Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 1995 Linus Torvalds |
| 3 | * Copyright 2010 Tilera Corporation. All Rights Reserved. |
| 4 | * |
| 5 | * This program is free software; you can redistribute it and/or |
| 6 | * modify it under the terms of the GNU General Public License |
| 7 | * as published by the Free Software Foundation, version 2. |
| 8 | * |
| 9 | * This program is distributed in the hope that it will be useful, but |
| 10 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
| 11 | * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or |
| 12 | * NON INFRINGEMENT. See the GNU General Public License for |
| 13 | * more details. |
| 14 | */ |
| 15 | |
| 16 | #include <linux/module.h> |
| 17 | #include <linux/signal.h> |
| 18 | #include <linux/sched.h> |
| 19 | #include <linux/kernel.h> |
| 20 | #include <linux/errno.h> |
| 21 | #include <linux/string.h> |
| 22 | #include <linux/types.h> |
| 23 | #include <linux/ptrace.h> |
| 24 | #include <linux/mman.h> |
| 25 | #include <linux/mm.h> |
| 26 | #include <linux/hugetlb.h> |
| 27 | #include <linux/swap.h> |
| 28 | #include <linux/smp.h> |
| 29 | #include <linux/init.h> |
| 30 | #include <linux/highmem.h> |
| 31 | #include <linux/pagemap.h> |
| 32 | #include <linux/poison.h> |
| 33 | #include <linux/bootmem.h> |
| 34 | #include <linux/slab.h> |
| 35 | #include <linux/proc_fs.h> |
| 36 | #include <linux/efi.h> |
| 37 | #include <linux/memory_hotplug.h> |
| 38 | #include <linux/uaccess.h> |
| 39 | #include <asm/mmu_context.h> |
| 40 | #include <asm/processor.h> |
| 41 | #include <asm/system.h> |
| 42 | #include <asm/pgtable.h> |
| 43 | #include <asm/pgalloc.h> |
| 44 | #include <asm/dma.h> |
| 45 | #include <asm/fixmap.h> |
| 46 | #include <asm/tlb.h> |
| 47 | #include <asm/tlbflush.h> |
| 48 | #include <asm/sections.h> |
| 49 | #include <asm/setup.h> |
| 50 | #include <asm/homecache.h> |
| 51 | #include <hv/hypervisor.h> |
| 52 | #include <arch/chip.h> |
| 53 | |
| 54 | #include "migrate.h" |
| 55 | |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 56 | #define clear_pgd(pmdptr) (*(pmdptr) = hv_pte(0)) |
| 57 | |
Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 58 | #ifndef __tilegx__ |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 59 | unsigned long VMALLOC_RESERVE = CONFIG_VMALLOC_RESERVE; |
Chris Metcalf | 00dce0313 | 2011-02-28 15:51:25 -0500 | [diff] [blame] | 60 | EXPORT_SYMBOL(VMALLOC_RESERVE); |
Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 61 | #endif |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 62 | |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 63 | /* Create an L2 page table */ |
| 64 | static pte_t * __init alloc_pte(void) |
| 65 | { |
| 66 | return __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE, HV_PAGE_TABLE_ALIGN, 0); |
| 67 | } |
| 68 | |
| 69 | /* |
| 70 | * L2 page tables per controller. We allocate these all at once from |
| 71 | * the bootmem allocator and store them here. This saves on kernel L2 |
| 72 | * page table memory, compared to allocating a full 64K page per L2 |
| 73 | * page table, and also means that in cases where we use huge pages, |
| 74 | * we are guaranteed to later be able to shatter those huge pages and |
| 75 | * switch to using these page tables instead, without requiring |
| 76 | * further allocation. Each l2_ptes[] entry points to the first page |
| 77 | * table for the first hugepage-size piece of memory on the |
| 78 | * controller; other page tables are just indexed directly, i.e. the |
| 79 | * L2 page tables are contiguous in memory for each controller. |
| 80 | */ |
| 81 | static pte_t *l2_ptes[MAX_NUMNODES]; |
| 82 | static int num_l2_ptes[MAX_NUMNODES]; |
| 83 | |
| 84 | static void init_prealloc_ptes(int node, int pages) |
| 85 | { |
| 86 | BUG_ON(pages & (HV_L2_ENTRIES-1)); |
| 87 | if (pages) { |
| 88 | num_l2_ptes[node] = pages; |
| 89 | l2_ptes[node] = __alloc_bootmem(pages * sizeof(pte_t), |
| 90 | HV_PAGE_TABLE_ALIGN, 0); |
| 91 | } |
| 92 | } |
| 93 | |
| 94 | pte_t *get_prealloc_pte(unsigned long pfn) |
| 95 | { |
| 96 | int node = pfn_to_nid(pfn); |
| 97 | pfn &= ~(-1UL << (NR_PA_HIGHBIT_SHIFT - PAGE_SHIFT)); |
| 98 | BUG_ON(node >= MAX_NUMNODES); |
| 99 | BUG_ON(pfn >= num_l2_ptes[node]); |
| 100 | return &l2_ptes[node][pfn]; |
| 101 | } |
| 102 | |
| 103 | /* |
| 104 | * What caching do we expect pages from the heap to have when |
| 105 | * they are allocated during bootup? (Once we've installed the |
| 106 | * "real" swapper_pg_dir.) |
| 107 | */ |
| 108 | static int initial_heap_home(void) |
| 109 | { |
| 110 | #if CHIP_HAS_CBOX_HOME_MAP() |
| 111 | if (hash_default) |
| 112 | return PAGE_HOME_HASH; |
| 113 | #endif |
| 114 | return smp_processor_id(); |
| 115 | } |
| 116 | |
| 117 | /* |
| 118 | * Place a pointer to an L2 page table in a middle page |
| 119 | * directory entry. |
| 120 | */ |
| 121 | static void __init assign_pte(pmd_t *pmd, pte_t *page_table) |
| 122 | { |
| 123 | phys_addr_t pa = __pa(page_table); |
| 124 | unsigned long l2_ptfn = pa >> HV_LOG2_PAGE_TABLE_ALIGN; |
| 125 | pte_t pteval = hv_pte_set_ptfn(__pgprot(_PAGE_TABLE), l2_ptfn); |
| 126 | BUG_ON((pa & (HV_PAGE_TABLE_ALIGN-1)) != 0); |
| 127 | pteval = pte_set_home(pteval, initial_heap_home()); |
| 128 | *(pte_t *)pmd = pteval; |
| 129 | if (page_table != (pte_t *)pmd_page_vaddr(*pmd)) |
| 130 | BUG(); |
| 131 | } |
| 132 | |
| 133 | #ifdef __tilegx__ |
| 134 | |
| 135 | #if HV_L1_SIZE != HV_L2_SIZE |
| 136 | # error Rework assumption that L1 and L2 page tables are same size. |
| 137 | #endif |
| 138 | |
| 139 | /* Since pmd_t arrays and pte_t arrays are the same size, just use casts. */ |
| 140 | static inline pmd_t *alloc_pmd(void) |
| 141 | { |
| 142 | return (pmd_t *)alloc_pte(); |
| 143 | } |
| 144 | |
| 145 | static inline void assign_pmd(pud_t *pud, pmd_t *pmd) |
| 146 | { |
| 147 | assign_pte((pmd_t *)pud, (pte_t *)pmd); |
| 148 | } |
| 149 | |
| 150 | #endif /* __tilegx__ */ |
| 151 | |
| 152 | /* Replace the given pmd with a full PTE table. */ |
| 153 | void __init shatter_pmd(pmd_t *pmd) |
| 154 | { |
| 155 | pte_t *pte = get_prealloc_pte(pte_pfn(*(pte_t *)pmd)); |
| 156 | assign_pte(pmd, pte); |
| 157 | } |
| 158 | |
| 159 | #ifdef CONFIG_HIGHMEM |
| 160 | /* |
| 161 | * This function initializes a certain range of kernel virtual memory |
| 162 | * with new bootmem page tables, everywhere page tables are missing in |
| 163 | * the given range. |
| 164 | */ |
| 165 | |
| 166 | /* |
| 167 | * NOTE: The pagetables are allocated contiguous on the physical space |
| 168 | * so we can cache the place of the first one and move around without |
| 169 | * checking the pgd every time. |
| 170 | */ |
| 171 | static void __init page_table_range_init(unsigned long start, |
| 172 | unsigned long end, pgd_t *pgd_base) |
| 173 | { |
| 174 | pgd_t *pgd; |
| 175 | int pgd_idx; |
| 176 | unsigned long vaddr; |
| 177 | |
| 178 | vaddr = start; |
| 179 | pgd_idx = pgd_index(vaddr); |
| 180 | pgd = pgd_base + pgd_idx; |
| 181 | |
| 182 | for ( ; (pgd_idx < PTRS_PER_PGD) && (vaddr != end); pgd++, pgd_idx++) { |
| 183 | pmd_t *pmd = pmd_offset(pud_offset(pgd, vaddr), vaddr); |
| 184 | if (pmd_none(*pmd)) |
| 185 | assign_pte(pmd, alloc_pte()); |
| 186 | vaddr += PMD_SIZE; |
| 187 | } |
| 188 | } |
| 189 | #endif /* CONFIG_HIGHMEM */ |
| 190 | |
| 191 | |
| 192 | #if CHIP_HAS_CBOX_HOME_MAP() |
| 193 | |
| 194 | static int __initdata ktext_hash = 1; /* .text pages */ |
| 195 | static int __initdata kdata_hash = 1; /* .data and .bss pages */ |
| 196 | int __write_once hash_default = 1; /* kernel allocator pages */ |
| 197 | EXPORT_SYMBOL(hash_default); |
| 198 | int __write_once kstack_hash = 1; /* if no homecaching, use h4h */ |
| 199 | #endif /* CHIP_HAS_CBOX_HOME_MAP */ |
| 200 | |
| 201 | /* |
| 202 | * CPUs to use to for striping the pages of kernel data. If hash-for-home |
| 203 | * is available, this is only relevant if kcache_hash sets up the |
| 204 | * .data and .bss to be page-homed, and we don't want the default mode |
| 205 | * of using the full set of kernel cpus for the striping. |
| 206 | */ |
| 207 | static __initdata struct cpumask kdata_mask; |
| 208 | static __initdata int kdata_arg_seen; |
| 209 | |
| 210 | int __write_once kdata_huge; /* if no homecaching, small pages */ |
| 211 | |
| 212 | |
| 213 | /* Combine a generic pgprot_t with cache home to get a cache-aware pgprot. */ |
| 214 | static pgprot_t __init construct_pgprot(pgprot_t prot, int home) |
| 215 | { |
| 216 | prot = pte_set_home(prot, home); |
| 217 | #if CHIP_HAS_CBOX_HOME_MAP() |
| 218 | if (home == PAGE_HOME_IMMUTABLE) { |
| 219 | if (ktext_hash) |
| 220 | prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_HASH_L3); |
| 221 | else |
| 222 | prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_NO_L3); |
| 223 | } |
| 224 | #endif |
| 225 | return prot; |
| 226 | } |
| 227 | |
| 228 | /* |
| 229 | * For a given kernel data VA, how should it be cached? |
| 230 | * We return the complete pgprot_t with caching bits set. |
| 231 | */ |
| 232 | static pgprot_t __init init_pgprot(ulong address) |
| 233 | { |
| 234 | int cpu; |
| 235 | unsigned long page; |
| 236 | enum { CODE_DELTA = MEM_SV_INTRPT - PAGE_OFFSET }; |
| 237 | |
| 238 | #if CHIP_HAS_CBOX_HOME_MAP() |
| 239 | /* For kdata=huge, everything is just hash-for-home. */ |
| 240 | if (kdata_huge) |
| 241 | return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH); |
| 242 | #endif |
| 243 | |
| 244 | /* We map the aliased pages of permanent text inaccessible. */ |
| 245 | if (address < (ulong) _sinittext - CODE_DELTA) |
| 246 | return PAGE_NONE; |
| 247 | |
| 248 | /* |
| 249 | * We map read-only data non-coherent for performance. We could |
| 250 | * use neighborhood caching on TILE64, but it's not clear it's a win. |
| 251 | */ |
| 252 | if ((address >= (ulong) __start_rodata && |
| 253 | address < (ulong) __end_rodata) || |
| 254 | address == (ulong) empty_zero_page) { |
| 255 | return construct_pgprot(PAGE_KERNEL_RO, PAGE_HOME_IMMUTABLE); |
| 256 | } |
| 257 | |
| 258 | /* As a performance optimization, keep the boot init stack here. */ |
| 259 | if (address >= (ulong)&init_thread_union && |
| 260 | address < (ulong)&init_thread_union + THREAD_SIZE) |
| 261 | return construct_pgprot(PAGE_KERNEL, smp_processor_id()); |
| 262 | |
| 263 | #ifndef __tilegx__ |
| 264 | #if !ATOMIC_LOCKS_FOUND_VIA_TABLE() |
| 265 | /* Force the atomic_locks[] array page to be hash-for-home. */ |
| 266 | if (address == (ulong) atomic_locks) |
| 267 | return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH); |
| 268 | #endif |
| 269 | #endif |
| 270 | |
| 271 | /* |
| 272 | * Everything else that isn't data or bss is heap, so mark it |
| 273 | * with the initial heap home (hash-for-home, or this cpu). This |
Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 274 | * includes any addresses after the loaded image and any address before |
| 275 | * _einitdata, since we already captured the case of text before |
| 276 | * _sinittext, and __pa(einittext) is approximately __pa(sinitdata). |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 277 | * |
| 278 | * All the LOWMEM pages that we mark this way will get their |
| 279 | * struct page homecache properly marked later, in set_page_homes(). |
| 280 | * The HIGHMEM pages we leave with a default zero for their |
| 281 | * homes, but with a zero free_time we don't have to actually |
| 282 | * do a flush action the first time we use them, either. |
| 283 | */ |
Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 284 | if (address >= (ulong) _end || address < (ulong) _einitdata) |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 285 | return construct_pgprot(PAGE_KERNEL, initial_heap_home()); |
| 286 | |
| 287 | #if CHIP_HAS_CBOX_HOME_MAP() |
| 288 | /* Use hash-for-home if requested for data/bss. */ |
| 289 | if (kdata_hash) |
| 290 | return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH); |
| 291 | #endif |
| 292 | |
| 293 | /* |
Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 294 | * Make the w1data homed like heap to start with, to avoid |
| 295 | * making it part of the page-striped data area when we're just |
| 296 | * going to convert it to read-only soon anyway. |
| 297 | */ |
| 298 | if (address >= (ulong)__w1data_begin && address < (ulong)__w1data_end) |
| 299 | return construct_pgprot(PAGE_KERNEL, initial_heap_home()); |
| 300 | |
| 301 | /* |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 302 | * Otherwise we just hand out consecutive cpus. To avoid |
| 303 | * requiring this function to hold state, we just walk forward from |
| 304 | * _sdata by PAGE_SIZE, skipping the readonly and init data, to reach |
| 305 | * the requested address, while walking cpu home around kdata_mask. |
| 306 | * This is typically no more than a dozen or so iterations. |
| 307 | */ |
Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 308 | page = (((ulong)__w1data_end) + PAGE_SIZE - 1) & PAGE_MASK; |
| 309 | BUG_ON(address < page || address >= (ulong)_end); |
| 310 | cpu = cpumask_first(&kdata_mask); |
| 311 | for (; page < address; page += PAGE_SIZE) { |
| 312 | if (page >= (ulong)&init_thread_union && |
| 313 | page < (ulong)&init_thread_union + THREAD_SIZE) |
| 314 | continue; |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 315 | if (page == (ulong)empty_zero_page) |
Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 316 | continue; |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 317 | #ifndef __tilegx__ |
| 318 | #if !ATOMIC_LOCKS_FOUND_VIA_TABLE() |
| 319 | if (page == (ulong)atomic_locks) |
Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 320 | continue; |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 321 | #endif |
| 322 | #endif |
Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 323 | cpu = cpumask_next(cpu, &kdata_mask); |
| 324 | if (cpu == NR_CPUS) |
| 325 | cpu = cpumask_first(&kdata_mask); |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 326 | } |
| 327 | return construct_pgprot(PAGE_KERNEL, cpu); |
| 328 | } |
| 329 | |
| 330 | /* |
| 331 | * This function sets up how we cache the kernel text. If we have |
| 332 | * hash-for-home support, normally that is used instead (see the |
| 333 | * kcache_hash boot flag for more information). But if we end up |
| 334 | * using a page-based caching technique, this option sets up the |
| 335 | * details of that. In addition, the "ktext=nocache" option may |
| 336 | * always be used to disable local caching of text pages, if desired. |
| 337 | */ |
| 338 | |
| 339 | static int __initdata ktext_arg_seen; |
| 340 | static int __initdata ktext_small; |
| 341 | static int __initdata ktext_local; |
| 342 | static int __initdata ktext_all; |
| 343 | static int __initdata ktext_nondataplane; |
| 344 | static int __initdata ktext_nocache; |
| 345 | static struct cpumask __initdata ktext_mask; |
| 346 | |
| 347 | static int __init setup_ktext(char *str) |
| 348 | { |
| 349 | if (str == NULL) |
| 350 | return -EINVAL; |
| 351 | |
| 352 | /* If you have a leading "nocache", turn off ktext caching */ |
| 353 | if (strncmp(str, "nocache", 7) == 0) { |
| 354 | ktext_nocache = 1; |
Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 355 | pr_info("ktext: disabling local caching of kernel text\n"); |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 356 | str += 7; |
| 357 | if (*str == ',') |
| 358 | ++str; |
| 359 | if (*str == '\0') |
| 360 | return 0; |
| 361 | } |
| 362 | |
| 363 | ktext_arg_seen = 1; |
| 364 | |
| 365 | /* Default setting on Tile64: use a huge page */ |
| 366 | if (strcmp(str, "huge") == 0) |
Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 367 | pr_info("ktext: using one huge locally cached page\n"); |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 368 | |
| 369 | /* Pay TLB cost but get no cache benefit: cache small pages locally */ |
| 370 | else if (strcmp(str, "local") == 0) { |
| 371 | ktext_small = 1; |
| 372 | ktext_local = 1; |
Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 373 | pr_info("ktext: using small pages with local caching\n"); |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 374 | } |
| 375 | |
| 376 | /* Neighborhood cache ktext pages on all cpus. */ |
| 377 | else if (strcmp(str, "all") == 0) { |
| 378 | ktext_small = 1; |
| 379 | ktext_all = 1; |
Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 380 | pr_info("ktext: using maximal caching neighborhood\n"); |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 381 | } |
| 382 | |
| 383 | |
| 384 | /* Neighborhood ktext pages on specified mask */ |
| 385 | else if (cpulist_parse(str, &ktext_mask) == 0) { |
| 386 | char buf[NR_CPUS * 5]; |
| 387 | cpulist_scnprintf(buf, sizeof(buf), &ktext_mask); |
| 388 | if (cpumask_weight(&ktext_mask) > 1) { |
| 389 | ktext_small = 1; |
Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 390 | pr_info("ktext: using caching neighborhood %s " |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 391 | "with small pages\n", buf); |
| 392 | } else { |
Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 393 | pr_info("ktext: caching on cpu %s with one huge page\n", |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 394 | buf); |
| 395 | } |
| 396 | } |
| 397 | |
| 398 | else if (*str) |
| 399 | return -EINVAL; |
| 400 | |
| 401 | return 0; |
| 402 | } |
| 403 | |
| 404 | early_param("ktext", setup_ktext); |
| 405 | |
| 406 | |
| 407 | static inline pgprot_t ktext_set_nocache(pgprot_t prot) |
| 408 | { |
| 409 | if (!ktext_nocache) |
| 410 | prot = hv_pte_set_nc(prot); |
| 411 | #if CHIP_HAS_NC_AND_NOALLOC_BITS() |
| 412 | else |
| 413 | prot = hv_pte_set_no_alloc_l2(prot); |
| 414 | #endif |
| 415 | return prot; |
| 416 | } |
| 417 | |
| 418 | #ifndef __tilegx__ |
| 419 | static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va) |
| 420 | { |
| 421 | return pmd_offset(pud_offset(&pgtables[pgd_index(va)], va), va); |
| 422 | } |
| 423 | #else |
| 424 | static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va) |
| 425 | { |
| 426 | pud_t *pud = pud_offset(&pgtables[pgd_index(va)], va); |
| 427 | if (pud_none(*pud)) |
| 428 | assign_pmd(pud, alloc_pmd()); |
| 429 | return pmd_offset(pud, va); |
| 430 | } |
| 431 | #endif |
| 432 | |
| 433 | /* Temporary page table we use for staging. */ |
| 434 | static pgd_t pgtables[PTRS_PER_PGD] |
Chris Metcalf | 2cb8240 | 2011-02-27 18:52:24 -0500 | [diff] [blame] | 435 | __attribute__((aligned(HV_PAGE_TABLE_ALIGN))); |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 436 | |
| 437 | /* |
| 438 | * This maps the physical memory to kernel virtual address space, a total |
| 439 | * of max_low_pfn pages, by creating page tables starting from address |
| 440 | * PAGE_OFFSET. |
| 441 | * |
| 442 | * This routine transitions us from using a set of compiled-in large |
| 443 | * pages to using some more precise caching, including removing access |
| 444 | * to code pages mapped at PAGE_OFFSET (executed only at MEM_SV_START) |
| 445 | * marking read-only data as locally cacheable, striping the remaining |
| 446 | * .data and .bss across all the available tiles, and removing access |
| 447 | * to pages above the top of RAM (thus ensuring a page fault from a bad |
| 448 | * virtual address rather than a hypervisor shoot down for accessing |
| 449 | * memory outside the assigned limits). |
| 450 | */ |
| 451 | static void __init kernel_physical_mapping_init(pgd_t *pgd_base) |
| 452 | { |
| 453 | unsigned long address, pfn; |
| 454 | pmd_t *pmd; |
| 455 | pte_t *pte; |
| 456 | int pte_ofs; |
| 457 | const struct cpumask *my_cpu_mask = cpumask_of(smp_processor_id()); |
| 458 | struct cpumask kstripe_mask; |
| 459 | int rc, i; |
| 460 | |
| 461 | #if CHIP_HAS_CBOX_HOME_MAP() |
| 462 | if (ktext_arg_seen && ktext_hash) { |
Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 463 | pr_warning("warning: \"ktext\" boot argument ignored" |
| 464 | " if \"kcache_hash\" sets up text hash-for-home\n"); |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 465 | ktext_small = 0; |
| 466 | } |
| 467 | |
| 468 | if (kdata_arg_seen && kdata_hash) { |
Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 469 | pr_warning("warning: \"kdata\" boot argument ignored" |
| 470 | " if \"kcache_hash\" sets up data hash-for-home\n"); |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 471 | } |
| 472 | |
| 473 | if (kdata_huge && !hash_default) { |
Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 474 | pr_warning("warning: disabling \"kdata=huge\"; requires" |
| 475 | " kcache_hash=all or =allbutstack\n"); |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 476 | kdata_huge = 0; |
| 477 | } |
| 478 | #endif |
| 479 | |
| 480 | /* |
| 481 | * Set up a mask for cpus to use for kernel striping. |
| 482 | * This is normally all cpus, but minus dataplane cpus if any. |
| 483 | * If the dataplane covers the whole chip, we stripe over |
| 484 | * the whole chip too. |
| 485 | */ |
| 486 | cpumask_copy(&kstripe_mask, cpu_possible_mask); |
| 487 | if (!kdata_arg_seen) |
| 488 | kdata_mask = kstripe_mask; |
| 489 | |
| 490 | /* Allocate and fill in L2 page tables */ |
| 491 | for (i = 0; i < MAX_NUMNODES; ++i) { |
| 492 | #ifdef CONFIG_HIGHMEM |
| 493 | unsigned long end_pfn = node_lowmem_end_pfn[i]; |
| 494 | #else |
| 495 | unsigned long end_pfn = node_end_pfn[i]; |
| 496 | #endif |
| 497 | unsigned long end_huge_pfn = 0; |
| 498 | |
| 499 | /* Pre-shatter the last huge page to allow per-cpu pages. */ |
| 500 | if (kdata_huge) |
| 501 | end_huge_pfn = end_pfn - (HPAGE_SIZE >> PAGE_SHIFT); |
| 502 | |
| 503 | pfn = node_start_pfn[i]; |
| 504 | |
| 505 | /* Allocate enough memory to hold L2 page tables for node. */ |
| 506 | init_prealloc_ptes(i, end_pfn - pfn); |
| 507 | |
| 508 | address = (unsigned long) pfn_to_kaddr(pfn); |
| 509 | while (pfn < end_pfn) { |
| 510 | BUG_ON(address & (HPAGE_SIZE-1)); |
| 511 | pmd = get_pmd(pgtables, address); |
| 512 | pte = get_prealloc_pte(pfn); |
| 513 | if (pfn < end_huge_pfn) { |
| 514 | pgprot_t prot = init_pgprot(address); |
| 515 | *(pte_t *)pmd = pte_mkhuge(pfn_pte(pfn, prot)); |
| 516 | for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE; |
| 517 | pfn++, pte_ofs++, address += PAGE_SIZE) |
| 518 | pte[pte_ofs] = pfn_pte(pfn, prot); |
| 519 | } else { |
| 520 | if (kdata_huge) |
| 521 | printk(KERN_DEBUG "pre-shattered huge" |
| 522 | " page at %#lx\n", address); |
| 523 | for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE; |
| 524 | pfn++, pte_ofs++, address += PAGE_SIZE) { |
| 525 | pgprot_t prot = init_pgprot(address); |
| 526 | pte[pte_ofs] = pfn_pte(pfn, prot); |
| 527 | } |
| 528 | assign_pte(pmd, pte); |
| 529 | } |
| 530 | } |
| 531 | } |
| 532 | |
| 533 | /* |
| 534 | * Set or check ktext_map now that we have cpu_possible_mask |
| 535 | * and kstripe_mask to work with. |
| 536 | */ |
| 537 | if (ktext_all) |
| 538 | cpumask_copy(&ktext_mask, cpu_possible_mask); |
| 539 | else if (ktext_nondataplane) |
| 540 | ktext_mask = kstripe_mask; |
| 541 | else if (!cpumask_empty(&ktext_mask)) { |
| 542 | /* Sanity-check any mask that was requested */ |
| 543 | struct cpumask bad; |
| 544 | cpumask_andnot(&bad, &ktext_mask, cpu_possible_mask); |
| 545 | cpumask_and(&ktext_mask, &ktext_mask, cpu_possible_mask); |
| 546 | if (!cpumask_empty(&bad)) { |
| 547 | char buf[NR_CPUS * 5]; |
| 548 | cpulist_scnprintf(buf, sizeof(buf), &bad); |
Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 549 | pr_info("ktext: not using unavailable cpus %s\n", buf); |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 550 | } |
| 551 | if (cpumask_empty(&ktext_mask)) { |
Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 552 | pr_warning("ktext: no valid cpus; caching on %d.\n", |
| 553 | smp_processor_id()); |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 554 | cpumask_copy(&ktext_mask, |
| 555 | cpumask_of(smp_processor_id())); |
| 556 | } |
| 557 | } |
| 558 | |
| 559 | address = MEM_SV_INTRPT; |
| 560 | pmd = get_pmd(pgtables, address); |
| 561 | if (ktext_small) { |
| 562 | /* Allocate an L2 PTE for the kernel text */ |
| 563 | int cpu = 0; |
| 564 | pgprot_t prot = construct_pgprot(PAGE_KERNEL_EXEC, |
| 565 | PAGE_HOME_IMMUTABLE); |
| 566 | |
| 567 | if (ktext_local) { |
| 568 | if (ktext_nocache) |
| 569 | prot = hv_pte_set_mode(prot, |
| 570 | HV_PTE_MODE_UNCACHED); |
| 571 | else |
| 572 | prot = hv_pte_set_mode(prot, |
| 573 | HV_PTE_MODE_CACHE_NO_L3); |
| 574 | } else { |
| 575 | prot = hv_pte_set_mode(prot, |
| 576 | HV_PTE_MODE_CACHE_TILE_L3); |
| 577 | cpu = cpumask_first(&ktext_mask); |
| 578 | |
| 579 | prot = ktext_set_nocache(prot); |
| 580 | } |
| 581 | |
| 582 | BUG_ON(address != (unsigned long)_stext); |
| 583 | pfn = 0; /* code starts at PA 0 */ |
| 584 | pte = alloc_pte(); |
| 585 | for (pte_ofs = 0; address < (unsigned long)_einittext; |
| 586 | pfn++, pte_ofs++, address += PAGE_SIZE) { |
| 587 | if (!ktext_local) { |
| 588 | prot = set_remote_cache_cpu(prot, cpu); |
| 589 | cpu = cpumask_next(cpu, &ktext_mask); |
| 590 | if (cpu == NR_CPUS) |
| 591 | cpu = cpumask_first(&ktext_mask); |
| 592 | } |
| 593 | pte[pte_ofs] = pfn_pte(pfn, prot); |
| 594 | } |
| 595 | assign_pte(pmd, pte); |
| 596 | } else { |
| 597 | pte_t pteval = pfn_pte(0, PAGE_KERNEL_EXEC); |
| 598 | pteval = pte_mkhuge(pteval); |
| 599 | #if CHIP_HAS_CBOX_HOME_MAP() |
| 600 | if (ktext_hash) { |
| 601 | pteval = hv_pte_set_mode(pteval, |
| 602 | HV_PTE_MODE_CACHE_HASH_L3); |
| 603 | pteval = ktext_set_nocache(pteval); |
| 604 | } else |
| 605 | #endif /* CHIP_HAS_CBOX_HOME_MAP() */ |
| 606 | if (cpumask_weight(&ktext_mask) == 1) { |
| 607 | pteval = set_remote_cache_cpu(pteval, |
| 608 | cpumask_first(&ktext_mask)); |
| 609 | pteval = hv_pte_set_mode(pteval, |
| 610 | HV_PTE_MODE_CACHE_TILE_L3); |
| 611 | pteval = ktext_set_nocache(pteval); |
| 612 | } else if (ktext_nocache) |
| 613 | pteval = hv_pte_set_mode(pteval, |
| 614 | HV_PTE_MODE_UNCACHED); |
| 615 | else |
| 616 | pteval = hv_pte_set_mode(pteval, |
| 617 | HV_PTE_MODE_CACHE_NO_L3); |
| 618 | *(pte_t *)pmd = pteval; |
| 619 | } |
| 620 | |
| 621 | /* Set swapper_pgprot here so it is flushed to memory right away. */ |
| 622 | swapper_pgprot = init_pgprot((unsigned long)swapper_pg_dir); |
| 623 | |
| 624 | /* |
| 625 | * Since we may be changing the caching of the stack and page |
| 626 | * table itself, we invoke an assembly helper to do the |
| 627 | * following steps: |
| 628 | * |
| 629 | * - flush the cache so we start with an empty slate |
| 630 | * - install pgtables[] as the real page table |
| 631 | * - flush the TLB so the new page table takes effect |
| 632 | */ |
| 633 | rc = flush_and_install_context(__pa(pgtables), |
| 634 | init_pgprot((unsigned long)pgtables), |
| 635 | __get_cpu_var(current_asid), |
| 636 | cpumask_bits(my_cpu_mask)); |
| 637 | BUG_ON(rc != 0); |
| 638 | |
| 639 | /* Copy the page table back to the normal swapper_pg_dir. */ |
| 640 | memcpy(pgd_base, pgtables, sizeof(pgtables)); |
| 641 | __install_page_table(pgd_base, __get_cpu_var(current_asid), |
| 642 | swapper_pgprot); |
Chris Metcalf | 401586e | 2011-02-28 15:01:53 -0500 | [diff] [blame] | 643 | |
| 644 | /* |
| 645 | * We just read swapper_pgprot and thus brought it into the cache, |
| 646 | * with its new home & caching mode. When we start the other CPUs, |
| 647 | * they're going to reference swapper_pgprot via their initial fake |
| 648 | * VA-is-PA mappings, which cache everything locally. At that |
| 649 | * time, if it's in our cache with a conflicting home, the |
| 650 | * simulator's coherence checker will complain. So, flush it out |
| 651 | * of our cache; we're not going to ever use it again anyway. |
| 652 | */ |
| 653 | __insn_finv(&swapper_pgprot); |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 654 | } |
| 655 | |
| 656 | /* |
| 657 | * devmem_is_allowed() checks to see if /dev/mem access to a certain address |
| 658 | * is valid. The argument is a physical page number. |
| 659 | * |
| 660 | * On Tile, the only valid things for which we can just hand out unchecked |
| 661 | * PTEs are the kernel code and data. Anything else might change its |
| 662 | * homing with time, and we wouldn't know to adjust the /dev/mem PTEs. |
| 663 | * Note that init_thread_union is released to heap soon after boot, |
| 664 | * so we include it in the init data. |
| 665 | * |
| 666 | * For TILE-Gx, we might want to consider allowing access to PA |
| 667 | * regions corresponding to PCI space, etc. |
| 668 | */ |
| 669 | int devmem_is_allowed(unsigned long pagenr) |
| 670 | { |
| 671 | return pagenr < kaddr_to_pfn(_end) && |
| 672 | !(pagenr >= kaddr_to_pfn(&init_thread_union) || |
| 673 | pagenr < kaddr_to_pfn(_einitdata)) && |
| 674 | !(pagenr >= kaddr_to_pfn(_sinittext) || |
| 675 | pagenr <= kaddr_to_pfn(_einittext-1)); |
| 676 | } |
| 677 | |
| 678 | #ifdef CONFIG_HIGHMEM |
| 679 | static void __init permanent_kmaps_init(pgd_t *pgd_base) |
| 680 | { |
| 681 | pgd_t *pgd; |
| 682 | pud_t *pud; |
| 683 | pmd_t *pmd; |
| 684 | pte_t *pte; |
| 685 | unsigned long vaddr; |
| 686 | |
| 687 | vaddr = PKMAP_BASE; |
| 688 | page_table_range_init(vaddr, vaddr + PAGE_SIZE*LAST_PKMAP, pgd_base); |
| 689 | |
| 690 | pgd = swapper_pg_dir + pgd_index(vaddr); |
| 691 | pud = pud_offset(pgd, vaddr); |
| 692 | pmd = pmd_offset(pud, vaddr); |
| 693 | pte = pte_offset_kernel(pmd, vaddr); |
| 694 | pkmap_page_table = pte; |
| 695 | } |
| 696 | #endif /* CONFIG_HIGHMEM */ |
| 697 | |
| 698 | |
| 699 | static void __init init_free_pfn_range(unsigned long start, unsigned long end) |
| 700 | { |
| 701 | unsigned long pfn; |
| 702 | struct page *page = pfn_to_page(start); |
| 703 | |
| 704 | for (pfn = start; pfn < end; ) { |
| 705 | /* Optimize by freeing pages in large batches */ |
| 706 | int order = __ffs(pfn); |
| 707 | int count, i; |
| 708 | struct page *p; |
| 709 | |
| 710 | if (order >= MAX_ORDER) |
| 711 | order = MAX_ORDER-1; |
| 712 | count = 1 << order; |
| 713 | while (pfn + count > end) { |
| 714 | count >>= 1; |
| 715 | --order; |
| 716 | } |
| 717 | for (p = page, i = 0; i < count; ++i, ++p) { |
| 718 | __ClearPageReserved(p); |
| 719 | /* |
| 720 | * Hacky direct set to avoid unnecessary |
| 721 | * lock take/release for EVERY page here. |
| 722 | */ |
| 723 | p->_count.counter = 0; |
| 724 | p->_mapcount.counter = -1; |
| 725 | } |
| 726 | init_page_count(page); |
| 727 | __free_pages(page, order); |
| 728 | totalram_pages += count; |
| 729 | |
| 730 | page += count; |
| 731 | pfn += count; |
| 732 | } |
| 733 | } |
| 734 | |
| 735 | static void __init set_non_bootmem_pages_init(void) |
| 736 | { |
| 737 | struct zone *z; |
| 738 | for_each_zone(z) { |
| 739 | unsigned long start, end; |
| 740 | int nid = z->zone_pgdat->node_id; |
Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 741 | int idx = zone_idx(z); |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 742 | |
| 743 | start = z->zone_start_pfn; |
| 744 | if (start == 0) |
| 745 | continue; /* bootmem */ |
| 746 | end = start + z->spanned_pages; |
Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 747 | if (idx == ZONE_NORMAL) { |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 748 | BUG_ON(start != node_start_pfn[nid]); |
| 749 | start = node_free_pfn[nid]; |
| 750 | } |
| 751 | #ifdef CONFIG_HIGHMEM |
Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 752 | if (idx == ZONE_HIGHMEM) |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 753 | totalhigh_pages += z->spanned_pages; |
| 754 | #endif |
| 755 | if (kdata_huge) { |
| 756 | unsigned long percpu_pfn = node_percpu_pfn[nid]; |
| 757 | if (start < percpu_pfn && end > percpu_pfn) |
| 758 | end = percpu_pfn; |
| 759 | } |
| 760 | #ifdef CONFIG_PCI |
| 761 | if (start <= pci_reserve_start_pfn && |
| 762 | end > pci_reserve_start_pfn) { |
| 763 | if (end > pci_reserve_end_pfn) |
| 764 | init_free_pfn_range(pci_reserve_end_pfn, end); |
| 765 | end = pci_reserve_start_pfn; |
| 766 | } |
| 767 | #endif |
| 768 | init_free_pfn_range(start, end); |
| 769 | } |
| 770 | } |
| 771 | |
| 772 | /* |
| 773 | * paging_init() sets up the page tables - note that all of lowmem is |
| 774 | * already mapped by head.S. |
| 775 | */ |
| 776 | void __init paging_init(void) |
| 777 | { |
| 778 | #ifdef CONFIG_HIGHMEM |
| 779 | unsigned long vaddr, end; |
| 780 | #endif |
| 781 | #ifdef __tilegx__ |
| 782 | pud_t *pud; |
| 783 | #endif |
| 784 | pgd_t *pgd_base = swapper_pg_dir; |
| 785 | |
| 786 | kernel_physical_mapping_init(pgd_base); |
| 787 | |
| 788 | #ifdef CONFIG_HIGHMEM |
| 789 | /* |
| 790 | * Fixed mappings, only the page table structure has to be |
| 791 | * created - mappings will be set by set_fixmap(): |
| 792 | */ |
| 793 | vaddr = __fix_to_virt(__end_of_fixed_addresses - 1) & PMD_MASK; |
| 794 | end = (FIXADDR_TOP + PMD_SIZE - 1) & PMD_MASK; |
| 795 | page_table_range_init(vaddr, end, pgd_base); |
| 796 | permanent_kmaps_init(pgd_base); |
| 797 | #endif |
| 798 | |
| 799 | #ifdef __tilegx__ |
| 800 | /* |
| 801 | * Since GX allocates just one pmd_t array worth of vmalloc space, |
| 802 | * we go ahead and allocate it statically here, then share it |
| 803 | * globally. As a result we don't have to worry about any task |
| 804 | * changing init_mm once we get up and running, and there's no |
| 805 | * need for e.g. vmalloc_sync_all(). |
| 806 | */ |
| 807 | BUILD_BUG_ON(pgd_index(VMALLOC_START) != pgd_index(VMALLOC_END)); |
| 808 | pud = pud_offset(pgd_base + pgd_index(VMALLOC_START), VMALLOC_START); |
| 809 | assign_pmd(pud, alloc_pmd()); |
| 810 | #endif |
| 811 | } |
| 812 | |
| 813 | |
| 814 | /* |
| 815 | * Walk the kernel page tables and derive the page_home() from |
| 816 | * the PTEs, so that set_pte() can properly validate the caching |
| 817 | * of all PTEs it sees. |
| 818 | */ |
| 819 | void __init set_page_homes(void) |
| 820 | { |
| 821 | } |
| 822 | |
| 823 | static void __init set_max_mapnr_init(void) |
| 824 | { |
| 825 | #ifdef CONFIG_FLATMEM |
| 826 | max_mapnr = max_low_pfn; |
| 827 | #endif |
| 828 | } |
| 829 | |
| 830 | void __init mem_init(void) |
| 831 | { |
| 832 | int codesize, datasize, initsize; |
| 833 | int i; |
| 834 | #ifndef __tilegx__ |
| 835 | void *last; |
| 836 | #endif |
| 837 | |
| 838 | #ifdef CONFIG_FLATMEM |
| 839 | if (!mem_map) |
| 840 | BUG(); |
| 841 | #endif |
| 842 | |
| 843 | #ifdef CONFIG_HIGHMEM |
| 844 | /* check that fixmap and pkmap do not overlap */ |
| 845 | if (PKMAP_ADDR(LAST_PKMAP-1) >= FIXADDR_START) { |
Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 846 | pr_err("fixmap and kmap areas overlap" |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 847 | " - this will crash\n"); |
Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 848 | pr_err("pkstart: %lxh pkend: %lxh fixstart %lxh\n", |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 849 | PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP-1), |
| 850 | FIXADDR_START); |
| 851 | BUG(); |
| 852 | } |
| 853 | #endif |
| 854 | |
| 855 | set_max_mapnr_init(); |
| 856 | |
| 857 | /* this will put all bootmem onto the freelists */ |
| 858 | totalram_pages += free_all_bootmem(); |
| 859 | |
| 860 | /* count all remaining LOWMEM and give all HIGHMEM to page allocator */ |
| 861 | set_non_bootmem_pages_init(); |
| 862 | |
| 863 | codesize = (unsigned long)&_etext - (unsigned long)&_text; |
| 864 | datasize = (unsigned long)&_end - (unsigned long)&_sdata; |
| 865 | initsize = (unsigned long)&_einittext - (unsigned long)&_sinittext; |
| 866 | initsize += (unsigned long)&_einitdata - (unsigned long)&_sinitdata; |
| 867 | |
Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 868 | pr_info("Memory: %luk/%luk available (%dk kernel code, %dk data, %dk init, %ldk highmem)\n", |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 869 | (unsigned long) nr_free_pages() << (PAGE_SHIFT-10), |
| 870 | num_physpages << (PAGE_SHIFT-10), |
| 871 | codesize >> 10, |
| 872 | datasize >> 10, |
| 873 | initsize >> 10, |
| 874 | (unsigned long) (totalhigh_pages << (PAGE_SHIFT-10)) |
| 875 | ); |
| 876 | |
| 877 | /* |
| 878 | * In debug mode, dump some interesting memory mappings. |
| 879 | */ |
| 880 | #ifdef CONFIG_HIGHMEM |
| 881 | printk(KERN_DEBUG " KMAP %#lx - %#lx\n", |
| 882 | FIXADDR_START, FIXADDR_TOP + PAGE_SIZE - 1); |
| 883 | printk(KERN_DEBUG " PKMAP %#lx - %#lx\n", |
| 884 | PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP) - 1); |
| 885 | #endif |
| 886 | #ifdef CONFIG_HUGEVMAP |
| 887 | printk(KERN_DEBUG " HUGEMAP %#lx - %#lx\n", |
| 888 | HUGE_VMAP_BASE, HUGE_VMAP_END - 1); |
| 889 | #endif |
| 890 | printk(KERN_DEBUG " VMALLOC %#lx - %#lx\n", |
| 891 | _VMALLOC_START, _VMALLOC_END - 1); |
| 892 | #ifdef __tilegx__ |
| 893 | for (i = MAX_NUMNODES-1; i >= 0; --i) { |
| 894 | struct pglist_data *node = &node_data[i]; |
| 895 | if (node->node_present_pages) { |
| 896 | unsigned long start = (unsigned long) |
| 897 | pfn_to_kaddr(node->node_start_pfn); |
| 898 | unsigned long end = start + |
| 899 | (node->node_present_pages << PAGE_SHIFT); |
| 900 | printk(KERN_DEBUG " MEM%d %#lx - %#lx\n", |
| 901 | i, start, end - 1); |
| 902 | } |
| 903 | } |
| 904 | #else |
| 905 | last = high_memory; |
| 906 | for (i = MAX_NUMNODES-1; i >= 0; --i) { |
| 907 | if ((unsigned long)vbase_map[i] != -1UL) { |
| 908 | printk(KERN_DEBUG " LOWMEM%d %#lx - %#lx\n", |
| 909 | i, (unsigned long) (vbase_map[i]), |
| 910 | (unsigned long) (last-1)); |
| 911 | last = vbase_map[i]; |
| 912 | } |
| 913 | } |
| 914 | #endif |
| 915 | |
| 916 | #ifndef __tilegx__ |
| 917 | /* |
| 918 | * Convert from using one lock for all atomic operations to |
| 919 | * one per cpu. |
| 920 | */ |
| 921 | __init_atomic_per_cpu(); |
| 922 | #endif |
| 923 | } |
| 924 | |
| 925 | /* |
| 926 | * this is for the non-NUMA, single node SMP system case. |
| 927 | * Specifically, in the case of x86, we will always add |
| 928 | * memory to the highmem for now. |
| 929 | */ |
| 930 | #ifndef CONFIG_NEED_MULTIPLE_NODES |
| 931 | int arch_add_memory(u64 start, u64 size) |
| 932 | { |
| 933 | struct pglist_data *pgdata = &contig_page_data; |
| 934 | struct zone *zone = pgdata->node_zones + MAX_NR_ZONES-1; |
| 935 | unsigned long start_pfn = start >> PAGE_SHIFT; |
| 936 | unsigned long nr_pages = size >> PAGE_SHIFT; |
| 937 | |
| 938 | return __add_pages(zone, start_pfn, nr_pages); |
| 939 | } |
| 940 | |
| 941 | int remove_memory(u64 start, u64 size) |
| 942 | { |
| 943 | return -EINVAL; |
| 944 | } |
| 945 | #endif |
| 946 | |
| 947 | struct kmem_cache *pgd_cache; |
| 948 | |
| 949 | void __init pgtable_cache_init(void) |
| 950 | { |
Chris Metcalf | 76c567f | 2011-02-28 16:37:34 -0500 | [diff] [blame] | 951 | pgd_cache = kmem_cache_create("pgd", SIZEOF_PGD, SIZEOF_PGD, 0, NULL); |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 952 | if (!pgd_cache) |
| 953 | panic("pgtable_cache_init(): Cannot create pgd cache"); |
| 954 | } |
| 955 | |
| 956 | #if !CHIP_HAS_COHERENT_LOCAL_CACHE() |
| 957 | /* |
| 958 | * The __w1data area holds data that is only written during initialization, |
| 959 | * and is read-only and thus freely cacheable thereafter. Fix the page |
| 960 | * table entries that cover that region accordingly. |
| 961 | */ |
| 962 | static void mark_w1data_ro(void) |
| 963 | { |
| 964 | /* Loop over page table entries */ |
| 965 | unsigned long addr = (unsigned long)__w1data_begin; |
| 966 | BUG_ON((addr & (PAGE_SIZE-1)) != 0); |
| 967 | for (; addr <= (unsigned long)__w1data_end - 1; addr += PAGE_SIZE) { |
| 968 | unsigned long pfn = kaddr_to_pfn((void *)addr); |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 969 | pte_t *ptep = virt_to_pte(NULL, addr); |
| 970 | BUG_ON(pte_huge(*ptep)); /* not relevant for kdata_huge */ |
| 971 | set_pte_at(&init_mm, addr, ptep, pfn_pte(pfn, PAGE_KERNEL_RO)); |
| 972 | } |
| 973 | } |
| 974 | #endif |
| 975 | |
| 976 | #ifdef CONFIG_DEBUG_PAGEALLOC |
| 977 | static long __write_once initfree; |
| 978 | #else |
| 979 | static long __write_once initfree = 1; |
| 980 | #endif |
| 981 | |
| 982 | /* Select whether to free (1) or mark unusable (0) the __init pages. */ |
| 983 | static int __init set_initfree(char *str) |
| 984 | { |
Chris Metcalf | d59e609 | 2010-11-01 15:25:16 -0400 | [diff] [blame] | 985 | long val; |
Chris Metcalf | ed54d38 | 2011-02-28 15:14:19 -0500 | [diff] [blame] | 986 | if (strict_strtol(str, 0, &val) == 0) { |
Chris Metcalf | d59e609 | 2010-11-01 15:25:16 -0400 | [diff] [blame] | 987 | initfree = val; |
| 988 | pr_info("initfree: %s free init pages\n", |
| 989 | initfree ? "will" : "won't"); |
| 990 | } |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 991 | return 1; |
| 992 | } |
| 993 | __setup("initfree=", set_initfree); |
| 994 | |
| 995 | static void free_init_pages(char *what, unsigned long begin, unsigned long end) |
| 996 | { |
| 997 | unsigned long addr = (unsigned long) begin; |
| 998 | |
| 999 | if (kdata_huge && !initfree) { |
Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 1000 | pr_warning("Warning: ignoring initfree=0:" |
| 1001 | " incompatible with kdata=huge\n"); |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 1002 | initfree = 1; |
| 1003 | } |
| 1004 | end = (end + PAGE_SIZE - 1) & PAGE_MASK; |
| 1005 | local_flush_tlb_pages(NULL, begin, PAGE_SIZE, end - begin); |
| 1006 | for (addr = begin; addr < end; addr += PAGE_SIZE) { |
| 1007 | /* |
| 1008 | * Note we just reset the home here directly in the |
| 1009 | * page table. We know this is safe because our caller |
| 1010 | * just flushed the caches on all the other cpus, |
| 1011 | * and they won't be touching any of these pages. |
| 1012 | */ |
| 1013 | int pfn = kaddr_to_pfn((void *)addr); |
| 1014 | struct page *page = pfn_to_page(pfn); |
| 1015 | pte_t *ptep = virt_to_pte(NULL, addr); |
| 1016 | if (!initfree) { |
| 1017 | /* |
| 1018 | * If debugging page accesses then do not free |
| 1019 | * this memory but mark them not present - any |
| 1020 | * buggy init-section access will create a |
| 1021 | * kernel page fault: |
| 1022 | */ |
| 1023 | pte_clear(&init_mm, addr, ptep); |
| 1024 | continue; |
| 1025 | } |
| 1026 | __ClearPageReserved(page); |
| 1027 | init_page_count(page); |
| 1028 | if (pte_huge(*ptep)) |
| 1029 | BUG_ON(!kdata_huge); |
| 1030 | else |
| 1031 | set_pte_at(&init_mm, addr, ptep, |
| 1032 | pfn_pte(pfn, PAGE_KERNEL)); |
| 1033 | memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE); |
| 1034 | free_page(addr); |
| 1035 | totalram_pages++; |
| 1036 | } |
Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 1037 | pr_info("Freeing %s: %ldk freed\n", what, (end - begin) >> 10); |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 1038 | } |
| 1039 | |
| 1040 | void free_initmem(void) |
| 1041 | { |
| 1042 | const unsigned long text_delta = MEM_SV_INTRPT - PAGE_OFFSET; |
| 1043 | |
| 1044 | /* |
| 1045 | * Evict the dirty initdata on the boot cpu, evict the w1data |
| 1046 | * wherever it's homed, and evict all the init code everywhere. |
| 1047 | * We are guaranteed that no one will touch the init pages any |
| 1048 | * more, and although other cpus may be touching the w1data, |
| 1049 | * we only actually change the caching on tile64, which won't |
| 1050 | * be keeping local copies in the other tiles' caches anyway. |
| 1051 | */ |
| 1052 | homecache_evict(&cpu_cacheable_map); |
| 1053 | |
| 1054 | /* Free the data pages that we won't use again after init. */ |
| 1055 | free_init_pages("unused kernel data", |
| 1056 | (unsigned long)_sinitdata, |
| 1057 | (unsigned long)_einitdata); |
| 1058 | |
| 1059 | /* |
| 1060 | * Free the pages mapped from 0xc0000000 that correspond to code |
Chris Metcalf | a78c942 | 2010-10-14 16:23:03 -0400 | [diff] [blame] | 1061 | * pages from MEM_SV_INTRPT that we won't use again after init. |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 1062 | */ |
| 1063 | free_init_pages("unused kernel text", |
| 1064 | (unsigned long)_sinittext - text_delta, |
| 1065 | (unsigned long)_einittext - text_delta); |
| 1066 | |
| 1067 | #if !CHIP_HAS_COHERENT_LOCAL_CACHE() |
| 1068 | /* |
| 1069 | * Upgrade the .w1data section to globally cached. |
| 1070 | * We don't do this on tilepro, since the cache architecture |
| 1071 | * pretty much makes it irrelevant, and in any case we end |
| 1072 | * up having racing issues with other tiles that may touch |
| 1073 | * the data after we flush the cache but before we update |
| 1074 | * the PTEs and flush the TLBs, causing sharer shootdowns |
| 1075 | * later. Even though this is to clean data, it seems like |
| 1076 | * an unnecessary complication. |
| 1077 | */ |
| 1078 | mark_w1data_ro(); |
| 1079 | #endif |
| 1080 | |
| 1081 | /* Do a global TLB flush so everyone sees the changes. */ |
| 1082 | flush_tlb_all(); |
| 1083 | } |