); |
| 1483 | ecc_swap_digits(&public_key[ndigits], pk->y, ndigits); |
| 1484 | ret = ecc_is_pubkey_valid_partial(curve, pk); |
| 1485 | if (ret) |
| 1486 | goto err_alloc_product; |
| 1487 | |
| 1488 | ecc_swap_digits(private_key, priv, ndigits); |
| 1489 | |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 1490 | product = ecc_alloc_point(ndigits); |
| 1491 | if (!product) { |
| 1492 | ret = -ENOMEM; |
| 1493 | goto err_alloc_product; |
| 1494 | } |
| 1495 | |
Vitaly Chikunov | 3da2c1d | 2018-11-11 20:40:02 +0300 | [diff] [blame] | 1496 | ecc_point_mult(product, pk, priv, rand_z, curve, ndigits); |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 1497 | |
Tudor-Dan Ambarus | ad26959 | 2017-05-25 10:18:05 +0300 | [diff] [blame] | 1498 | ecc_swap_digits(product->x, secret, ndigits); |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 1499 | |
| 1500 | if (ecc_point_is_zero(product)) |
| 1501 | ret = -EFAULT; |
| 1502 | |
| 1503 | ecc_free_point(product); |
| 1504 | err_alloc_product: |
| 1505 | ecc_free_point(pk); |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 1506 | out: |
| 1507 | return ret; |
| 1508 | } |
Vitaly Chikunov | 4a2289d | 2019-04-11 18:51:19 +0300 | [diff] [blame] | 1509 | EXPORT_SYMBOL(crypto_ecdh_shared_secret); |
| 1510 | |
| 1511 | MODULE_LICENSE("Dual BSD/GPL"); |