Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | ** ----------------------------------------------------------------------------- |
| 3 | ** |
| 4 | ** Perle Specialix driver for Linux |
| 5 | ** Ported from existing RIO Driver for SCO sources. |
| 6 | * |
| 7 | * (C) 1990 - 2000 Specialix International Ltd., Byfleet, Surrey, UK. |
| 8 | * |
| 9 | * This program is free software; you can redistribute it and/or modify |
| 10 | * it under the terms of the GNU General Public License as published by |
| 11 | * the Free Software Foundation; either version 2 of the License, or |
| 12 | * (at your option) any later version. |
| 13 | * |
| 14 | * This program is distributed in the hope that it will be useful, |
| 15 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 17 | * GNU General Public License for more details. |
| 18 | * |
| 19 | * You should have received a copy of the GNU General Public License |
| 20 | * along with this program; if not, write to the Free Software |
| 21 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| 22 | ** |
| 23 | ** Module : rioboot.c |
| 24 | ** SID : 1.3 |
| 25 | ** Last Modified : 11/6/98 10:33:36 |
| 26 | ** Retrieved : 11/6/98 10:33:48 |
| 27 | ** |
| 28 | ** ident @(#)rioboot.c 1.3 |
| 29 | ** |
| 30 | ** ----------------------------------------------------------------------------- |
| 31 | */ |
| 32 | |
| 33 | #ifdef SCCS_LABELS |
| 34 | static char *_rioboot_c_sccs_ = "@(#)rioboot.c 1.3"; |
| 35 | #endif |
| 36 | |
| 37 | #include <linux/module.h> |
| 38 | #include <linux/slab.h> |
| 39 | #include <linux/errno.h> |
| 40 | #include <linux/interrupt.h> |
| 41 | #include <asm/io.h> |
| 42 | #include <asm/system.h> |
| 43 | #include <asm/string.h> |
| 44 | #include <asm/semaphore.h> |
| 45 | |
| 46 | |
| 47 | #include <linux/termios.h> |
| 48 | #include <linux/serial.h> |
| 49 | |
| 50 | #include <linux/generic_serial.h> |
| 51 | |
| 52 | |
| 53 | |
| 54 | #include "linux_compat.h" |
| 55 | #include "rio_linux.h" |
| 56 | #include "typdef.h" |
| 57 | #include "pkt.h" |
| 58 | #include "daemon.h" |
| 59 | #include "rio.h" |
| 60 | #include "riospace.h" |
| 61 | #include "top.h" |
| 62 | #include "cmdpkt.h" |
| 63 | #include "map.h" |
| 64 | #include "riotypes.h" |
| 65 | #include "rup.h" |
| 66 | #include "port.h" |
| 67 | #include "riodrvr.h" |
| 68 | #include "rioinfo.h" |
| 69 | #include "func.h" |
| 70 | #include "errors.h" |
| 71 | #include "pci.h" |
| 72 | |
| 73 | #include "parmmap.h" |
| 74 | #include "unixrup.h" |
| 75 | #include "board.h" |
| 76 | #include "host.h" |
| 77 | #include "error.h" |
| 78 | #include "phb.h" |
| 79 | #include "link.h" |
| 80 | #include "cmdblk.h" |
| 81 | #include "route.h" |
| 82 | |
| 83 | static int RIOBootComplete( struct rio_info *p, struct Host *HostP, uint Rup, struct PktCmd *PktCmdP ); |
| 84 | |
| 85 | static uchar |
| 86 | RIOAtVec2Ctrl[] = |
| 87 | { |
| 88 | /* 0 */ INTERRUPT_DISABLE, |
| 89 | /* 1 */ INTERRUPT_DISABLE, |
| 90 | /* 2 */ INTERRUPT_DISABLE, |
| 91 | /* 3 */ INTERRUPT_DISABLE, |
| 92 | /* 4 */ INTERRUPT_DISABLE, |
| 93 | /* 5 */ INTERRUPT_DISABLE, |
| 94 | /* 6 */ INTERRUPT_DISABLE, |
| 95 | /* 7 */ INTERRUPT_DISABLE, |
| 96 | /* 8 */ INTERRUPT_DISABLE, |
| 97 | /* 9 */ IRQ_9|INTERRUPT_ENABLE, |
| 98 | /* 10 */ INTERRUPT_DISABLE, |
| 99 | /* 11 */ IRQ_11|INTERRUPT_ENABLE, |
| 100 | /* 12 */ IRQ_12|INTERRUPT_ENABLE, |
| 101 | /* 13 */ INTERRUPT_DISABLE, |
| 102 | /* 14 */ INTERRUPT_DISABLE, |
| 103 | /* 15 */ IRQ_15|INTERRUPT_ENABLE |
| 104 | }; |
| 105 | |
| 106 | /* |
| 107 | ** Load in the RTA boot code. |
| 108 | */ |
| 109 | int |
| 110 | RIOBootCodeRTA(p, rbp) |
| 111 | struct rio_info * p; |
| 112 | struct DownLoad * rbp; |
| 113 | { |
| 114 | int offset; |
| 115 | |
| 116 | func_enter (); |
| 117 | |
| 118 | /* Linux doesn't allow you to disable interrupts during a |
| 119 | "copyin". (Crash when a pagefault occurs). */ |
| 120 | /* disable(oldspl); */ |
| 121 | |
| 122 | rio_dprintk (RIO_DEBUG_BOOT, "Data at user address 0x%x\n",(int)rbp->DataP); |
| 123 | |
| 124 | /* |
| 125 | ** Check that we have set asside enough memory for this |
| 126 | */ |
| 127 | if ( rbp->Count > SIXTY_FOUR_K ) { |
| 128 | rio_dprintk (RIO_DEBUG_BOOT, "RTA Boot Code Too Large!\n"); |
| 129 | p->RIOError.Error = HOST_FILE_TOO_LARGE; |
| 130 | /* restore(oldspl); */ |
| 131 | func_exit (); |
| 132 | return -ENOMEM; |
| 133 | } |
| 134 | |
| 135 | if ( p->RIOBooting ) { |
| 136 | rio_dprintk (RIO_DEBUG_BOOT, "RTA Boot Code : BUSY BUSY BUSY!\n"); |
| 137 | p->RIOError.Error = BOOT_IN_PROGRESS; |
| 138 | /* restore(oldspl); */ |
| 139 | func_exit (); |
| 140 | return -EBUSY; |
| 141 | } |
| 142 | |
| 143 | /* |
| 144 | ** The data we load in must end on a (RTA_BOOT_DATA_SIZE) byte boundary, |
| 145 | ** so calculate how far we have to move the data up the buffer |
| 146 | ** to achieve this. |
| 147 | */ |
| 148 | offset = (RTA_BOOT_DATA_SIZE - (rbp->Count % RTA_BOOT_DATA_SIZE)) % |
| 149 | RTA_BOOT_DATA_SIZE; |
| 150 | |
| 151 | /* |
| 152 | ** Be clean, and clear the 'unused' portion of the boot buffer, |
| 153 | ** because it will (eventually) be part of the Rta run time environment |
| 154 | ** and so should be zeroed. |
| 155 | */ |
| 156 | bzero( (caddr_t)p->RIOBootPackets, offset ); |
| 157 | |
| 158 | /* |
| 159 | ** Copy the data from user space. |
| 160 | */ |
| 161 | |
| 162 | if ( copyin((int)rbp->DataP,((caddr_t)(p->RIOBootPackets))+offset, |
| 163 | rbp->Count) ==COPYFAIL ) { |
| 164 | rio_dprintk (RIO_DEBUG_BOOT, "Bad data copy from user space\n"); |
| 165 | p->RIOError.Error = COPYIN_FAILED; |
| 166 | /* restore(oldspl); */ |
| 167 | func_exit (); |
| 168 | return -EFAULT; |
| 169 | } |
| 170 | |
| 171 | /* |
| 172 | ** Make sure that our copy of the size includes that offset we discussed |
| 173 | ** earlier. |
| 174 | */ |
| 175 | p->RIONumBootPkts = (rbp->Count+offset)/RTA_BOOT_DATA_SIZE; |
| 176 | p->RIOBootCount = rbp->Count; |
| 177 | |
| 178 | /* restore(oldspl); */ |
| 179 | func_exit(); |
| 180 | return 0; |
| 181 | } |
| 182 | |
| 183 | void rio_start_card_running (struct Host * HostP) |
| 184 | { |
| 185 | func_enter (); |
| 186 | |
| 187 | switch ( HostP->Type ) { |
| 188 | case RIO_AT: |
| 189 | rio_dprintk (RIO_DEBUG_BOOT, "Start ISA card running\n"); |
| 190 | WBYTE(HostP->Control, |
| 191 | BOOT_FROM_RAM | EXTERNAL_BUS_ON |
| 192 | | HostP->Mode |
| 193 | | RIOAtVec2Ctrl[HostP->Ivec & 0xF] ); |
| 194 | break; |
| 195 | |
| 196 | #ifdef FUTURE_RELEASE |
| 197 | case RIO_MCA: |
| 198 | /* |
| 199 | ** MCA handles IRQ vectors differently, so we don't write |
| 200 | ** them to this register. |
| 201 | */ |
| 202 | rio_dprintk (RIO_DEBUG_BOOT, "Start MCA card running\n"); |
| 203 | WBYTE(HostP->Control, McaTpBootFromRam | McaTpBusEnable | HostP->Mode); |
| 204 | break; |
| 205 | |
| 206 | case RIO_EISA: |
| 207 | /* |
| 208 | ** EISA is totally different and expects OUTBZs to turn it on. |
| 209 | */ |
| 210 | rio_dprintk (RIO_DEBUG_BOOT, "Start EISA card running\n"); |
| 211 | OUTBZ( HostP->Slot, EISA_CONTROL_PORT, HostP->Mode | RIOEisaVec2Ctrl[HostP->Ivec] | EISA_TP_RUN | EISA_TP_BUS_ENABLE | EISA_TP_BOOT_FROM_RAM ); |
| 212 | break; |
| 213 | #endif |
| 214 | |
| 215 | case RIO_PCI: |
| 216 | /* |
| 217 | ** PCI is much the same as MCA. Everything is once again memory |
| 218 | ** mapped, so we are writing to memory registers instead of io |
| 219 | ** ports. |
| 220 | */ |
| 221 | rio_dprintk (RIO_DEBUG_BOOT, "Start PCI card running\n"); |
| 222 | WBYTE(HostP->Control, PCITpBootFromRam | PCITpBusEnable | HostP->Mode); |
| 223 | break; |
| 224 | default: |
| 225 | rio_dprintk (RIO_DEBUG_BOOT, "Unknown host type %d\n", HostP->Type); |
| 226 | break; |
| 227 | } |
| 228 | /* |
| 229 | printk (KERN_INFO "Done with starting the card\n"); |
| 230 | func_exit (); |
| 231 | */ |
| 232 | return; |
| 233 | } |
| 234 | |
| 235 | /* |
| 236 | ** Load in the host boot code - load it directly onto all halted hosts |
| 237 | ** of the correct type. |
| 238 | ** |
| 239 | ** Put your rubber pants on before messing with this code - even the magic |
| 240 | ** numbers have trouble understanding what they are doing here. |
| 241 | */ |
| 242 | int |
| 243 | RIOBootCodeHOST(p, rbp) |
| 244 | struct rio_info * p; |
| 245 | register struct DownLoad *rbp; |
| 246 | { |
| 247 | register struct Host *HostP; |
| 248 | register caddr_t Cad; |
| 249 | register PARM_MAP *ParmMapP; |
| 250 | register int RupN; |
| 251 | int PortN; |
| 252 | uint host; |
| 253 | caddr_t StartP; |
| 254 | BYTE *DestP; |
| 255 | int wait_count; |
| 256 | ushort OldParmMap; |
| 257 | ushort offset; /* It is very important that this is a ushort */ |
| 258 | /* uint byte; */ |
| 259 | caddr_t DownCode = NULL; |
| 260 | unsigned long flags; |
| 261 | |
| 262 | HostP = NULL; /* Assure the compiler we've initialized it */ |
| 263 | for ( host=0; host<p->RIONumHosts; host++ ) { |
| 264 | rio_dprintk (RIO_DEBUG_BOOT, "Attempt to boot host %d\n",host); |
| 265 | HostP = &p->RIOHosts[host]; |
| 266 | |
| 267 | rio_dprintk (RIO_DEBUG_BOOT, "Host Type = 0x%x, Mode = 0x%x, IVec = 0x%x\n", |
| 268 | HostP->Type, HostP->Mode, HostP->Ivec); |
| 269 | |
| 270 | |
| 271 | if ( (HostP->Flags & RUN_STATE) != RC_WAITING ) { |
| 272 | rio_dprintk (RIO_DEBUG_BOOT, "%s %d already running\n","Host",host); |
| 273 | continue; |
| 274 | } |
| 275 | |
| 276 | /* |
| 277 | ** Grab a 32 bit pointer to the card. |
| 278 | */ |
| 279 | Cad = HostP->Caddr; |
| 280 | |
| 281 | /* |
| 282 | ** We are going to (try) and load in rbp->Count bytes. |
| 283 | ** The last byte will reside at p->RIOConf.HostLoadBase-1; |
| 284 | ** Therefore, we need to start copying at address |
| 285 | ** (caddr+p->RIOConf.HostLoadBase-rbp->Count) |
| 286 | */ |
| 287 | StartP = (caddr_t)&Cad[p->RIOConf.HostLoadBase-rbp->Count]; |
| 288 | |
| 289 | rio_dprintk (RIO_DEBUG_BOOT, "kernel virtual address for host is 0x%x\n", (int)Cad ); |
| 290 | rio_dprintk (RIO_DEBUG_BOOT, "kernel virtual address for download is 0x%x\n", (int)StartP); |
| 291 | rio_dprintk (RIO_DEBUG_BOOT, "host loadbase is 0x%x\n",p->RIOConf.HostLoadBase); |
| 292 | rio_dprintk (RIO_DEBUG_BOOT, "size of download is 0x%x\n", rbp->Count); |
| 293 | |
| 294 | if ( p->RIOConf.HostLoadBase < rbp->Count ) { |
| 295 | rio_dprintk (RIO_DEBUG_BOOT, "Bin too large\n"); |
| 296 | p->RIOError.Error = HOST_FILE_TOO_LARGE; |
| 297 | func_exit (); |
| 298 | return -EFBIG; |
| 299 | } |
| 300 | /* |
| 301 | ** Ensure that the host really is stopped. |
| 302 | ** Disable it's external bus & twang its reset line. |
| 303 | */ |
| 304 | RIOHostReset( HostP->Type, (struct DpRam *)HostP->CardP, HostP->Slot ); |
| 305 | |
| 306 | /* |
| 307 | ** Copy the data directly from user space to the SRAM. |
| 308 | ** This ain't going to be none too clever if the download |
| 309 | ** code is bigger than this segment. |
| 310 | */ |
| 311 | rio_dprintk (RIO_DEBUG_BOOT, "Copy in code\n"); |
| 312 | |
| 313 | /* |
| 314 | ** PCI hostcard can't cope with 32 bit accesses and so need to copy |
| 315 | ** data to a local buffer, and then dripfeed the card. |
| 316 | */ |
| 317 | if ( HostP->Type == RIO_PCI ) { |
| 318 | /* int offset; */ |
| 319 | |
| 320 | DownCode = sysbrk(rbp->Count); |
| 321 | if ( !DownCode ) { |
| 322 | rio_dprintk (RIO_DEBUG_BOOT, "No system memory available\n"); |
| 323 | p->RIOError.Error = NOT_ENOUGH_CORE_FOR_PCI_COPY; |
| 324 | func_exit (); |
| 325 | return -ENOMEM; |
| 326 | } |
| 327 | bzero(DownCode, rbp->Count); |
| 328 | |
| 329 | if ( copyin((int)rbp->DataP,DownCode,rbp->Count)==COPYFAIL ) { |
| 330 | rio_dprintk (RIO_DEBUG_BOOT, "Bad copyin of host data\n"); |
| 331 | sysfree( DownCode, rbp->Count ); |
| 332 | p->RIOError.Error = COPYIN_FAILED; |
| 333 | func_exit (); |
| 334 | return -EFAULT; |
| 335 | } |
| 336 | |
| 337 | HostP->Copy( DownCode, StartP, rbp->Count ); |
| 338 | |
| 339 | sysfree( DownCode, rbp->Count ); |
| 340 | } |
| 341 | else if ( copyin((int)rbp->DataP,StartP,rbp->Count)==COPYFAIL ) { |
| 342 | rio_dprintk (RIO_DEBUG_BOOT, "Bad copyin of host data\n"); |
| 343 | p->RIOError.Error = COPYIN_FAILED; |
| 344 | func_exit (); |
| 345 | return -EFAULT; |
| 346 | } |
| 347 | |
| 348 | rio_dprintk (RIO_DEBUG_BOOT, "Copy completed\n"); |
| 349 | |
| 350 | /* |
| 351 | ** S T O P ! |
| 352 | ** |
| 353 | ** Upto this point the code has been fairly rational, and possibly |
| 354 | ** even straight forward. What follows is a pile of crud that will |
| 355 | ** magically turn into six bytes of transputer assembler. Normally |
| 356 | ** you would expect an array or something, but, being me, I have |
| 357 | ** chosen [been told] to use a technique whereby the startup code |
| 358 | ** will be correct if we change the loadbase for the code. Which |
| 359 | ** brings us onto another issue - the loadbase is the *end* of the |
| 360 | ** code, not the start. |
| 361 | ** |
| 362 | ** If I were you I wouldn't start from here. |
| 363 | */ |
| 364 | |
| 365 | /* |
| 366 | ** We now need to insert a short boot section into |
| 367 | ** the memory at the end of Sram2. This is normally (de)composed |
| 368 | ** of the last eight bytes of the download code. The |
| 369 | ** download has been assembled/compiled to expect to be |
| 370 | ** loaded from 0x7FFF downwards. We have loaded it |
| 371 | ** at some other address. The startup code goes into the small |
| 372 | ** ram window at Sram2, in the last 8 bytes, which are really |
| 373 | ** at addresses 0x7FF8-0x7FFF. |
| 374 | ** |
| 375 | ** If the loadbase is, say, 0x7C00, then we need to branch to |
| 376 | ** address 0x7BFE to run the host.bin startup code. We assemble |
| 377 | ** this jump manually. |
| 378 | ** |
| 379 | ** The two byte sequence 60 08 is loaded into memory at address |
| 380 | ** 0x7FFE,F. This is a local branch to location 0x7FF8 (60 is nfix 0, |
| 381 | ** which adds '0' to the .O register, complements .O, and then shifts |
| 382 | ** it left by 4 bit positions, 08 is a jump .O+8 instruction. This will |
| 383 | ** add 8 to .O (which was 0xFFF0), and will branch RELATIVE to the new |
| 384 | ** location. Now, the branch starts from the value of .PC (or .IP or |
| 385 | ** whatever the bloody register is called on this chip), and the .PC |
| 386 | ** will be pointing to the location AFTER the branch, in this case |
| 387 | ** .PC == 0x8000, so the branch will be to 0x8000+0xFFF8 = 0x7FF8. |
| 388 | ** |
| 389 | ** A long branch is coded at 0x7FF8. This consists of loading a four |
| 390 | ** byte offset into .O using nfix (as above) and pfix operators. The |
| 391 | ** pfix operates in exactly the same way as the nfix operator, but |
| 392 | ** without the complement operation. The offset, of course, must be |
| 393 | ** relative to the address of the byte AFTER the branch instruction, |
| 394 | ** which will be (urm) 0x7FFC, so, our final destination of the branch |
| 395 | ** (loadbase-2), has to be reached from here. Imagine that the loadbase |
| 396 | ** is 0x7C00 (which it is), then we will need to branch to 0x7BFE (which |
| 397 | ** is the first byte of the initial two byte short local branch of the |
| 398 | ** download code). |
| 399 | ** |
| 400 | ** To code a jump from 0x7FFC (which is where the branch will start |
| 401 | ** from) to 0x7BFE, we will need to branch 0xFC02 bytes (0x7FFC+0xFC02)= |
| 402 | ** 0x7BFE. |
| 403 | ** This will be coded as four bytes: |
| 404 | ** 60 2C 20 02 |
| 405 | ** being nfix .O+0 |
| 406 | ** pfix .O+C |
| 407 | ** pfix .O+0 |
| 408 | ** jump .O+2 |
| 409 | ** |
| 410 | ** The nfix operator is used, so that the startup code will be |
| 411 | ** compatible with the whole Tp family. (lies, damn lies, it'll never |
| 412 | ** work in a month of Sundays). |
| 413 | ** |
| 414 | ** The nfix nyble is the 1s complement of the nyble value you |
| 415 | ** want to load - in this case we wanted 'F' so we nfix loaded '0'. |
| 416 | */ |
| 417 | |
| 418 | |
| 419 | /* |
| 420 | ** Dest points to the top 8 bytes of Sram2. The Tp jumps |
| 421 | ** to 0x7FFE at reset time, and starts executing. This is |
| 422 | ** a short branch to 0x7FF8, where a long branch is coded. |
| 423 | */ |
| 424 | |
| 425 | DestP = (BYTE *)&Cad[0x7FF8]; /* <<<---- READ THE ABOVE COMMENTS */ |
| 426 | |
| 427 | #define NFIX(N) (0x60 | (N)) /* .O = (~(.O + N))<<4 */ |
| 428 | #define PFIX(N) (0x20 | (N)) /* .O = (.O + N)<<4 */ |
| 429 | #define JUMP(N) (0x00 | (N)) /* .PC = .PC + .O */ |
| 430 | |
| 431 | /* |
| 432 | ** 0x7FFC is the address of the location following the last byte of |
| 433 | ** the four byte jump instruction. |
| 434 | ** READ THE ABOVE COMMENTS |
| 435 | ** |
| 436 | ** offset is (TO-FROM) % MEMSIZE, but with compound buggering about. |
| 437 | ** Memsize is 64K for this range of Tp, so offset is a short (unsigned, |
| 438 | ** cos I don't understand 2's complement). |
| 439 | */ |
| 440 | offset = (p->RIOConf.HostLoadBase-2)-0x7FFC; |
| 441 | WBYTE( DestP[0] , NFIX(((ushort)(~offset) >> (ushort)12) & 0xF) ); |
| 442 | WBYTE( DestP[1] , PFIX(( offset >> 8) & 0xF) ); |
| 443 | WBYTE( DestP[2] , PFIX(( offset >> 4) & 0xF) ); |
| 444 | WBYTE( DestP[3] , JUMP( offset & 0xF) ); |
| 445 | |
| 446 | WBYTE( DestP[6] , NFIX(0) ); |
| 447 | WBYTE( DestP[7] , JUMP(8) ); |
| 448 | |
| 449 | rio_dprintk (RIO_DEBUG_BOOT, "host loadbase is 0x%x\n",p->RIOConf.HostLoadBase); |
| 450 | rio_dprintk (RIO_DEBUG_BOOT, "startup offset is 0x%x\n",offset); |
| 451 | |
| 452 | /* |
| 453 | ** Flag what is going on |
| 454 | */ |
| 455 | HostP->Flags &= ~RUN_STATE; |
| 456 | HostP->Flags |= RC_STARTUP; |
| 457 | |
| 458 | /* |
| 459 | ** Grab a copy of the current ParmMap pointer, so we |
| 460 | ** can tell when it has changed. |
| 461 | */ |
| 462 | OldParmMap = RWORD(HostP->__ParmMapR); |
| 463 | |
| 464 | rio_dprintk (RIO_DEBUG_BOOT, "Original parmmap is 0x%x\n",OldParmMap); |
| 465 | |
| 466 | /* |
| 467 | ** And start it running (I hope). |
| 468 | ** As there is nothing dodgy or obscure about the |
| 469 | ** above code, this is guaranteed to work every time. |
| 470 | */ |
| 471 | rio_dprintk (RIO_DEBUG_BOOT, "Host Type = 0x%x, Mode = 0x%x, IVec = 0x%x\n", |
| 472 | HostP->Type, HostP->Mode, HostP->Ivec); |
| 473 | |
| 474 | rio_start_card_running(HostP); |
| 475 | |
| 476 | rio_dprintk (RIO_DEBUG_BOOT, "Set control port\n"); |
| 477 | |
| 478 | /* |
| 479 | ** Now, wait for upto five seconds for the Tp to setup the parmmap |
| 480 | ** pointer: |
| 481 | */ |
| 482 | for ( wait_count=0; (wait_count<p->RIOConf.StartupTime)&& |
| 483 | (RWORD(HostP->__ParmMapR)==OldParmMap); wait_count++ ) { |
| 484 | rio_dprintk (RIO_DEBUG_BOOT, "Checkout %d, 0x%x\n",wait_count,RWORD(HostP->__ParmMapR)); |
| 485 | delay(HostP, HUNDRED_MS); |
| 486 | |
| 487 | } |
| 488 | |
| 489 | /* |
| 490 | ** If the parmmap pointer is unchanged, then the host code |
| 491 | ** has crashed & burned in a really spectacular way |
| 492 | */ |
| 493 | if ( RWORD(HostP->__ParmMapR) == OldParmMap ) { |
| 494 | rio_dprintk (RIO_DEBUG_BOOT, "parmmap 0x%x\n", RWORD(HostP->__ParmMapR)); |
| 495 | rio_dprintk (RIO_DEBUG_BOOT, "RIO Mesg Run Fail\n"); |
| 496 | |
| 497 | #define HOST_DISABLE \ |
| 498 | HostP->Flags &= ~RUN_STATE; \ |
| 499 | HostP->Flags |= RC_STUFFED; \ |
| 500 | RIOHostReset( HostP->Type, (struct DpRam *)HostP->CardP, HostP->Slot );\ |
| 501 | continue |
| 502 | |
| 503 | HOST_DISABLE; |
| 504 | } |
| 505 | |
| 506 | rio_dprintk (RIO_DEBUG_BOOT, "Running 0x%x\n", RWORD(HostP->__ParmMapR)); |
| 507 | |
| 508 | /* |
| 509 | ** Well, the board thought it was OK, and setup its parmmap |
| 510 | ** pointer. For the time being, we will pretend that this |
| 511 | ** board is running, and check out what the error flag says. |
| 512 | */ |
| 513 | |
| 514 | /* |
| 515 | ** Grab a 32 bit pointer to the parmmap structure |
| 516 | */ |
| 517 | ParmMapP = (PARM_MAP *)RIO_PTR(Cad,RWORD(HostP->__ParmMapR)); |
| 518 | rio_dprintk (RIO_DEBUG_BOOT, "ParmMapP : %x\n", (int)ParmMapP); |
| 519 | ParmMapP = (PARM_MAP *)((unsigned long)Cad + |
| 520 | (unsigned long)((RWORD((HostP->__ParmMapR))) & 0xFFFF)); |
| 521 | rio_dprintk (RIO_DEBUG_BOOT, "ParmMapP : %x\n", (int)ParmMapP); |
| 522 | |
| 523 | /* |
| 524 | ** The links entry should be 0xFFFF; we set it up |
| 525 | ** with a mask to say how many PHBs to use, and |
| 526 | ** which links to use. |
| 527 | */ |
| 528 | if ( (RWORD(ParmMapP->links) & 0xFFFF) != 0xFFFF ) { |
| 529 | rio_dprintk (RIO_DEBUG_BOOT, "RIO Mesg Run Fail %s\n", HostP->Name); |
| 530 | rio_dprintk (RIO_DEBUG_BOOT, "Links = 0x%x\n",RWORD(ParmMapP->links)); |
| 531 | HOST_DISABLE; |
| 532 | } |
| 533 | |
| 534 | WWORD(ParmMapP->links , RIO_LINK_ENABLE); |
| 535 | |
| 536 | /* |
| 537 | ** now wait for the card to set all the parmmap->XXX stuff |
| 538 | ** this is a wait of upto two seconds.... |
| 539 | */ |
| 540 | rio_dprintk (RIO_DEBUG_BOOT, "Looking for init_done - %d ticks\n",p->RIOConf.StartupTime); |
| 541 | HostP->timeout_id = 0; |
| 542 | for ( wait_count=0; (wait_count<p->RIOConf.StartupTime) && |
| 543 | !RWORD(ParmMapP->init_done); wait_count++ ) { |
| 544 | rio_dprintk (RIO_DEBUG_BOOT, "Waiting for init_done\n"); |
| 545 | delay(HostP, HUNDRED_MS); |
| 546 | } |
| 547 | rio_dprintk (RIO_DEBUG_BOOT, "OK! init_done!\n"); |
| 548 | |
| 549 | if (RWORD(ParmMapP->error) != E_NO_ERROR || |
| 550 | !RWORD(ParmMapP->init_done) ) { |
| 551 | rio_dprintk (RIO_DEBUG_BOOT, "RIO Mesg Run Fail %s\n", HostP->Name); |
| 552 | rio_dprintk (RIO_DEBUG_BOOT, "Timedout waiting for init_done\n"); |
| 553 | HOST_DISABLE; |
| 554 | } |
| 555 | |
| 556 | rio_dprintk (RIO_DEBUG_BOOT, "Got init_done\n"); |
| 557 | |
| 558 | /* |
| 559 | ** It runs! It runs! |
| 560 | */ |
| 561 | rio_dprintk (RIO_DEBUG_BOOT, "Host ID %x Running\n",HostP->UniqueNum); |
| 562 | |
| 563 | /* |
| 564 | ** set the time period between interrupts. |
| 565 | */ |
| 566 | WWORD(ParmMapP->timer, (short)p->RIOConf.Timer ); |
| 567 | |
| 568 | /* |
| 569 | ** Translate all the 16 bit pointers in the __ParmMapR into |
| 570 | ** 32 bit pointers for the driver. |
| 571 | */ |
| 572 | HostP->ParmMapP = ParmMapP; |
| 573 | HostP->PhbP = (PHB*)RIO_PTR(Cad,RWORD(ParmMapP->phb_ptr)); |
| 574 | HostP->RupP = (RUP*)RIO_PTR(Cad,RWORD(ParmMapP->rups)); |
| 575 | HostP->PhbNumP = (ushort*)RIO_PTR(Cad,RWORD(ParmMapP->phb_num_ptr)); |
| 576 | HostP->LinkStrP = (LPB*)RIO_PTR(Cad,RWORD(ParmMapP->link_str_ptr)); |
| 577 | |
| 578 | /* |
| 579 | ** point the UnixRups at the real Rups |
| 580 | */ |
| 581 | for ( RupN = 0; RupN<MAX_RUP; RupN++ ) { |
| 582 | HostP->UnixRups[RupN].RupP = &HostP->RupP[RupN]; |
| 583 | HostP->UnixRups[RupN].Id = RupN+1; |
| 584 | HostP->UnixRups[RupN].BaseSysPort = NO_PORT; |
| 585 | spin_lock_init(&HostP->UnixRups[RupN].RupLock); |
| 586 | } |
| 587 | |
| 588 | for ( RupN = 0; RupN<LINKS_PER_UNIT; RupN++ ) { |
| 589 | HostP->UnixRups[RupN+MAX_RUP].RupP = &HostP->LinkStrP[RupN].rup; |
| 590 | HostP->UnixRups[RupN+MAX_RUP].Id = 0; |
| 591 | HostP->UnixRups[RupN+MAX_RUP].BaseSysPort = NO_PORT; |
| 592 | spin_lock_init(&HostP->UnixRups[RupN+MAX_RUP].RupLock); |
| 593 | } |
| 594 | |
| 595 | /* |
| 596 | ** point the PortP->Phbs at the real Phbs |
| 597 | */ |
| 598 | for ( PortN=p->RIOFirstPortsMapped; |
| 599 | PortN<p->RIOLastPortsMapped+PORTS_PER_RTA; PortN++ ) { |
| 600 | if ( p->RIOPortp[PortN]->HostP == HostP ) { |
| 601 | struct Port *PortP = p->RIOPortp[PortN]; |
| 602 | struct PHB *PhbP; |
| 603 | /* int oldspl; */ |
| 604 | |
| 605 | if ( !PortP->Mapped ) |
| 606 | continue; |
| 607 | |
| 608 | PhbP = &HostP->PhbP[PortP->HostPort]; |
| 609 | rio_spin_lock_irqsave(&PortP->portSem, flags); |
| 610 | |
| 611 | PortP->PhbP = PhbP; |
| 612 | |
| 613 | PortP->TxAdd = (WORD *)RIO_PTR(Cad,RWORD(PhbP->tx_add)); |
| 614 | PortP->TxStart = (WORD *)RIO_PTR(Cad,RWORD(PhbP->tx_start)); |
| 615 | PortP->TxEnd = (WORD *)RIO_PTR(Cad,RWORD(PhbP->tx_end)); |
| 616 | PortP->RxRemove = (WORD *)RIO_PTR(Cad,RWORD(PhbP->rx_remove)); |
| 617 | PortP->RxStart = (WORD *)RIO_PTR(Cad,RWORD(PhbP->rx_start)); |
| 618 | PortP->RxEnd = (WORD *)RIO_PTR(Cad,RWORD(PhbP->rx_end)); |
| 619 | |
| 620 | rio_spin_unlock_irqrestore(&PortP->portSem, flags); |
| 621 | /* |
| 622 | ** point the UnixRup at the base SysPort |
| 623 | */ |
| 624 | if ( !(PortN % PORTS_PER_RTA) ) |
| 625 | HostP->UnixRups[PortP->RupNum].BaseSysPort = PortN; |
| 626 | } |
| 627 | } |
| 628 | |
| 629 | rio_dprintk (RIO_DEBUG_BOOT, "Set the card running... \n"); |
| 630 | /* |
| 631 | ** last thing - show the world that everything is in place |
| 632 | */ |
| 633 | HostP->Flags &= ~RUN_STATE; |
| 634 | HostP->Flags |= RC_RUNNING; |
| 635 | } |
| 636 | /* |
| 637 | ** MPX always uses a poller. This is actually patched into the system |
| 638 | ** configuration and called directly from each clock tick. |
| 639 | ** |
| 640 | */ |
| 641 | p->RIOPolling = 1; |
| 642 | |
| 643 | p->RIOSystemUp++; |
| 644 | |
| 645 | rio_dprintk (RIO_DEBUG_BOOT, "Done everything %x\n", HostP->Ivec); |
| 646 | func_exit (); |
| 647 | return 0; |
| 648 | } |
| 649 | |
| 650 | |
| 651 | |
| 652 | /* |
| 653 | ** Boot an RTA. If we have successfully processed this boot, then |
| 654 | ** return 1. If we havent, then return 0. |
| 655 | */ |
| 656 | int |
| 657 | RIOBootRup( p, Rup, HostP, PacketP) |
| 658 | struct rio_info * p; |
| 659 | uint Rup; |
| 660 | struct Host *HostP; |
| 661 | struct PKT *PacketP; |
| 662 | { |
| 663 | struct PktCmd *PktCmdP = (struct PktCmd *)PacketP->data; |
| 664 | struct PktCmd_M *PktReplyP; |
| 665 | struct CmdBlk *CmdBlkP; |
| 666 | uint sequence; |
| 667 | |
| 668 | #ifdef CHECK |
| 669 | CheckHost(Host); |
| 670 | CheckRup(Rup); |
| 671 | CheckHostP(HostP); |
| 672 | CheckPacketP(PacketP); |
| 673 | #endif |
| 674 | |
| 675 | /* |
| 676 | ** If we haven't been told what to boot, we can't boot it. |
| 677 | */ |
| 678 | if ( p->RIONumBootPkts == 0 ) { |
| 679 | rio_dprintk (RIO_DEBUG_BOOT, "No RTA code to download yet\n"); |
| 680 | return 0; |
| 681 | } |
| 682 | |
| 683 | /* rio_dprint(RIO_DEBUG_BOOT, NULL,DBG_BOOT,"Incoming command packet\n"); */ |
| 684 | /* ShowPacket( DBG_BOOT, PacketP ); */ |
| 685 | |
| 686 | /* |
| 687 | ** Special case of boot completed - if we get one of these then we |
| 688 | ** don't need a command block. For all other cases we do, so handle |
| 689 | ** this first and then get a command block, then handle every other |
| 690 | ** case, relinquishing the command block if disaster strikes! |
| 691 | */ |
| 692 | if ( (RBYTE(PacketP->len) & PKT_CMD_BIT) && |
| 693 | (RBYTE(PktCmdP->Command)==BOOT_COMPLETED) ) |
| 694 | return RIOBootComplete(p, HostP, Rup, PktCmdP ); |
| 695 | |
| 696 | /* |
| 697 | ** try to unhook a command block from the command free list. |
| 698 | */ |
| 699 | if ( !(CmdBlkP = RIOGetCmdBlk()) ) { |
| 700 | rio_dprintk (RIO_DEBUG_BOOT, "No command blocks to boot RTA! come back later.\n"); |
| 701 | return 0; |
| 702 | } |
| 703 | |
| 704 | /* |
| 705 | ** Fill in the default info on the command block |
| 706 | */ |
| 707 | CmdBlkP->Packet.dest_unit = Rup < (ushort)MAX_RUP ? Rup : 0; |
| 708 | CmdBlkP->Packet.dest_port = BOOT_RUP; |
| 709 | CmdBlkP->Packet.src_unit = 0; |
| 710 | CmdBlkP->Packet.src_port = BOOT_RUP; |
| 711 | |
| 712 | CmdBlkP->PreFuncP = CmdBlkP->PostFuncP = NULL; |
| 713 | PktReplyP = (struct PktCmd_M *)CmdBlkP->Packet.data; |
| 714 | |
| 715 | /* |
| 716 | ** process COMMANDS on the boot rup! |
| 717 | */ |
| 718 | if ( RBYTE(PacketP->len) & PKT_CMD_BIT ) { |
| 719 | /* |
| 720 | ** We only expect one type of command - a BOOT_REQUEST! |
| 721 | */ |
| 722 | if ( RBYTE(PktCmdP->Command) != BOOT_REQUEST ) { |
| 723 | rio_dprintk (RIO_DEBUG_BOOT, "Unexpected command %d on BOOT RUP %d of host %d\n", |
| 724 | PktCmdP->Command,Rup,HostP-p->RIOHosts); |
| 725 | ShowPacket( DBG_BOOT, PacketP ); |
| 726 | RIOFreeCmdBlk( CmdBlkP ); |
| 727 | return 1; |
| 728 | } |
| 729 | |
| 730 | /* |
| 731 | ** Build a Boot Sequence command block |
| 732 | ** |
| 733 | ** 02.03.1999 ARG - ESIL 0820 fix |
| 734 | ** We no longer need to use "Boot Mode", we'll always allow |
| 735 | ** boot requests - the boot will not complete if the device |
| 736 | ** appears in the bindings table. |
| 737 | ** So, this conditional is not required ... |
| 738 | ** |
| 739 | if (p->RIOBootMode == RC_BOOT_NONE) |
| 740 | ** |
| 741 | ** If the system is in slave mode, and a boot request is |
| 742 | ** received, set command to BOOT_ABORT so that the boot |
| 743 | ** will not complete. |
| 744 | ** |
| 745 | PktReplyP->Command = BOOT_ABORT; |
| 746 | else |
| 747 | ** |
| 748 | ** We'll just (always) set the command field in packet reply |
| 749 | ** to allow an attempted boot sequence : |
| 750 | */ |
| 751 | PktReplyP->Command = BOOT_SEQUENCE; |
| 752 | |
| 753 | PktReplyP->BootSequence.NumPackets = p->RIONumBootPkts; |
| 754 | PktReplyP->BootSequence.LoadBase = p->RIOConf.RtaLoadBase; |
| 755 | PktReplyP->BootSequence.CodeSize = p->RIOBootCount; |
| 756 | |
| 757 | CmdBlkP->Packet.len = BOOT_SEQUENCE_LEN | PKT_CMD_BIT; |
| 758 | |
| 759 | bcopy("BOOT",(void *)&CmdBlkP->Packet.data[BOOT_SEQUENCE_LEN],4); |
| 760 | |
| 761 | rio_dprintk (RIO_DEBUG_BOOT, "Boot RTA on Host %d Rup %d - %d (0x%x) packets to 0x%x\n", |
| 762 | HostP-p->RIOHosts, Rup, p->RIONumBootPkts, p->RIONumBootPkts, |
| 763 | p->RIOConf.RtaLoadBase); |
| 764 | |
| 765 | /* |
| 766 | ** If this host is in slave mode, send the RTA an invalid boot |
| 767 | ** sequence command block to force it to kill the boot. We wait |
| 768 | ** for half a second before sending this packet to prevent the RTA |
| 769 | ** attempting to boot too often. The master host should then grab |
| 770 | ** the RTA and make it its own. |
| 771 | */ |
| 772 | p->RIOBooting++; |
| 773 | RIOQueueCmdBlk( HostP, Rup, CmdBlkP ); |
| 774 | return 1; |
| 775 | } |
| 776 | |
| 777 | /* |
| 778 | ** It is a request for boot data. |
| 779 | */ |
| 780 | sequence = RWORD(PktCmdP->Sequence); |
| 781 | |
| 782 | rio_dprintk (RIO_DEBUG_BOOT, "Boot block %d on Host %d Rup%d\n",sequence,HostP-p->RIOHosts,Rup); |
| 783 | |
| 784 | if ( sequence >= p->RIONumBootPkts ) { |
| 785 | rio_dprintk (RIO_DEBUG_BOOT, "Got a request for packet %d, max is %d\n", sequence, |
| 786 | p->RIONumBootPkts); |
| 787 | ShowPacket( DBG_BOOT, PacketP ); |
| 788 | } |
| 789 | |
| 790 | PktReplyP->Sequence = sequence; |
| 791 | |
| 792 | bcopy( p->RIOBootPackets[ p->RIONumBootPkts - sequence - 1 ], |
| 793 | PktReplyP->BootData, RTA_BOOT_DATA_SIZE ); |
| 794 | |
| 795 | CmdBlkP->Packet.len = PKT_MAX_DATA_LEN; |
| 796 | ShowPacket( DBG_BOOT, &CmdBlkP->Packet ); |
| 797 | RIOQueueCmdBlk( HostP, Rup, CmdBlkP ); |
| 798 | return 1; |
| 799 | } |
| 800 | |
| 801 | /* |
| 802 | ** This function is called when an RTA been booted. |
| 803 | ** If booted by a host, HostP->HostUniqueNum is the booting host. |
| 804 | ** If booted by an RTA, HostP->Mapping[Rup].RtaUniqueNum is the booting RTA. |
| 805 | ** RtaUniq is the booted RTA. |
| 806 | */ |
| 807 | static int RIOBootComplete( struct rio_info *p, struct Host *HostP, uint Rup, struct PktCmd *PktCmdP ) |
| 808 | { |
| 809 | struct Map *MapP = NULL; |
| 810 | struct Map *MapP2 = NULL; |
| 811 | int Flag; |
| 812 | int found; |
| 813 | int host, rta; |
| 814 | int EmptySlot = -1; |
| 815 | int entry, entry2; |
| 816 | char *MyType, *MyName; |
| 817 | uint MyLink; |
| 818 | ushort RtaType; |
| 819 | uint RtaUniq = (RBYTE(PktCmdP->UniqNum[0])) + |
| 820 | (RBYTE(PktCmdP->UniqNum[1]) << 8) + |
| 821 | (RBYTE(PktCmdP->UniqNum[2]) << 16) + |
| 822 | (RBYTE(PktCmdP->UniqNum[3]) << 24); |
| 823 | |
| 824 | /* Was RIOBooting-- . That's bad. If an RTA sends two of them, the |
| 825 | driver will never think that the RTA has booted... -- REW */ |
| 826 | p->RIOBooting = 0; |
| 827 | |
| 828 | rio_dprintk (RIO_DEBUG_BOOT, "RTA Boot completed - BootInProgress now %d\n", p->RIOBooting); |
| 829 | |
| 830 | /* |
| 831 | ** Determine type of unit (16/8 port RTA). |
| 832 | */ |
| 833 | RtaType = GetUnitType(RtaUniq); |
| 834 | if ( Rup >= (ushort)MAX_RUP ) { |
| 835 | rio_dprintk (RIO_DEBUG_BOOT, "RIO: Host %s has booted an RTA(%d) on link %c\n", |
| 836 | HostP->Name, 8 * RtaType, RBYTE(PktCmdP->LinkNum)+'A'); |
| 837 | } else { |
| 838 | rio_dprintk (RIO_DEBUG_BOOT, "RIO: RTA %s has booted an RTA(%d) on link %c\n", |
| 839 | HostP->Mapping[Rup].Name, 8 * RtaType, |
| 840 | RBYTE(PktCmdP->LinkNum)+'A'); |
| 841 | } |
| 842 | |
| 843 | rio_dprintk (RIO_DEBUG_BOOT, "UniqNum is 0x%x\n",RtaUniq); |
| 844 | |
| 845 | if ( ( RtaUniq == 0x00000000 ) || ( RtaUniq == 0xffffffff ) ) |
| 846 | { |
| 847 | rio_dprintk (RIO_DEBUG_BOOT, "Illegal RTA Uniq Number\n"); |
| 848 | return TRUE; |
| 849 | } |
| 850 | |
| 851 | /* |
| 852 | ** If this RTA has just booted an RTA which doesn't belong to this |
| 853 | ** system, or the system is in slave mode, do not attempt to create |
| 854 | ** a new table entry for it. |
| 855 | */ |
| 856 | if (!RIOBootOk(p, HostP, RtaUniq)) |
| 857 | { |
| 858 | MyLink = RBYTE(PktCmdP->LinkNum); |
| 859 | if (Rup < (ushort) MAX_RUP) |
| 860 | { |
| 861 | /* |
| 862 | ** RtaUniq was clone booted (by this RTA). Instruct this RTA |
| 863 | ** to hold off further attempts to boot on this link for 30 |
| 864 | ** seconds. |
| 865 | */ |
| 866 | if (RIOSuspendBootRta(HostP, HostP->Mapping[Rup].ID, MyLink)) |
| 867 | { |
| 868 | rio_dprintk (RIO_DEBUG_BOOT, "RTA failed to suspend booting on link %c\n", |
| 869 | 'A' + MyLink); |
| 870 | } |
| 871 | } |
| 872 | else |
| 873 | { |
| 874 | /* |
| 875 | ** RtaUniq was booted by this host. Set the booting link |
| 876 | ** to hold off for 30 seconds to give another unit a |
| 877 | ** chance to boot it. |
| 878 | */ |
| 879 | WWORD(HostP->LinkStrP[MyLink].WaitNoBoot, 30); |
| 880 | } |
| 881 | rio_dprintk (RIO_DEBUG_BOOT, "RTA %x not owned - suspend booting down link %c on unit %x\n", |
| 882 | RtaUniq, 'A' + MyLink, HostP->Mapping[Rup].RtaUniqueNum); |
| 883 | return TRUE; |
| 884 | } |
| 885 | |
| 886 | /* |
| 887 | ** Check for a SLOT_IN_USE entry for this RTA attached to the |
| 888 | ** current host card in the driver table. |
| 889 | ** |
| 890 | ** If it exists, make a note that we have booted it. Other parts of |
| 891 | ** the driver are interested in this information at a later date, |
| 892 | ** in particular when the booting RTA asks for an ID for this unit, |
| 893 | ** we must have set the BOOTED flag, and the NEWBOOT flag is used |
| 894 | ** to force an open on any ports that where previously open on this |
| 895 | ** unit. |
| 896 | */ |
| 897 | for ( entry=0; entry<MAX_RUP; entry++ ) |
| 898 | { |
| 899 | uint sysport; |
| 900 | |
| 901 | if ((HostP->Mapping[entry].Flags & SLOT_IN_USE) && |
| 902 | (HostP->Mapping[entry].RtaUniqueNum==RtaUniq)) |
| 903 | { |
| 904 | HostP->Mapping[entry].Flags |= RTA_BOOTED|RTA_NEWBOOT; |
Olaf Hering | 44456d3 | 2005-07-27 11:45:17 -0700 | [diff] [blame] | 905 | #ifdef NEED_TO_FIX |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 906 | RIO_SV_BROADCAST(HostP->svFlags[entry]); |
| 907 | #endif |
| 908 | if ( (sysport=HostP->Mapping[entry].SysPort) != NO_PORT ) |
| 909 | { |
| 910 | if ( sysport < p->RIOFirstPortsBooted ) |
| 911 | p->RIOFirstPortsBooted = sysport; |
| 912 | if ( sysport > p->RIOLastPortsBooted ) |
| 913 | p->RIOLastPortsBooted = sysport; |
| 914 | /* |
| 915 | ** For a 16 port RTA, check the second bank of 8 ports |
| 916 | */ |
| 917 | if (RtaType == TYPE_RTA16) |
| 918 | { |
| 919 | entry2 = HostP->Mapping[entry].ID2 - 1; |
| 920 | HostP->Mapping[entry2].Flags |= RTA_BOOTED|RTA_NEWBOOT; |
Olaf Hering | 44456d3 | 2005-07-27 11:45:17 -0700 | [diff] [blame] | 921 | #ifdef NEED_TO_FIX |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 922 | RIO_SV_BROADCAST(HostP->svFlags[entry2]); |
| 923 | #endif |
| 924 | sysport = HostP->Mapping[entry2].SysPort; |
| 925 | if ( sysport < p->RIOFirstPortsBooted ) |
| 926 | p->RIOFirstPortsBooted = sysport; |
| 927 | if ( sysport > p->RIOLastPortsBooted ) |
| 928 | p->RIOLastPortsBooted = sysport; |
| 929 | } |
| 930 | } |
| 931 | if (RtaType == TYPE_RTA16) { |
| 932 | rio_dprintk (RIO_DEBUG_BOOT, "RTA will be given IDs %d+%d\n", |
| 933 | entry+1, entry2+1); |
| 934 | } else { |
| 935 | rio_dprintk (RIO_DEBUG_BOOT, "RTA will be given ID %d\n",entry+1); |
| 936 | } |
| 937 | return TRUE; |
| 938 | } |
| 939 | } |
| 940 | |
| 941 | rio_dprintk (RIO_DEBUG_BOOT, "RTA not configured for this host\n"); |
| 942 | |
| 943 | if ( Rup >= (ushort)MAX_RUP ) |
| 944 | { |
| 945 | /* |
| 946 | ** It was a host that did the booting |
| 947 | */ |
| 948 | MyType = "Host"; |
| 949 | MyName = HostP->Name; |
| 950 | } |
| 951 | else |
| 952 | { |
| 953 | /* |
| 954 | ** It was an RTA that did the booting |
| 955 | */ |
| 956 | MyType = "RTA"; |
| 957 | MyName = HostP->Mapping[Rup].Name; |
| 958 | } |
| 959 | #ifdef CHECK |
| 960 | CheckString(MyType); |
| 961 | CheckString(MyName); |
| 962 | #endif |
| 963 | |
| 964 | MyLink = RBYTE(PktCmdP->LinkNum); |
| 965 | |
| 966 | /* |
| 967 | ** There is no SLOT_IN_USE entry for this RTA attached to the current |
| 968 | ** host card in the driver table. |
| 969 | ** |
| 970 | ** Check for a SLOT_TENTATIVE entry for this RTA attached to the |
| 971 | ** current host card in the driver table. |
| 972 | ** |
| 973 | ** If we find one, then we re-use that slot. |
| 974 | */ |
| 975 | for ( entry=0; entry<MAX_RUP; entry++ ) |
| 976 | { |
| 977 | if ( (HostP->Mapping[entry].Flags & SLOT_TENTATIVE) && |
| 978 | (HostP->Mapping[entry].RtaUniqueNum == RtaUniq) ) |
| 979 | { |
| 980 | if (RtaType == TYPE_RTA16) |
| 981 | { |
| 982 | entry2 = HostP->Mapping[entry].ID2 - 1; |
| 983 | if ( (HostP->Mapping[entry2].Flags & SLOT_TENTATIVE) && |
| 984 | (HostP->Mapping[entry2].RtaUniqueNum == RtaUniq) ) |
| 985 | rio_dprintk (RIO_DEBUG_BOOT, "Found previous tentative slots (%d+%d)\n", |
| 986 | entry, entry2); |
| 987 | else |
| 988 | continue; |
| 989 | } |
| 990 | else |
| 991 | rio_dprintk (RIO_DEBUG_BOOT, "Found previous tentative slot (%d)\n",entry); |
| 992 | if (! p->RIONoMessage) |
| 993 | cprintf("RTA connected to %s '%s' (%c) not configured.\n",MyType,MyName,MyLink+'A'); |
| 994 | return TRUE; |
| 995 | } |
| 996 | } |
| 997 | |
| 998 | /* |
| 999 | ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA |
| 1000 | ** attached to the current host card in the driver table. |
| 1001 | ** |
| 1002 | ** Check if there is a SLOT_IN_USE or SLOT_TENTATIVE entry on another |
| 1003 | ** host for this RTA in the driver table. |
| 1004 | ** |
| 1005 | ** For a SLOT_IN_USE entry on another host, we need to delete the RTA |
| 1006 | ** entry from the other host and add it to this host (using some of |
| 1007 | ** the functions from table.c which do this). |
| 1008 | ** For a SLOT_TENTATIVE entry on another host, we must cope with the |
| 1009 | ** following scenario: |
| 1010 | ** |
| 1011 | ** + Plug 8 port RTA into host A. (This creates SLOT_TENTATIVE entry |
| 1012 | ** in table) |
| 1013 | ** + Unplug RTA and plug into host B. (We now have 2 SLOT_TENTATIVE |
| 1014 | ** entries) |
| 1015 | ** + Configure RTA on host B. (This slot now becomes SLOT_IN_USE) |
| 1016 | ** + Unplug RTA and plug back into host A. |
| 1017 | ** + Configure RTA on host A. We now have the same RTA configured |
| 1018 | ** with different ports on two different hosts. |
| 1019 | */ |
| 1020 | rio_dprintk (RIO_DEBUG_BOOT, "Have we seen RTA %x before?\n", RtaUniq ); |
| 1021 | found = 0; |
| 1022 | Flag = 0; /* Convince the compiler this variable is initialized */ |
| 1023 | for ( host = 0; !found && (host < p->RIONumHosts); host++ ) |
| 1024 | { |
| 1025 | for ( rta=0; rta<MAX_RUP; rta++ ) |
| 1026 | { |
| 1027 | if ((p->RIOHosts[host].Mapping[rta].Flags & |
| 1028 | (SLOT_IN_USE | SLOT_TENTATIVE)) && |
| 1029 | (p->RIOHosts[host].Mapping[rta].RtaUniqueNum==RtaUniq)) |
| 1030 | { |
| 1031 | Flag = p->RIOHosts[host].Mapping[rta].Flags; |
| 1032 | MapP = &p->RIOHosts[host].Mapping[rta]; |
| 1033 | if (RtaType == TYPE_RTA16) |
| 1034 | { |
| 1035 | MapP2 = &p->RIOHosts[host].Mapping[MapP->ID2 - 1]; |
| 1036 | rio_dprintk (RIO_DEBUG_BOOT, "This RTA is units %d+%d from host %s\n", |
| 1037 | rta+1, MapP->ID2, p->RIOHosts[host].Name); |
| 1038 | } |
| 1039 | else |
| 1040 | rio_dprintk (RIO_DEBUG_BOOT, "This RTA is unit %d from host %s\n", |
| 1041 | rta+1, p->RIOHosts[host].Name); |
| 1042 | found = 1; |
| 1043 | break; |
| 1044 | } |
| 1045 | } |
| 1046 | } |
| 1047 | |
| 1048 | /* |
| 1049 | ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA |
| 1050 | ** attached to the current host card in the driver table. |
| 1051 | ** |
| 1052 | ** If we have not found a SLOT_IN_USE or SLOT_TENTATIVE entry on |
| 1053 | ** another host for this RTA in the driver table... |
| 1054 | ** |
| 1055 | ** Check for a SLOT_IN_USE entry for this RTA in the config table. |
| 1056 | */ |
| 1057 | if ( !MapP ) |
| 1058 | { |
| 1059 | rio_dprintk (RIO_DEBUG_BOOT, "Look for RTA %x in RIOSavedTable\n",RtaUniq); |
| 1060 | for ( rta=0; rta < TOTAL_MAP_ENTRIES; rta++ ) |
| 1061 | { |
| 1062 | rio_dprintk (RIO_DEBUG_BOOT, "Check table entry %d (%x)", |
| 1063 | rta, |
| 1064 | p->RIOSavedTable[rta].RtaUniqueNum); |
| 1065 | |
| 1066 | if ( (p->RIOSavedTable[rta].Flags & SLOT_IN_USE) && |
| 1067 | (p->RIOSavedTable[rta].RtaUniqueNum == RtaUniq) ) |
| 1068 | { |
| 1069 | MapP = &p->RIOSavedTable[rta]; |
| 1070 | Flag = p->RIOSavedTable[rta].Flags; |
| 1071 | if (RtaType == TYPE_RTA16) |
| 1072 | { |
| 1073 | for (entry2 = rta + 1; entry2 < TOTAL_MAP_ENTRIES; |
| 1074 | entry2++) |
| 1075 | { |
| 1076 | if (p->RIOSavedTable[entry2].RtaUniqueNum == RtaUniq) |
| 1077 | break; |
| 1078 | } |
| 1079 | MapP2 = &p->RIOSavedTable[entry2]; |
| 1080 | rio_dprintk (RIO_DEBUG_BOOT, "This RTA is from table entries %d+%d\n", |
| 1081 | rta, entry2); |
| 1082 | } |
| 1083 | else |
| 1084 | rio_dprintk (RIO_DEBUG_BOOT, "This RTA is from table entry %d\n", rta); |
| 1085 | break; |
| 1086 | } |
| 1087 | } |
| 1088 | } |
| 1089 | |
| 1090 | /* |
| 1091 | ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA |
| 1092 | ** attached to the current host card in the driver table. |
| 1093 | ** |
| 1094 | ** We may have found a SLOT_IN_USE entry on another host for this |
| 1095 | ** RTA in the config table, or a SLOT_IN_USE or SLOT_TENTATIVE entry |
| 1096 | ** on another host for this RTA in the driver table. |
| 1097 | ** |
| 1098 | ** Check the driver table for room to fit this newly discovered RTA. |
| 1099 | ** RIOFindFreeID() first looks for free slots and if it does not |
| 1100 | ** find any free slots it will then attempt to oust any |
| 1101 | ** tentative entry in the table. |
| 1102 | */ |
| 1103 | EmptySlot = 1; |
| 1104 | if (RtaType == TYPE_RTA16) |
| 1105 | { |
| 1106 | if (RIOFindFreeID(p, HostP, &entry, &entry2) == 0) |
| 1107 | { |
| 1108 | RIODefaultName(p, HostP, entry); |
| 1109 | FillSlot(entry, entry2, RtaUniq, HostP); |
| 1110 | EmptySlot = 0; |
| 1111 | } |
| 1112 | } |
| 1113 | else |
| 1114 | { |
| 1115 | if (RIOFindFreeID(p, HostP, &entry, NULL) == 0) |
| 1116 | { |
| 1117 | RIODefaultName(p, HostP, entry); |
| 1118 | FillSlot(entry, 0, RtaUniq, HostP); |
| 1119 | EmptySlot = 0; |
| 1120 | } |
| 1121 | } |
| 1122 | |
| 1123 | /* |
| 1124 | ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA |
| 1125 | ** attached to the current host card in the driver table. |
| 1126 | ** |
| 1127 | ** If we found a SLOT_IN_USE entry on another host for this |
| 1128 | ** RTA in the config or driver table, and there are enough free |
| 1129 | ** slots in the driver table, then we need to move it over and |
| 1130 | ** delete it from the other host. |
| 1131 | ** If we found a SLOT_TENTATIVE entry on another host for this |
| 1132 | ** RTA in the driver table, just delete the other host entry. |
| 1133 | */ |
| 1134 | if (EmptySlot == 0) |
| 1135 | { |
| 1136 | if ( MapP ) |
| 1137 | { |
| 1138 | if (Flag & SLOT_IN_USE) |
| 1139 | { |
| 1140 | rio_dprintk (RIO_DEBUG_BOOT, |
| 1141 | "This RTA configured on another host - move entry to current host (1)\n"); |
| 1142 | HostP->Mapping[entry].SysPort = MapP->SysPort; |
| 1143 | CCOPY( MapP->Name, HostP->Mapping[entry].Name, MAX_NAME_LEN ); |
| 1144 | HostP->Mapping[entry].Flags = |
| 1145 | SLOT_IN_USE | RTA_BOOTED | RTA_NEWBOOT; |
Olaf Hering | 44456d3 | 2005-07-27 11:45:17 -0700 | [diff] [blame] | 1146 | #ifdef NEED_TO_FIX |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1147 | RIO_SV_BROADCAST(HostP->svFlags[entry]); |
| 1148 | #endif |
| 1149 | RIOReMapPorts( p, HostP, &HostP->Mapping[entry] ); |
| 1150 | if ( HostP->Mapping[entry].SysPort < p->RIOFirstPortsBooted ) |
| 1151 | p->RIOFirstPortsBooted = HostP->Mapping[entry].SysPort; |
| 1152 | if ( HostP->Mapping[entry].SysPort > p->RIOLastPortsBooted ) |
| 1153 | p->RIOLastPortsBooted = HostP->Mapping[entry].SysPort; |
| 1154 | rio_dprintk (RIO_DEBUG_BOOT, "SysPort %d, Name %s\n",(int)MapP->SysPort,MapP->Name); |
| 1155 | } |
| 1156 | else |
| 1157 | { |
| 1158 | rio_dprintk (RIO_DEBUG_BOOT, |
| 1159 | "This RTA has a tentative entry on another host - delete that entry (1)\n"); |
| 1160 | HostP->Mapping[entry].Flags = |
| 1161 | SLOT_TENTATIVE | RTA_BOOTED | RTA_NEWBOOT; |
Olaf Hering | 44456d3 | 2005-07-27 11:45:17 -0700 | [diff] [blame] | 1162 | #ifdef NEED_TO_FIX |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1163 | RIO_SV_BROADCAST(HostP->svFlags[entry]); |
| 1164 | #endif |
| 1165 | } |
| 1166 | if (RtaType == TYPE_RTA16) |
| 1167 | { |
| 1168 | if (Flag & SLOT_IN_USE) |
| 1169 | { |
| 1170 | HostP->Mapping[entry2].Flags = SLOT_IN_USE | |
| 1171 | RTA_BOOTED | RTA_NEWBOOT | RTA16_SECOND_SLOT; |
Olaf Hering | 44456d3 | 2005-07-27 11:45:17 -0700 | [diff] [blame] | 1172 | #ifdef NEED_TO_FIX |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1173 | RIO_SV_BROADCAST(HostP->svFlags[entry2]); |
| 1174 | #endif |
| 1175 | HostP->Mapping[entry2].SysPort = MapP2->SysPort; |
| 1176 | /* |
| 1177 | ** Map second block of ttys for 16 port RTA |
| 1178 | */ |
| 1179 | RIOReMapPorts( p, HostP, &HostP->Mapping[entry2] ); |
| 1180 | if (HostP->Mapping[entry2].SysPort < p->RIOFirstPortsBooted) |
| 1181 | p->RIOFirstPortsBooted = HostP->Mapping[entry2].SysPort; |
| 1182 | if (HostP->Mapping[entry2].SysPort > p->RIOLastPortsBooted) |
| 1183 | p->RIOLastPortsBooted = HostP->Mapping[entry2].SysPort; |
| 1184 | rio_dprintk (RIO_DEBUG_BOOT, "SysPort %d, Name %s\n", |
| 1185 | (int)HostP->Mapping[entry2].SysPort, |
| 1186 | HostP->Mapping[entry].Name); |
| 1187 | } |
| 1188 | else |
| 1189 | HostP->Mapping[entry2].Flags = SLOT_TENTATIVE | |
| 1190 | RTA_BOOTED | RTA_NEWBOOT | RTA16_SECOND_SLOT; |
Olaf Hering | 44456d3 | 2005-07-27 11:45:17 -0700 | [diff] [blame] | 1191 | #ifdef NEED_TO_FIX |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1192 | RIO_SV_BROADCAST(HostP->svFlags[entry2]); |
| 1193 | #endif |
| 1194 | bzero( (caddr_t)MapP2, sizeof(struct Map) ); |
| 1195 | } |
| 1196 | bzero( (caddr_t)MapP, sizeof(struct Map) ); |
| 1197 | if (! p->RIONoMessage) |
| 1198 | cprintf("An orphaned RTA has been adopted by %s '%s' (%c).\n",MyType,MyName,MyLink+'A'); |
| 1199 | } |
| 1200 | else if (! p->RIONoMessage) |
| 1201 | cprintf("RTA connected to %s '%s' (%c) not configured.\n",MyType,MyName,MyLink+'A'); |
| 1202 | RIOSetChange(p); |
| 1203 | return TRUE; |
| 1204 | } |
| 1205 | |
| 1206 | /* |
| 1207 | ** There is no room in the driver table to make an entry for the |
| 1208 | ** booted RTA. Keep a note of its Uniq Num in the overflow table, |
| 1209 | ** so we can ignore it's ID requests. |
| 1210 | */ |
| 1211 | if (! p->RIONoMessage) |
| 1212 | cprintf("The RTA connected to %s '%s' (%c) cannot be configured. You cannot configure more than 128 ports to one host card.\n",MyType,MyName,MyLink+'A'); |
| 1213 | for ( entry=0; entry<HostP->NumExtraBooted; entry++ ) |
| 1214 | { |
| 1215 | if ( HostP->ExtraUnits[entry] == RtaUniq ) |
| 1216 | { |
| 1217 | /* |
| 1218 | ** already got it! |
| 1219 | */ |
| 1220 | return TRUE; |
| 1221 | } |
| 1222 | } |
| 1223 | /* |
| 1224 | ** If there is room, add the unit to the list of extras |
| 1225 | */ |
| 1226 | if ( HostP->NumExtraBooted < MAX_EXTRA_UNITS ) |
| 1227 | HostP->ExtraUnits[HostP->NumExtraBooted++] = RtaUniq; |
| 1228 | return TRUE; |
| 1229 | } |
| 1230 | |
| 1231 | |
| 1232 | /* |
| 1233 | ** If the RTA or its host appears in the RIOBindTab[] structure then |
| 1234 | ** we mustn't boot the RTA and should return FALSE. |
| 1235 | ** This operation is slightly different from the other drivers for RIO |
| 1236 | ** in that this is designed to work with the new utilities |
| 1237 | ** not config.rio and is FAR SIMPLER. |
| 1238 | ** We no longer support the RIOBootMode variable. It is all done from the |
| 1239 | ** "boot/noboot" field in the rio.cf file. |
| 1240 | */ |
| 1241 | int |
| 1242 | RIOBootOk(p, HostP, RtaUniq) |
| 1243 | struct rio_info * p; |
| 1244 | struct Host * HostP; |
| 1245 | ulong RtaUniq; |
| 1246 | { |
| 1247 | int Entry; |
| 1248 | uint HostUniq = HostP->UniqueNum; |
| 1249 | |
| 1250 | /* |
| 1251 | ** Search bindings table for RTA or its parent. |
| 1252 | ** If it exists, return 0, else 1. |
| 1253 | */ |
| 1254 | for (Entry = 0; |
| 1255 | ( Entry < MAX_RTA_BINDINGS ) && ( p->RIOBindTab[Entry] != 0 ); |
| 1256 | Entry++) |
| 1257 | { |
| 1258 | if ( (p->RIOBindTab[Entry] == HostUniq) || |
| 1259 | (p->RIOBindTab[Entry] == RtaUniq) ) |
| 1260 | return 0; |
| 1261 | } |
| 1262 | return 1; |
| 1263 | } |
| 1264 | |
| 1265 | /* |
| 1266 | ** Make an empty slot tentative. If this is a 16 port RTA, make both |
| 1267 | ** slots tentative, and the second one RTA_SECOND_SLOT as well. |
| 1268 | */ |
| 1269 | |
| 1270 | void |
| 1271 | FillSlot(entry, entry2, RtaUniq, HostP) |
| 1272 | int entry; |
| 1273 | int entry2; |
| 1274 | uint RtaUniq; |
| 1275 | struct Host *HostP; |
| 1276 | { |
| 1277 | int link; |
| 1278 | |
| 1279 | rio_dprintk (RIO_DEBUG_BOOT, "FillSlot(%d, %d, 0x%x...)\n", entry, entry2, RtaUniq); |
| 1280 | |
| 1281 | HostP->Mapping[entry].Flags = (RTA_BOOTED | RTA_NEWBOOT | SLOT_TENTATIVE); |
| 1282 | HostP->Mapping[entry].SysPort = NO_PORT; |
| 1283 | HostP->Mapping[entry].RtaUniqueNum = RtaUniq; |
| 1284 | HostP->Mapping[entry].HostUniqueNum = HostP->UniqueNum; |
| 1285 | HostP->Mapping[entry].ID = entry + 1; |
| 1286 | HostP->Mapping[entry].ID2 = 0; |
| 1287 | if (entry2) { |
| 1288 | HostP->Mapping[entry2].Flags = (RTA_BOOTED | RTA_NEWBOOT | |
| 1289 | SLOT_TENTATIVE | RTA16_SECOND_SLOT); |
| 1290 | HostP->Mapping[entry2].SysPort = NO_PORT; |
| 1291 | HostP->Mapping[entry2].RtaUniqueNum = RtaUniq; |
| 1292 | HostP->Mapping[entry2].HostUniqueNum = HostP->UniqueNum; |
| 1293 | HostP->Mapping[entry2].Name[0] = '\0'; |
| 1294 | HostP->Mapping[entry2].ID = entry2 + 1; |
| 1295 | HostP->Mapping[entry2].ID2 = entry + 1; |
| 1296 | HostP->Mapping[entry].ID2 = entry2 + 1; |
| 1297 | } |
| 1298 | /* |
| 1299 | ** Must set these up, so that utilities show |
| 1300 | ** topology of 16 port RTAs correctly |
| 1301 | */ |
| 1302 | for ( link=0; link<LINKS_PER_UNIT; link++ ) { |
| 1303 | HostP->Mapping[entry].Topology[link].Unit = ROUTE_DISCONNECT; |
| 1304 | HostP->Mapping[entry].Topology[link].Link = NO_LINK; |
| 1305 | if (entry2) { |
| 1306 | HostP->Mapping[entry2].Topology[link].Unit = ROUTE_DISCONNECT; |
| 1307 | HostP->Mapping[entry2].Topology[link].Link = NO_LINK; |
| 1308 | } |
| 1309 | } |
| 1310 | } |
| 1311 | |
| 1312 | #if 0 |
| 1313 | /* |
| 1314 | Function: This function is to disable the disk interrupt |
| 1315 | Returns : Nothing |
| 1316 | */ |
| 1317 | void |
| 1318 | disable_interrupt(vector) |
| 1319 | int vector; |
| 1320 | { |
| 1321 | int ps; |
| 1322 | int val; |
| 1323 | |
| 1324 | disable(ps); |
| 1325 | if (vector > 40) { |
| 1326 | val = 1 << (vector - 40); |
| 1327 | __outb(S8259+1, __inb(S8259+1) | val); |
| 1328 | } |
| 1329 | else { |
| 1330 | val = 1 << (vector - 32); |
| 1331 | __outb(M8259+1, __inb(M8259+1) | val); |
| 1332 | } |
| 1333 | restore(ps); |
| 1334 | } |
| 1335 | |
| 1336 | /* |
| 1337 | Function: This function is to enable the disk interrupt |
| 1338 | Returns : Nothing |
| 1339 | */ |
| 1340 | void |
| 1341 | enable_interrupt(vector) |
| 1342 | int vector; |
| 1343 | { |
| 1344 | int ps; |
| 1345 | int val; |
| 1346 | |
| 1347 | disable(ps); |
| 1348 | if (vector > 40) { |
| 1349 | val = 1 << (vector - 40); |
| 1350 | val = ~val; |
| 1351 | __outb(S8259+1, __inb(S8259+1) & val); |
| 1352 | } |
| 1353 | else { |
| 1354 | val = 1 << (vector - 32); |
| 1355 | val = ~val; |
| 1356 | __outb(M8259+1, __inb(M8259+1) & val); |
| 1357 | } |
| 1358 | restore(ps); |
| 1359 | } |
| 1360 | #endif |