Thomas Gleixner | 52a65ff | 2018-03-14 22:15:19 +0100 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
Thomas Gleixner | f3f59fb | 2018-03-20 14:17:04 +0100 | [diff] [blame] | 2 | // Copyright (C) 2016, Linaro Ltd - Daniel Lezcano <daniel.lezcano@linaro.org> |
Daniel Lezcano | 6aed82d | 2019-05-27 22:55:19 +0200 | [diff] [blame] | 3 | #define pr_fmt(fmt) "irq_timings: " fmt |
Thomas Gleixner | f3f59fb | 2018-03-20 14:17:04 +0100 | [diff] [blame] | 4 | |
Daniel Lezcano | e1c9214 | 2017-06-23 16:11:08 +0200 | [diff] [blame] | 5 | #include <linux/kernel.h> |
Daniel Lezcano | b2d3d61 | 2017-06-23 16:11:07 +0200 | [diff] [blame] | 6 | #include <linux/percpu.h> |
Daniel Lezcano | e1c9214 | 2017-06-23 16:11:08 +0200 | [diff] [blame] | 7 | #include <linux/slab.h> |
Daniel Lezcano | b2d3d61 | 2017-06-23 16:11:07 +0200 | [diff] [blame] | 8 | #include <linux/static_key.h> |
Daniel Lezcano | 6aed82d | 2019-05-27 22:55:19 +0200 | [diff] [blame] | 9 | #include <linux/init.h> |
Daniel Lezcano | b2d3d61 | 2017-06-23 16:11:07 +0200 | [diff] [blame] | 10 | #include <linux/interrupt.h> |
Daniel Lezcano | e1c9214 | 2017-06-23 16:11:08 +0200 | [diff] [blame] | 11 | #include <linux/idr.h> |
Daniel Lezcano | b2d3d61 | 2017-06-23 16:11:07 +0200 | [diff] [blame] | 12 | #include <linux/irq.h> |
Daniel Lezcano | bbba0e7 | 2019-03-28 16:13:36 +0100 | [diff] [blame] | 13 | #include <linux/math64.h> |
| 14 | #include <linux/log2.h> |
Daniel Lezcano | e1c9214 | 2017-06-23 16:11:08 +0200 | [diff] [blame] | 15 | |
| 16 | #include <trace/events/irq.h> |
Daniel Lezcano | b2d3d61 | 2017-06-23 16:11:07 +0200 | [diff] [blame] | 17 | |
| 18 | #include "internals.h" |
| 19 | |
| 20 | DEFINE_STATIC_KEY_FALSE(irq_timing_enabled); |
| 21 | |
| 22 | DEFINE_PER_CPU(struct irq_timings, irq_timings); |
| 23 | |
Daniel Lezcano | e1c9214 | 2017-06-23 16:11:08 +0200 | [diff] [blame] | 24 | static DEFINE_IDR(irqt_stats); |
| 25 | |
Daniel Lezcano | b2d3d61 | 2017-06-23 16:11:07 +0200 | [diff] [blame] | 26 | void irq_timings_enable(void) |
| 27 | { |
| 28 | static_branch_enable(&irq_timing_enabled); |
| 29 | } |
| 30 | |
| 31 | void irq_timings_disable(void) |
| 32 | { |
| 33 | static_branch_disable(&irq_timing_enabled); |
| 34 | } |
Daniel Lezcano | e1c9214 | 2017-06-23 16:11:08 +0200 | [diff] [blame] | 35 | |
Daniel Lezcano | bbba0e7 | 2019-03-28 16:13:36 +0100 | [diff] [blame] | 36 | /* |
| 37 | * The main goal of this algorithm is to predict the next interrupt |
| 38 | * occurrence on the current CPU. |
| 39 | * |
| 40 | * Currently, the interrupt timings are stored in a circular array |
| 41 | * buffer every time there is an interrupt, as a tuple: the interrupt |
| 42 | * number and the associated timestamp when the event occurred <irq, |
| 43 | * timestamp>. |
| 44 | * |
| 45 | * For every interrupt occurring in a short period of time, we can |
| 46 | * measure the elapsed time between the occurrences for the same |
| 47 | * interrupt and we end up with a suite of intervals. The experience |
| 48 | * showed the interrupts are often coming following a periodic |
| 49 | * pattern. |
| 50 | * |
| 51 | * The objective of the algorithm is to find out this periodic pattern |
| 52 | * in a fastest way and use its period to predict the next irq event. |
| 53 | * |
| 54 | * When the next interrupt event is requested, we are in the situation |
| 55 | * where the interrupts are disabled and the circular buffer |
| 56 | * containing the timings is filled with the events which happened |
| 57 | * after the previous next-interrupt-event request. |
| 58 | * |
| 59 | * At this point, we read the circular buffer and we fill the irq |
| 60 | * related statistics structure. After this step, the circular array |
| 61 | * containing the timings is empty because all the values are |
| 62 | * dispatched in their corresponding buffers. |
| 63 | * |
| 64 | * Now for each interrupt, we can predict the next event by using the |
| 65 | * suffix array, log interval and exponential moving average |
| 66 | * |
| 67 | * 1. Suffix array |
| 68 | * |
| 69 | * Suffix array is an array of all the suffixes of a string. It is |
| 70 | * widely used as a data structure for compression, text search, ... |
| 71 | * For instance for the word 'banana', the suffixes will be: 'banana' |
| 72 | * 'anana' 'nana' 'ana' 'na' 'a' |
| 73 | * |
| 74 | * Usually, the suffix array is sorted but for our purpose it is |
| 75 | * not necessary and won't provide any improvement in the context of |
| 76 | * the solved problem where we clearly define the boundaries of the |
| 77 | * search by a max period and min period. |
| 78 | * |
| 79 | * The suffix array will build a suite of intervals of different |
| 80 | * length and will look for the repetition of each suite. If the suite |
| 81 | * is repeating then we have the period because it is the length of |
| 82 | * the suite whatever its position in the buffer. |
| 83 | * |
| 84 | * 2. Log interval |
| 85 | * |
| 86 | * We saw the irq timings allow to compute the interval of the |
Krzysztof Kozlowski | 5c982c5 | 2021-03-16 11:02:05 +0100 | [diff] [blame] | 87 | * occurrences for a specific interrupt. We can reasonably assume the |
Daniel Lezcano | bbba0e7 | 2019-03-28 16:13:36 +0100 | [diff] [blame] | 88 | * longer is the interval, the higher is the error for the next event |
| 89 | * and we can consider storing those interval values into an array |
| 90 | * where each slot in the array correspond to an interval at the power |
| 91 | * of 2 of the index. For example, index 12 will contain values |
| 92 | * between 2^11 and 2^12. |
| 93 | * |
| 94 | * At the end we have an array of values where at each index defines a |
| 95 | * [2^index - 1, 2 ^ index] interval values allowing to store a large |
| 96 | * number of values inside a small array. |
| 97 | * |
| 98 | * For example, if we have the value 1123, then we store it at |
| 99 | * ilog2(1123) = 10 index value. |
| 100 | * |
| 101 | * Storing those value at the specific index is done by computing an |
| 102 | * exponential moving average for this specific slot. For instance, |
| 103 | * for values 1800, 1123, 1453, ... fall under the same slot (10) and |
| 104 | * the exponential moving average is computed every time a new value |
| 105 | * is stored at this slot. |
| 106 | * |
| 107 | * 3. Exponential Moving Average |
| 108 | * |
| 109 | * The EMA is largely used to track a signal for stocks or as a low |
| 110 | * pass filter. The magic of the formula, is it is very simple and the |
| 111 | * reactivity of the average can be tuned with the factors called |
| 112 | * alpha. |
| 113 | * |
| 114 | * The higher the alphas are, the faster the average respond to the |
| 115 | * signal change. In our case, if a slot in the array is a big |
| 116 | * interval, we can have numbers with a big difference between |
| 117 | * them. The impact of those differences in the average computation |
| 118 | * can be tuned by changing the alpha value. |
| 119 | * |
| 120 | * |
| 121 | * -- The algorithm -- |
| 122 | * |
| 123 | * We saw the different processing above, now let's see how they are |
| 124 | * used together. |
| 125 | * |
| 126 | * For each interrupt: |
| 127 | * For each interval: |
| 128 | * Compute the index = ilog2(interval) |
| 129 | * Compute a new_ema(buffer[index], interval) |
| 130 | * Store the index in a circular buffer |
| 131 | * |
| 132 | * Compute the suffix array of the indexes |
| 133 | * |
| 134 | * For each suffix: |
| 135 | * If the suffix is reverse-found 3 times |
| 136 | * Return suffix |
| 137 | * |
| 138 | * Return Not found |
| 139 | * |
| 140 | * However we can not have endless suffix array to be build, it won't |
| 141 | * make sense and it will add an extra overhead, so we can restrict |
| 142 | * this to a maximum suffix length of 5 and a minimum suffix length of |
| 143 | * 2. The experience showed 5 is the majority of the maximum pattern |
| 144 | * period found for different devices. |
| 145 | * |
| 146 | * The result is a pattern finding less than 1us for an interrupt. |
| 147 | * |
| 148 | * Example based on real values: |
| 149 | * |
| 150 | * Example 1 : MMC write/read interrupt interval: |
| 151 | * |
| 152 | * 223947, 1240, 1384, 1386, 1386, |
| 153 | * 217416, 1236, 1384, 1386, 1387, |
| 154 | * 214719, 1241, 1386, 1387, 1384, |
| 155 | * 213696, 1234, 1384, 1386, 1388, |
| 156 | * 219904, 1240, 1385, 1389, 1385, |
| 157 | * 212240, 1240, 1386, 1386, 1386, |
| 158 | * 214415, 1236, 1384, 1386, 1387, |
| 159 | * 214276, 1234, 1384, 1388, ? |
| 160 | * |
| 161 | * For each element, apply ilog2(value) |
| 162 | * |
| 163 | * 15, 8, 8, 8, 8, |
| 164 | * 15, 8, 8, 8, 8, |
| 165 | * 15, 8, 8, 8, 8, |
| 166 | * 15, 8, 8, 8, 8, |
| 167 | * 15, 8, 8, 8, 8, |
| 168 | * 15, 8, 8, 8, 8, |
| 169 | * 15, 8, 8, 8, 8, |
| 170 | * 15, 8, 8, 8, ? |
| 171 | * |
| 172 | * Max period of 5, we take the last (max_period * 3) 15 elements as |
| 173 | * we can be confident if the pattern repeats itself three times it is |
| 174 | * a repeating pattern. |
| 175 | * |
| 176 | * 8, |
| 177 | * 15, 8, 8, 8, 8, |
| 178 | * 15, 8, 8, 8, 8, |
| 179 | * 15, 8, 8, 8, ? |
| 180 | * |
| 181 | * Suffixes are: |
| 182 | * |
| 183 | * 1) 8, 15, 8, 8, 8 <- max period |
| 184 | * 2) 8, 15, 8, 8 |
| 185 | * 3) 8, 15, 8 |
| 186 | * 4) 8, 15 <- min period |
| 187 | * |
| 188 | * From there we search the repeating pattern for each suffix. |
| 189 | * |
| 190 | * buffer: 8, 15, 8, 8, 8, 8, 15, 8, 8, 8, 8, 15, 8, 8, 8 |
| 191 | * | | | | | | | | | | | | | | | |
| 192 | * 8, 15, 8, 8, 8 | | | | | | | | | | |
| 193 | * 8, 15, 8, 8, 8 | | | | | |
| 194 | * 8, 15, 8, 8, 8 |
| 195 | * |
| 196 | * When moving the suffix, we found exactly 3 matches. |
| 197 | * |
| 198 | * The first suffix with period 5 is repeating. |
| 199 | * |
| 200 | * The next event is (3 * max_period) % suffix_period |
| 201 | * |
| 202 | * In this example, the result 0, so the next event is suffix[0] => 8 |
| 203 | * |
| 204 | * However, 8 is the index in the array of exponential moving average |
| 205 | * which was calculated on the fly when storing the values, so the |
| 206 | * interval is ema[8] = 1366 |
| 207 | * |
| 208 | * |
| 209 | * Example 2: |
| 210 | * |
| 211 | * 4, 3, 5, 100, |
| 212 | * 3, 3, 5, 117, |
| 213 | * 4, 4, 5, 112, |
| 214 | * 4, 3, 4, 110, |
| 215 | * 3, 5, 3, 117, |
| 216 | * 4, 4, 5, 112, |
| 217 | * 4, 3, 4, 110, |
| 218 | * 3, 4, 5, 112, |
| 219 | * 4, 3, 4, 110 |
| 220 | * |
| 221 | * ilog2 |
| 222 | * |
| 223 | * 0, 0, 0, 4, |
| 224 | * 0, 0, 0, 4, |
| 225 | * 0, 0, 0, 4, |
| 226 | * 0, 0, 0, 4, |
| 227 | * 0, 0, 0, 4, |
| 228 | * 0, 0, 0, 4, |
| 229 | * 0, 0, 0, 4, |
| 230 | * 0, 0, 0, 4, |
| 231 | * 0, 0, 0, 4 |
| 232 | * |
| 233 | * Max period 5: |
| 234 | * 0, 0, 4, |
| 235 | * 0, 0, 0, 4, |
| 236 | * 0, 0, 0, 4, |
| 237 | * 0, 0, 0, 4 |
| 238 | * |
| 239 | * Suffixes: |
| 240 | * |
| 241 | * 1) 0, 0, 4, 0, 0 |
| 242 | * 2) 0, 0, 4, 0 |
| 243 | * 3) 0, 0, 4 |
| 244 | * 4) 0, 0 |
| 245 | * |
| 246 | * buffer: 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4 |
| 247 | * | | | | | | X |
| 248 | * 0, 0, 4, 0, 0, | X |
| 249 | * 0, 0 |
| 250 | * |
| 251 | * buffer: 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4 |
| 252 | * | | | | | | | | | | | | | | | |
| 253 | * 0, 0, 4, 0, | | | | | | | | | | | |
| 254 | * 0, 0, 4, 0, | | | | | | | |
| 255 | * 0, 0, 4, 0, | | | |
| 256 | * 0 0 4 |
| 257 | * |
| 258 | * Pattern is found 3 times, the remaining is 1 which results from |
| 259 | * (max_period * 3) % suffix_period. This value is the index in the |
| 260 | * suffix arrays. The suffix array for a period 4 has the value 4 |
| 261 | * at index 1. |
| 262 | */ |
| 263 | #define EMA_ALPHA_VAL 64 |
| 264 | #define EMA_ALPHA_SHIFT 7 |
| 265 | |
Daniel Lezcano | 3c2e79f | 2019-05-27 22:55:16 +0200 | [diff] [blame] | 266 | #define PREDICTION_PERIOD_MIN 3 |
Daniel Lezcano | bbba0e7 | 2019-03-28 16:13:36 +0100 | [diff] [blame] | 267 | #define PREDICTION_PERIOD_MAX 5 |
| 268 | #define PREDICTION_FACTOR 4 |
| 269 | #define PREDICTION_MAX 10 /* 2 ^ PREDICTION_MAX useconds */ |
| 270 | #define PREDICTION_BUFFER_SIZE 16 /* slots for EMAs, hardly more than 16 */ |
| 271 | |
Daniel Lezcano | 2840eef | 2019-05-27 22:55:15 +0200 | [diff] [blame] | 272 | /* |
| 273 | * Number of elements in the circular buffer: If it happens it was |
| 274 | * flushed before, then the number of elements could be smaller than |
| 275 | * IRQ_TIMINGS_SIZE, so the count is used, otherwise the array size is |
| 276 | * used as we wrapped. The index begins from zero when we did not |
| 277 | * wrap. That could be done in a nicer way with the proper circular |
| 278 | * array structure type but with the cost of extra computation in the |
| 279 | * interrupt handler hot path. We choose efficiency. |
| 280 | */ |
| 281 | #define for_each_irqts(i, irqts) \ |
| 282 | for (i = irqts->count < IRQ_TIMINGS_SIZE ? \ |
| 283 | 0 : irqts->count & IRQ_TIMINGS_MASK, \ |
| 284 | irqts->count = min(IRQ_TIMINGS_SIZE, \ |
| 285 | irqts->count); \ |
| 286 | irqts->count > 0; irqts->count--, \ |
| 287 | i = (i + 1) & IRQ_TIMINGS_MASK) |
| 288 | |
Daniel Lezcano | bbba0e7 | 2019-03-28 16:13:36 +0100 | [diff] [blame] | 289 | struct irqt_stat { |
| 290 | u64 last_ts; |
| 291 | u64 ema_time[PREDICTION_BUFFER_SIZE]; |
| 292 | int timings[IRQ_TIMINGS_SIZE]; |
| 293 | int circ_timings[IRQ_TIMINGS_SIZE]; |
| 294 | int count; |
| 295 | }; |
| 296 | |
| 297 | /* |
| 298 | * Exponential moving average computation |
| 299 | */ |
| 300 | static u64 irq_timings_ema_new(u64 value, u64 ema_old) |
| 301 | { |
| 302 | s64 diff; |
| 303 | |
| 304 | if (unlikely(!ema_old)) |
| 305 | return value; |
| 306 | |
| 307 | diff = (value - ema_old) * EMA_ALPHA_VAL; |
| 308 | /* |
| 309 | * We can use a s64 type variable to be added with the u64 |
| 310 | * ema_old variable as this one will never have its topmost |
| 311 | * bit set, it will be always smaller than 2^63 nanosec |
| 312 | * interrupt interval (292 years). |
| 313 | */ |
| 314 | return ema_old + (diff >> EMA_ALPHA_SHIFT); |
| 315 | } |
| 316 | |
| 317 | static int irq_timings_next_event_index(int *buffer, size_t len, int period_max) |
| 318 | { |
Daniel Lezcano | 619c1baa | 2019-05-27 22:55:14 +0200 | [diff] [blame] | 319 | int period; |
| 320 | |
| 321 | /* |
| 322 | * Move the beginning pointer to the end minus the max period x 3. |
| 323 | * We are at the point we can begin searching the pattern |
| 324 | */ |
| 325 | buffer = &buffer[len - (period_max * 3)]; |
| 326 | |
| 327 | /* Adjust the length to the maximum allowed period x 3 */ |
| 328 | len = period_max * 3; |
Daniel Lezcano | bbba0e7 | 2019-03-28 16:13:36 +0100 | [diff] [blame] | 329 | |
| 330 | /* |
| 331 | * The buffer contains the suite of intervals, in a ilog2 |
| 332 | * basis, we are looking for a repetition. We point the |
| 333 | * beginning of the search three times the length of the |
| 334 | * period beginning at the end of the buffer. We do that for |
| 335 | * each suffix. |
| 336 | */ |
Daniel Lezcano | 619c1baa | 2019-05-27 22:55:14 +0200 | [diff] [blame] | 337 | for (period = period_max; period >= PREDICTION_PERIOD_MIN; period--) { |
Daniel Lezcano | bbba0e7 | 2019-03-28 16:13:36 +0100 | [diff] [blame] | 338 | |
Daniel Lezcano | 619c1baa | 2019-05-27 22:55:14 +0200 | [diff] [blame] | 339 | /* |
| 340 | * The first comparison always succeed because the |
| 341 | * suffix is deduced from the first n-period bytes of |
| 342 | * the buffer and we compare the initial suffix with |
| 343 | * itself, so we can skip the first iteration. |
| 344 | */ |
| 345 | int idx = period; |
| 346 | size_t size = period; |
Daniel Lezcano | bbba0e7 | 2019-03-28 16:13:36 +0100 | [diff] [blame] | 347 | |
| 348 | /* |
| 349 | * We look if the suite with period 'i' repeat |
| 350 | * itself. If it is truncated at the end, as it |
| 351 | * repeats we can use the period to find out the next |
Daniel Lezcano | 619c1baa | 2019-05-27 22:55:14 +0200 | [diff] [blame] | 352 | * element with the modulo. |
Daniel Lezcano | bbba0e7 | 2019-03-28 16:13:36 +0100 | [diff] [blame] | 353 | */ |
Daniel Lezcano | 619c1baa | 2019-05-27 22:55:14 +0200 | [diff] [blame] | 354 | while (!memcmp(buffer, &buffer[idx], size * sizeof(int))) { |
| 355 | |
| 356 | /* |
| 357 | * Move the index in a period basis |
| 358 | */ |
| 359 | idx += size; |
| 360 | |
| 361 | /* |
| 362 | * If this condition is reached, all previous |
| 363 | * memcmp were successful, so the period is |
| 364 | * found. |
| 365 | */ |
| 366 | if (idx == len) |
| 367 | return buffer[len % period]; |
| 368 | |
| 369 | /* |
| 370 | * If the remaining elements to compare are |
| 371 | * smaller than the period, readjust the size |
| 372 | * of the comparison for the last iteration. |
| 373 | */ |
| 374 | if (len - idx < period) |
| 375 | size = len - idx; |
Daniel Lezcano | bbba0e7 | 2019-03-28 16:13:36 +0100 | [diff] [blame] | 376 | } |
| 377 | } |
| 378 | |
| 379 | return -1; |
| 380 | } |
| 381 | |
| 382 | static u64 __irq_timings_next_event(struct irqt_stat *irqs, int irq, u64 now) |
| 383 | { |
| 384 | int index, i, period_max, count, start, min = INT_MAX; |
| 385 | |
| 386 | if ((now - irqs->last_ts) >= NSEC_PER_SEC) { |
| 387 | irqs->count = irqs->last_ts = 0; |
| 388 | return U64_MAX; |
| 389 | } |
| 390 | |
| 391 | /* |
| 392 | * As we want to find three times the repetition, we need a |
| 393 | * number of intervals greater or equal to three times the |
| 394 | * maximum period, otherwise we truncate the max period. |
| 395 | */ |
| 396 | period_max = irqs->count > (3 * PREDICTION_PERIOD_MAX) ? |
| 397 | PREDICTION_PERIOD_MAX : irqs->count / 3; |
| 398 | |
| 399 | /* |
| 400 | * If we don't have enough irq timings for this prediction, |
| 401 | * just bail out. |
| 402 | */ |
| 403 | if (period_max <= PREDICTION_PERIOD_MIN) |
| 404 | return U64_MAX; |
| 405 | |
| 406 | /* |
| 407 | * 'count' will depends if the circular buffer wrapped or not |
| 408 | */ |
| 409 | count = irqs->count < IRQ_TIMINGS_SIZE ? |
| 410 | irqs->count : IRQ_TIMINGS_SIZE; |
| 411 | |
| 412 | start = irqs->count < IRQ_TIMINGS_SIZE ? |
| 413 | 0 : (irqs->count & IRQ_TIMINGS_MASK); |
| 414 | |
| 415 | /* |
| 416 | * Copy the content of the circular buffer into another buffer |
| 417 | * in order to linearize the buffer instead of dealing with |
| 418 | * wrapping indexes and shifted array which will be prone to |
Krzysztof Kozlowski | 5c982c5 | 2021-03-16 11:02:05 +0100 | [diff] [blame] | 419 | * error and extremely difficult to debug. |
Daniel Lezcano | bbba0e7 | 2019-03-28 16:13:36 +0100 | [diff] [blame] | 420 | */ |
| 421 | for (i = 0; i < count; i++) { |
| 422 | int index = (start + i) & IRQ_TIMINGS_MASK; |
| 423 | |
| 424 | irqs->timings[i] = irqs->circ_timings[index]; |
| 425 | min = min_t(int, irqs->timings[i], min); |
| 426 | } |
| 427 | |
| 428 | index = irq_timings_next_event_index(irqs->timings, count, period_max); |
| 429 | if (index < 0) |
| 430 | return irqs->last_ts + irqs->ema_time[min]; |
| 431 | |
| 432 | return irqs->last_ts + irqs->ema_time[index]; |
| 433 | } |
| 434 | |
Daniel Lezcano | 23aa3b9 | 2019-05-27 22:55:18 +0200 | [diff] [blame] | 435 | static __always_inline int irq_timings_interval_index(u64 interval) |
| 436 | { |
| 437 | /* |
| 438 | * The PREDICTION_FACTOR increase the interval size for the |
| 439 | * array of exponential average. |
| 440 | */ |
| 441 | u64 interval_us = (interval >> 10) / PREDICTION_FACTOR; |
| 442 | |
| 443 | return likely(interval_us) ? ilog2(interval_us) : 0; |
| 444 | } |
| 445 | |
| 446 | static __always_inline void __irq_timings_store(int irq, struct irqt_stat *irqs, |
| 447 | u64 interval) |
| 448 | { |
| 449 | int index; |
| 450 | |
| 451 | /* |
| 452 | * Get the index in the ema table for this interrupt. |
| 453 | */ |
| 454 | index = irq_timings_interval_index(interval); |
| 455 | |
Ben Dai | b9cc7d8 | 2021-04-25 23:09:03 +0800 | [diff] [blame] | 456 | if (index > PREDICTION_BUFFER_SIZE - 1) { |
| 457 | irqs->count = 0; |
| 458 | return; |
| 459 | } |
| 460 | |
Daniel Lezcano | 23aa3b9 | 2019-05-27 22:55:18 +0200 | [diff] [blame] | 461 | /* |
| 462 | * Store the index as an element of the pattern in another |
| 463 | * circular array. |
| 464 | */ |
| 465 | irqs->circ_timings[irqs->count & IRQ_TIMINGS_MASK] = index; |
| 466 | |
| 467 | irqs->ema_time[index] = irq_timings_ema_new(interval, |
| 468 | irqs->ema_time[index]); |
| 469 | |
| 470 | irqs->count++; |
| 471 | } |
| 472 | |
Daniel Lezcano | bbba0e7 | 2019-03-28 16:13:36 +0100 | [diff] [blame] | 473 | static inline void irq_timings_store(int irq, struct irqt_stat *irqs, u64 ts) |
| 474 | { |
| 475 | u64 old_ts = irqs->last_ts; |
| 476 | u64 interval; |
Daniel Lezcano | bbba0e7 | 2019-03-28 16:13:36 +0100 | [diff] [blame] | 477 | |
| 478 | /* |
| 479 | * The timestamps are absolute time values, we need to compute |
| 480 | * the timing interval between two interrupts. |
| 481 | */ |
| 482 | irqs->last_ts = ts; |
| 483 | |
| 484 | /* |
| 485 | * The interval type is u64 in order to deal with the same |
| 486 | * type in our computation, that prevent mindfuck issues with |
| 487 | * overflow, sign and division. |
| 488 | */ |
| 489 | interval = ts - old_ts; |
| 490 | |
| 491 | /* |
| 492 | * The interrupt triggered more than one second apart, that |
Ingo Molnar | a359f75 | 2021-03-22 04:21:30 +0100 | [diff] [blame] | 493 | * ends the sequence as predictable for our purpose. In this |
Daniel Lezcano | bbba0e7 | 2019-03-28 16:13:36 +0100 | [diff] [blame] | 494 | * case, assume we have the beginning of a sequence and the |
| 495 | * timestamp is the first value. As it is impossible to |
| 496 | * predict anything at this point, return. |
| 497 | * |
| 498 | * Note the first timestamp of the sequence will always fall |
| 499 | * in this test because the old_ts is zero. That is what we |
| 500 | * want as we need another timestamp to compute an interval. |
| 501 | */ |
| 502 | if (interval >= NSEC_PER_SEC) { |
| 503 | irqs->count = 0; |
| 504 | return; |
| 505 | } |
| 506 | |
Daniel Lezcano | 23aa3b9 | 2019-05-27 22:55:18 +0200 | [diff] [blame] | 507 | __irq_timings_store(irq, irqs, interval); |
Daniel Lezcano | bbba0e7 | 2019-03-28 16:13:36 +0100 | [diff] [blame] | 508 | } |
| 509 | |
Daniel Lezcano | e1c9214 | 2017-06-23 16:11:08 +0200 | [diff] [blame] | 510 | /** |
Daniel Lezcano | e1c9214 | 2017-06-23 16:11:08 +0200 | [diff] [blame] | 511 | * irq_timings_next_event - Return when the next event is supposed to arrive |
| 512 | * |
| 513 | * During the last busy cycle, the number of interrupts is incremented |
| 514 | * and stored in the irq_timings structure. This information is |
| 515 | * necessary to: |
| 516 | * |
| 517 | * - know if the index in the table wrapped up: |
| 518 | * |
| 519 | * If more than the array size interrupts happened during the |
| 520 | * last busy/idle cycle, the index wrapped up and we have to |
| 521 | * begin with the next element in the array which is the last one |
Krzysztof Kozlowski | 5c982c5 | 2021-03-16 11:02:05 +0100 | [diff] [blame] | 522 | * in the sequence, otherwise it is at the index 0. |
Daniel Lezcano | e1c9214 | 2017-06-23 16:11:08 +0200 | [diff] [blame] | 523 | * |
| 524 | * - have an indication of the interrupts activity on this CPU |
| 525 | * (eg. irq/sec) |
| 526 | * |
| 527 | * The values are 'consumed' after inserting in the statistical model, |
| 528 | * thus the count is reinitialized. |
| 529 | * |
| 530 | * The array of values **must** be browsed in the time direction, the |
| 531 | * timestamp must increase between an element and the next one. |
| 532 | * |
| 533 | * Returns a nanosec time based estimation of the earliest interrupt, |
| 534 | * U64_MAX otherwise. |
| 535 | */ |
| 536 | u64 irq_timings_next_event(u64 now) |
| 537 | { |
Daniel Lezcano | bbba0e7 | 2019-03-28 16:13:36 +0100 | [diff] [blame] | 538 | struct irq_timings *irqts = this_cpu_ptr(&irq_timings); |
| 539 | struct irqt_stat *irqs; |
| 540 | struct irqt_stat __percpu *s; |
| 541 | u64 ts, next_evt = U64_MAX; |
| 542 | int i, irq = 0; |
| 543 | |
Daniel Lezcano | e1c9214 | 2017-06-23 16:11:08 +0200 | [diff] [blame] | 544 | /* |
| 545 | * This function must be called with the local irq disabled in |
| 546 | * order to prevent the timings circular buffer to be updated |
| 547 | * while we are reading it. |
| 548 | */ |
Frederic Weisbecker | a934d4d | 2017-11-06 16:01:25 +0100 | [diff] [blame] | 549 | lockdep_assert_irqs_disabled(); |
Daniel Lezcano | e1c9214 | 2017-06-23 16:11:08 +0200 | [diff] [blame] | 550 | |
Daniel Lezcano | bbba0e7 | 2019-03-28 16:13:36 +0100 | [diff] [blame] | 551 | if (!irqts->count) |
| 552 | return next_evt; |
| 553 | |
| 554 | /* |
| 555 | * Number of elements in the circular buffer: If it happens it |
| 556 | * was flushed before, then the number of elements could be |
| 557 | * smaller than IRQ_TIMINGS_SIZE, so the count is used, |
| 558 | * otherwise the array size is used as we wrapped. The index |
| 559 | * begins from zero when we did not wrap. That could be done |
| 560 | * in a nicer way with the proper circular array structure |
| 561 | * type but with the cost of extra computation in the |
| 562 | * interrupt handler hot path. We choose efficiency. |
| 563 | * |
| 564 | * Inject measured irq/timestamp to the pattern prediction |
| 565 | * model while decrementing the counter because we consume the |
| 566 | * data from our circular buffer. |
| 567 | */ |
Daniel Lezcano | 2840eef | 2019-05-27 22:55:15 +0200 | [diff] [blame] | 568 | for_each_irqts(i, irqts) { |
Daniel Lezcano | bbba0e7 | 2019-03-28 16:13:36 +0100 | [diff] [blame] | 569 | irq = irq_timing_decode(irqts->values[i], &ts); |
| 570 | s = idr_find(&irqt_stats, irq); |
| 571 | if (s) |
| 572 | irq_timings_store(irq, this_cpu_ptr(s), ts); |
| 573 | } |
| 574 | |
| 575 | /* |
| 576 | * Look in the list of interrupts' statistics, the earliest |
| 577 | * next event. |
| 578 | */ |
| 579 | idr_for_each_entry(&irqt_stats, s, i) { |
| 580 | |
| 581 | irqs = this_cpu_ptr(s); |
| 582 | |
| 583 | ts = __irq_timings_next_event(irqs, i, now); |
| 584 | if (ts <= now) |
| 585 | return now; |
| 586 | |
| 587 | if (ts < next_evt) |
| 588 | next_evt = ts; |
| 589 | } |
| 590 | |
| 591 | return next_evt; |
Daniel Lezcano | e1c9214 | 2017-06-23 16:11:08 +0200 | [diff] [blame] | 592 | } |
| 593 | |
| 594 | void irq_timings_free(int irq) |
| 595 | { |
| 596 | struct irqt_stat __percpu *s; |
| 597 | |
| 598 | s = idr_find(&irqt_stats, irq); |
| 599 | if (s) { |
| 600 | free_percpu(s); |
| 601 | idr_remove(&irqt_stats, irq); |
| 602 | } |
| 603 | } |
| 604 | |
| 605 | int irq_timings_alloc(int irq) |
| 606 | { |
| 607 | struct irqt_stat __percpu *s; |
| 608 | int id; |
| 609 | |
| 610 | /* |
| 611 | * Some platforms can have the same private interrupt per cpu, |
Randy Dunlap | 7b7b8a2 | 2020-10-15 20:10:28 -0700 | [diff] [blame] | 612 | * so this function may be called several times with the |
Daniel Lezcano | e1c9214 | 2017-06-23 16:11:08 +0200 | [diff] [blame] | 613 | * same interrupt number. Just bail out in case the per cpu |
| 614 | * stat structure is already allocated. |
| 615 | */ |
| 616 | s = idr_find(&irqt_stats, irq); |
| 617 | if (s) |
| 618 | return 0; |
| 619 | |
| 620 | s = alloc_percpu(*s); |
| 621 | if (!s) |
| 622 | return -ENOMEM; |
| 623 | |
| 624 | idr_preload(GFP_KERNEL); |
| 625 | id = idr_alloc(&irqt_stats, s, irq, irq + 1, GFP_NOWAIT); |
| 626 | idr_preload_end(); |
| 627 | |
| 628 | if (id < 0) { |
| 629 | free_percpu(s); |
| 630 | return id; |
| 631 | } |
| 632 | |
| 633 | return 0; |
| 634 | } |
Daniel Lezcano | 6aed82d | 2019-05-27 22:55:19 +0200 | [diff] [blame] | 635 | |
| 636 | #ifdef CONFIG_TEST_IRQ_TIMINGS |
Daniel Lezcano | f52da98 | 2019-05-27 22:55:20 +0200 | [diff] [blame] | 637 | struct timings_intervals { |
| 638 | u64 *intervals; |
| 639 | size_t count; |
| 640 | }; |
| 641 | |
| 642 | /* |
| 643 | * Intervals are given in nanosecond base |
| 644 | */ |
| 645 | static u64 intervals0[] __initdata = { |
| 646 | 10000, 50000, 200000, 500000, |
| 647 | 10000, 50000, 200000, 500000, |
| 648 | 10000, 50000, 200000, 500000, |
| 649 | 10000, 50000, 200000, 500000, |
| 650 | 10000, 50000, 200000, 500000, |
| 651 | 10000, 50000, 200000, 500000, |
| 652 | 10000, 50000, 200000, 500000, |
| 653 | 10000, 50000, 200000, 500000, |
| 654 | 10000, 50000, 200000, |
| 655 | }; |
| 656 | |
| 657 | static u64 intervals1[] __initdata = { |
| 658 | 223947000, 1240000, 1384000, 1386000, 1386000, |
| 659 | 217416000, 1236000, 1384000, 1386000, 1387000, |
| 660 | 214719000, 1241000, 1386000, 1387000, 1384000, |
| 661 | 213696000, 1234000, 1384000, 1386000, 1388000, |
| 662 | 219904000, 1240000, 1385000, 1389000, 1385000, |
| 663 | 212240000, 1240000, 1386000, 1386000, 1386000, |
| 664 | 214415000, 1236000, 1384000, 1386000, 1387000, |
| 665 | 214276000, 1234000, |
| 666 | }; |
| 667 | |
| 668 | static u64 intervals2[] __initdata = { |
| 669 | 4000, 3000, 5000, 100000, |
| 670 | 3000, 3000, 5000, 117000, |
| 671 | 4000, 4000, 5000, 112000, |
| 672 | 4000, 3000, 4000, 110000, |
| 673 | 3000, 5000, 3000, 117000, |
| 674 | 4000, 4000, 5000, 112000, |
| 675 | 4000, 3000, 4000, 110000, |
| 676 | 3000, 4000, 5000, 112000, |
| 677 | 4000, |
| 678 | }; |
| 679 | |
| 680 | static u64 intervals3[] __initdata = { |
| 681 | 1385000, 212240000, 1240000, |
| 682 | 1386000, 214415000, 1236000, |
| 683 | 1384000, 214276000, 1234000, |
| 684 | 1386000, 214415000, 1236000, |
| 685 | 1385000, 212240000, 1240000, |
| 686 | 1386000, 214415000, 1236000, |
| 687 | 1384000, 214276000, 1234000, |
| 688 | 1386000, 214415000, 1236000, |
| 689 | 1385000, 212240000, 1240000, |
| 690 | }; |
| 691 | |
| 692 | static u64 intervals4[] __initdata = { |
| 693 | 10000, 50000, 10000, 50000, |
| 694 | 10000, 50000, 10000, 50000, |
| 695 | 10000, 50000, 10000, 50000, |
| 696 | 10000, 50000, 10000, 50000, |
| 697 | 10000, 50000, 10000, 50000, |
| 698 | 10000, 50000, 10000, 50000, |
| 699 | 10000, 50000, 10000, 50000, |
| 700 | 10000, 50000, 10000, 50000, |
| 701 | 10000, |
| 702 | }; |
| 703 | |
| 704 | static struct timings_intervals tis[] __initdata = { |
| 705 | { intervals0, ARRAY_SIZE(intervals0) }, |
| 706 | { intervals1, ARRAY_SIZE(intervals1) }, |
| 707 | { intervals2, ARRAY_SIZE(intervals2) }, |
| 708 | { intervals3, ARRAY_SIZE(intervals3) }, |
| 709 | { intervals4, ARRAY_SIZE(intervals4) }, |
| 710 | }; |
| 711 | |
Daniel Lezcano | 699785f | 2019-05-27 22:55:21 +0200 | [diff] [blame] | 712 | static int __init irq_timings_test_next_index(struct timings_intervals *ti) |
| 713 | { |
| 714 | int _buffer[IRQ_TIMINGS_SIZE]; |
| 715 | int buffer[IRQ_TIMINGS_SIZE]; |
| 716 | int index, start, i, count, period_max; |
| 717 | |
| 718 | count = ti->count - 1; |
| 719 | |
| 720 | period_max = count > (3 * PREDICTION_PERIOD_MAX) ? |
| 721 | PREDICTION_PERIOD_MAX : count / 3; |
| 722 | |
| 723 | /* |
| 724 | * Inject all values except the last one which will be used |
| 725 | * to compare with the next index result. |
| 726 | */ |
| 727 | pr_debug("index suite: "); |
| 728 | |
| 729 | for (i = 0; i < count; i++) { |
| 730 | index = irq_timings_interval_index(ti->intervals[i]); |
| 731 | _buffer[i & IRQ_TIMINGS_MASK] = index; |
| 732 | pr_cont("%d ", index); |
| 733 | } |
| 734 | |
| 735 | start = count < IRQ_TIMINGS_SIZE ? 0 : |
| 736 | count & IRQ_TIMINGS_MASK; |
| 737 | |
| 738 | count = min_t(int, count, IRQ_TIMINGS_SIZE); |
| 739 | |
| 740 | for (i = 0; i < count; i++) { |
| 741 | int index = (start + i) & IRQ_TIMINGS_MASK; |
| 742 | buffer[i] = _buffer[index]; |
| 743 | } |
| 744 | |
| 745 | index = irq_timings_next_event_index(buffer, count, period_max); |
| 746 | i = irq_timings_interval_index(ti->intervals[ti->count - 1]); |
| 747 | |
| 748 | if (index != i) { |
| 749 | pr_err("Expected (%d) and computed (%d) next indexes differ\n", |
| 750 | i, index); |
| 751 | return -EINVAL; |
| 752 | } |
| 753 | |
| 754 | return 0; |
| 755 | } |
| 756 | |
| 757 | static int __init irq_timings_next_index_selftest(void) |
| 758 | { |
| 759 | int i, ret; |
| 760 | |
| 761 | for (i = 0; i < ARRAY_SIZE(tis); i++) { |
| 762 | |
| 763 | pr_info("---> Injecting intervals number #%d (count=%zd)\n", |
| 764 | i, tis[i].count); |
| 765 | |
| 766 | ret = irq_timings_test_next_index(&tis[i]); |
| 767 | if (ret) |
| 768 | break; |
| 769 | } |
| 770 | |
| 771 | return ret; |
| 772 | } |
| 773 | |
Daniel Lezcano | f52da98 | 2019-05-27 22:55:20 +0200 | [diff] [blame] | 774 | static int __init irq_timings_test_irqs(struct timings_intervals *ti) |
| 775 | { |
| 776 | struct irqt_stat __percpu *s; |
| 777 | struct irqt_stat *irqs; |
| 778 | int i, index, ret, irq = 0xACE5; |
| 779 | |
| 780 | ret = irq_timings_alloc(irq); |
| 781 | if (ret) { |
| 782 | pr_err("Failed to allocate irq timings\n"); |
| 783 | return ret; |
| 784 | } |
| 785 | |
| 786 | s = idr_find(&irqt_stats, irq); |
| 787 | if (!s) { |
| 788 | ret = -EIDRM; |
| 789 | goto out; |
| 790 | } |
| 791 | |
| 792 | irqs = this_cpu_ptr(s); |
| 793 | |
| 794 | for (i = 0; i < ti->count; i++) { |
| 795 | |
| 796 | index = irq_timings_interval_index(ti->intervals[i]); |
| 797 | pr_debug("%d: interval=%llu ema_index=%d\n", |
| 798 | i, ti->intervals[i], index); |
| 799 | |
| 800 | __irq_timings_store(irq, irqs, ti->intervals[i]); |
| 801 | if (irqs->circ_timings[i & IRQ_TIMINGS_MASK] != index) { |
Zhen Lei | 290fdc4 | 2021-08-11 17:33:32 +0800 | [diff] [blame] | 802 | ret = -EBADSLT; |
Daniel Lezcano | f52da98 | 2019-05-27 22:55:20 +0200 | [diff] [blame] | 803 | pr_err("Failed to store in the circular buffer\n"); |
| 804 | goto out; |
| 805 | } |
| 806 | } |
| 807 | |
| 808 | if (irqs->count != ti->count) { |
Zhen Lei | 290fdc4 | 2021-08-11 17:33:32 +0800 | [diff] [blame] | 809 | ret = -ERANGE; |
Daniel Lezcano | f52da98 | 2019-05-27 22:55:20 +0200 | [diff] [blame] | 810 | pr_err("Count differs\n"); |
| 811 | goto out; |
| 812 | } |
| 813 | |
| 814 | ret = 0; |
| 815 | out: |
| 816 | irq_timings_free(irq); |
| 817 | |
| 818 | return ret; |
| 819 | } |
| 820 | |
| 821 | static int __init irq_timings_irqs_selftest(void) |
| 822 | { |
| 823 | int i, ret; |
| 824 | |
| 825 | for (i = 0; i < ARRAY_SIZE(tis); i++) { |
| 826 | pr_info("---> Injecting intervals number #%d (count=%zd)\n", |
| 827 | i, tis[i].count); |
| 828 | ret = irq_timings_test_irqs(&tis[i]); |
| 829 | if (ret) |
| 830 | break; |
| 831 | } |
| 832 | |
| 833 | return ret; |
| 834 | } |
| 835 | |
Daniel Lezcano | 6aed82d | 2019-05-27 22:55:19 +0200 | [diff] [blame] | 836 | static int __init irq_timings_test_irqts(struct irq_timings *irqts, |
| 837 | unsigned count) |
| 838 | { |
| 839 | int start = count >= IRQ_TIMINGS_SIZE ? count - IRQ_TIMINGS_SIZE : 0; |
| 840 | int i, irq, oirq = 0xBEEF; |
| 841 | u64 ots = 0xDEAD, ts; |
| 842 | |
| 843 | /* |
| 844 | * Fill the circular buffer by using the dedicated function. |
| 845 | */ |
| 846 | for (i = 0; i < count; i++) { |
| 847 | pr_debug("%d: index=%d, ts=%llX irq=%X\n", |
| 848 | i, i & IRQ_TIMINGS_MASK, ots + i, oirq + i); |
| 849 | |
| 850 | irq_timings_push(ots + i, oirq + i); |
| 851 | } |
| 852 | |
| 853 | /* |
| 854 | * Compute the first elements values after the index wrapped |
| 855 | * up or not. |
| 856 | */ |
| 857 | ots += start; |
| 858 | oirq += start; |
| 859 | |
| 860 | /* |
| 861 | * Test the circular buffer count is correct. |
| 862 | */ |
| 863 | pr_debug("---> Checking timings array count (%d) is right\n", count); |
| 864 | if (WARN_ON(irqts->count != count)) |
| 865 | return -EINVAL; |
| 866 | |
| 867 | /* |
| 868 | * Test the macro allowing to browse all the irqts. |
| 869 | */ |
| 870 | pr_debug("---> Checking the for_each_irqts() macro\n"); |
| 871 | for_each_irqts(i, irqts) { |
| 872 | |
| 873 | irq = irq_timing_decode(irqts->values[i], &ts); |
| 874 | |
| 875 | pr_debug("index=%d, ts=%llX / %llX, irq=%X / %X\n", |
| 876 | i, ts, ots, irq, oirq); |
| 877 | |
| 878 | if (WARN_ON(ts != ots || irq != oirq)) |
| 879 | return -EINVAL; |
| 880 | |
| 881 | ots++; oirq++; |
| 882 | } |
| 883 | |
| 884 | /* |
| 885 | * The circular buffer should have be flushed when browsed |
| 886 | * with for_each_irqts |
| 887 | */ |
| 888 | pr_debug("---> Checking timings array is empty after browsing it\n"); |
| 889 | if (WARN_ON(irqts->count)) |
| 890 | return -EINVAL; |
| 891 | |
| 892 | return 0; |
| 893 | } |
| 894 | |
| 895 | static int __init irq_timings_irqts_selftest(void) |
| 896 | { |
| 897 | struct irq_timings *irqts = this_cpu_ptr(&irq_timings); |
| 898 | int i, ret; |
| 899 | |
| 900 | /* |
| 901 | * Test the circular buffer with different number of |
| 902 | * elements. The purpose is to test at the limits (empty, half |
| 903 | * full, full, wrapped with the cursor at the boundaries, |
| 904 | * wrapped several times, etc ... |
| 905 | */ |
| 906 | int count[] = { 0, |
| 907 | IRQ_TIMINGS_SIZE >> 1, |
| 908 | IRQ_TIMINGS_SIZE, |
| 909 | IRQ_TIMINGS_SIZE + (IRQ_TIMINGS_SIZE >> 1), |
| 910 | 2 * IRQ_TIMINGS_SIZE, |
| 911 | (2 * IRQ_TIMINGS_SIZE) + 3, |
| 912 | }; |
| 913 | |
| 914 | for (i = 0; i < ARRAY_SIZE(count); i++) { |
| 915 | |
| 916 | pr_info("---> Checking the timings with %d/%d values\n", |
| 917 | count[i], IRQ_TIMINGS_SIZE); |
| 918 | |
| 919 | ret = irq_timings_test_irqts(irqts, count[i]); |
| 920 | if (ret) |
| 921 | break; |
| 922 | } |
| 923 | |
| 924 | return ret; |
| 925 | } |
| 926 | |
| 927 | static int __init irq_timings_selftest(void) |
| 928 | { |
| 929 | int ret; |
| 930 | |
| 931 | pr_info("------------------- selftest start -----------------\n"); |
| 932 | |
| 933 | /* |
| 934 | * At this point, we don't except any subsystem to use the irq |
| 935 | * timings but us, so it should not be enabled. |
| 936 | */ |
| 937 | if (static_branch_unlikely(&irq_timing_enabled)) { |
| 938 | pr_warn("irq timings already initialized, skipping selftest\n"); |
| 939 | return 0; |
| 940 | } |
| 941 | |
| 942 | ret = irq_timings_irqts_selftest(); |
Daniel Lezcano | f52da98 | 2019-05-27 22:55:20 +0200 | [diff] [blame] | 943 | if (ret) |
| 944 | goto out; |
Daniel Lezcano | 6aed82d | 2019-05-27 22:55:19 +0200 | [diff] [blame] | 945 | |
Daniel Lezcano | f52da98 | 2019-05-27 22:55:20 +0200 | [diff] [blame] | 946 | ret = irq_timings_irqs_selftest(); |
Daniel Lezcano | 699785f | 2019-05-27 22:55:21 +0200 | [diff] [blame] | 947 | if (ret) |
| 948 | goto out; |
| 949 | |
| 950 | ret = irq_timings_next_index_selftest(); |
Daniel Lezcano | f52da98 | 2019-05-27 22:55:20 +0200 | [diff] [blame] | 951 | out: |
Daniel Lezcano | 6aed82d | 2019-05-27 22:55:19 +0200 | [diff] [blame] | 952 | pr_info("---------- selftest end with %s -----------\n", |
| 953 | ret ? "failure" : "success"); |
| 954 | |
| 955 | return ret; |
| 956 | } |
| 957 | early_initcall(irq_timings_selftest); |
| 958 | #endif |