Biwen Li | 7b0b551 | 2019-08-13 11:01:56 +0800 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0+ |
| 2 | /* |
| 3 | * Freescale FlexTimer Module (FTM) alarm device driver. |
| 4 | * |
| 5 | * Copyright 2014 Freescale Semiconductor, Inc. |
| 6 | * Copyright 2019 NXP |
| 7 | * |
| 8 | */ |
| 9 | |
| 10 | #include <linux/device.h> |
| 11 | #include <linux/err.h> |
| 12 | #include <linux/interrupt.h> |
| 13 | #include <linux/io.h> |
| 14 | #include <linux/of_address.h> |
| 15 | #include <linux/of_irq.h> |
| 16 | #include <linux/platform_device.h> |
| 17 | #include <linux/of.h> |
| 18 | #include <linux/of_device.h> |
| 19 | #include <linux/module.h> |
| 20 | #include <linux/fsl/ftm.h> |
| 21 | #include <linux/rtc.h> |
| 22 | #include <linux/time.h> |
| 23 | |
| 24 | #define FTM_SC_CLK(c) ((c) << FTM_SC_CLK_MASK_SHIFT) |
| 25 | |
| 26 | /* |
| 27 | * Select Fixed frequency clock (32KHz) as clock source |
| 28 | * of FlexTimer Module |
| 29 | */ |
| 30 | #define FTM_SC_CLKS_FIXED_FREQ 0x02 |
| 31 | #define FIXED_FREQ_CLK 32000 |
| 32 | |
| 33 | /* Select 128 (2^7) as divider factor */ |
| 34 | #define MAX_FREQ_DIV (1 << FTM_SC_PS_MASK) |
| 35 | |
| 36 | /* Maximum counter value in FlexTimer's CNT registers */ |
| 37 | #define MAX_COUNT_VAL 0xffff |
| 38 | |
| 39 | struct ftm_rtc { |
| 40 | struct rtc_device *rtc_dev; |
| 41 | void __iomem *base; |
| 42 | bool big_endian; |
| 43 | u32 alarm_freq; |
| 44 | }; |
| 45 | |
| 46 | static inline u32 rtc_readl(struct ftm_rtc *dev, u32 reg) |
| 47 | { |
| 48 | if (dev->big_endian) |
| 49 | return ioread32be(dev->base + reg); |
| 50 | else |
| 51 | return ioread32(dev->base + reg); |
| 52 | } |
| 53 | |
| 54 | static inline void rtc_writel(struct ftm_rtc *dev, u32 reg, u32 val) |
| 55 | { |
| 56 | if (dev->big_endian) |
| 57 | iowrite32be(val, dev->base + reg); |
| 58 | else |
| 59 | iowrite32(val, dev->base + reg); |
| 60 | } |
| 61 | |
| 62 | static inline void ftm_counter_enable(struct ftm_rtc *rtc) |
| 63 | { |
| 64 | u32 val; |
| 65 | |
| 66 | /* select and enable counter clock source */ |
| 67 | val = rtc_readl(rtc, FTM_SC); |
| 68 | val &= ~(FTM_SC_PS_MASK | FTM_SC_CLK_MASK); |
| 69 | val |= (FTM_SC_PS_MASK | FTM_SC_CLK(FTM_SC_CLKS_FIXED_FREQ)); |
| 70 | rtc_writel(rtc, FTM_SC, val); |
| 71 | } |
| 72 | |
| 73 | static inline void ftm_counter_disable(struct ftm_rtc *rtc) |
| 74 | { |
| 75 | u32 val; |
| 76 | |
| 77 | /* disable counter clock source */ |
| 78 | val = rtc_readl(rtc, FTM_SC); |
| 79 | val &= ~(FTM_SC_PS_MASK | FTM_SC_CLK_MASK); |
| 80 | rtc_writel(rtc, FTM_SC, val); |
| 81 | } |
| 82 | |
| 83 | static inline void ftm_irq_acknowledge(struct ftm_rtc *rtc) |
| 84 | { |
| 85 | unsigned int timeout = 100; |
| 86 | |
| 87 | /* |
| 88 | *Fix errata A-007728 for flextimer |
| 89 | * If the FTM counter reaches the FTM_MOD value between |
| 90 | * the reading of the TOF bit and the writing of 0 to |
| 91 | * the TOF bit, the process of clearing the TOF bit |
| 92 | * does not work as expected when FTMx_CONF[NUMTOF] != 0 |
| 93 | * and the current TOF count is less than FTMx_CONF[NUMTOF]. |
| 94 | * If the above condition is met, the TOF bit remains set. |
| 95 | * If the TOF interrupt is enabled (FTMx_SC[TOIE] = 1),the |
| 96 | * TOF interrupt also remains asserted. |
| 97 | * |
| 98 | * Above is the errata discription |
| 99 | * |
| 100 | * In one word: software clearing TOF bit not works when |
| 101 | * FTMx_CONF[NUMTOF] was seted as nonzero and FTM counter |
| 102 | * reaches the FTM_MOD value. |
| 103 | * |
| 104 | * The workaround is clearing TOF bit until it works |
| 105 | * (FTM counter doesn't always reache the FTM_MOD anyway), |
| 106 | * which may cost some cycles. |
| 107 | */ |
| 108 | while ((FTM_SC_TOF & rtc_readl(rtc, FTM_SC)) && timeout--) |
| 109 | rtc_writel(rtc, FTM_SC, rtc_readl(rtc, FTM_SC) & (~FTM_SC_TOF)); |
| 110 | } |
| 111 | |
| 112 | static inline void ftm_irq_enable(struct ftm_rtc *rtc) |
| 113 | { |
| 114 | u32 val; |
| 115 | |
| 116 | val = rtc_readl(rtc, FTM_SC); |
| 117 | val |= FTM_SC_TOIE; |
| 118 | rtc_writel(rtc, FTM_SC, val); |
| 119 | } |
| 120 | |
| 121 | static inline void ftm_irq_disable(struct ftm_rtc *rtc) |
| 122 | { |
| 123 | u32 val; |
| 124 | |
| 125 | val = rtc_readl(rtc, FTM_SC); |
| 126 | val &= ~FTM_SC_TOIE; |
| 127 | rtc_writel(rtc, FTM_SC, val); |
| 128 | } |
| 129 | |
| 130 | static inline void ftm_reset_counter(struct ftm_rtc *rtc) |
| 131 | { |
| 132 | /* |
| 133 | * The CNT register contains the FTM counter value. |
| 134 | * Reset clears the CNT register. Writing any value to COUNT |
| 135 | * updates the counter with its initial value, CNTIN. |
| 136 | */ |
| 137 | rtc_writel(rtc, FTM_CNT, 0x00); |
| 138 | } |
| 139 | |
| 140 | static void ftm_clean_alarm(struct ftm_rtc *rtc) |
| 141 | { |
| 142 | ftm_counter_disable(rtc); |
| 143 | |
| 144 | rtc_writel(rtc, FTM_CNTIN, 0x00); |
| 145 | rtc_writel(rtc, FTM_MOD, ~0U); |
| 146 | |
| 147 | ftm_reset_counter(rtc); |
| 148 | } |
| 149 | |
| 150 | static irqreturn_t ftm_rtc_alarm_interrupt(int irq, void *dev) |
| 151 | { |
| 152 | struct ftm_rtc *rtc = dev; |
| 153 | |
| 154 | ftm_irq_acknowledge(rtc); |
| 155 | ftm_irq_disable(rtc); |
| 156 | ftm_clean_alarm(rtc); |
| 157 | |
| 158 | return IRQ_HANDLED; |
| 159 | } |
| 160 | |
| 161 | static int ftm_rtc_alarm_irq_enable(struct device *dev, |
| 162 | unsigned int enabled) |
| 163 | { |
| 164 | struct ftm_rtc *rtc = dev_get_drvdata(dev); |
| 165 | |
| 166 | if (enabled) |
| 167 | ftm_irq_enable(rtc); |
| 168 | else |
| 169 | ftm_irq_disable(rtc); |
| 170 | |
| 171 | return 0; |
| 172 | } |
| 173 | |
| 174 | /* |
| 175 | * Note: |
| 176 | * The function is not really getting time from the RTC |
| 177 | * since FlexTimer is not a RTC device, but we need to |
| 178 | * get time to setup alarm, so we are using system time |
| 179 | * for now. |
| 180 | */ |
| 181 | static int ftm_rtc_read_time(struct device *dev, struct rtc_time *tm) |
| 182 | { |
| 183 | struct timespec64 ts64; |
| 184 | |
| 185 | ktime_get_real_ts64(&ts64); |
| 186 | rtc_time_to_tm(ts64.tv_sec, tm); |
| 187 | |
| 188 | return 0; |
| 189 | } |
| 190 | |
| 191 | static int ftm_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm) |
| 192 | { |
| 193 | return 0; |
| 194 | } |
| 195 | |
| 196 | /* |
| 197 | * 1. Select fixed frequency clock (32KHz) as clock source; |
| 198 | * 2. Select 128 (2^7) as divider factor; |
| 199 | * So clock is 250 Hz (32KHz/128). |
| 200 | * |
| 201 | * 3. FlexTimer's CNT register is a 32bit register, |
| 202 | * but the register's 16 bit as counter value,it's other 16 bit |
| 203 | * is reserved.So minimum counter value is 0x0,maximum counter |
| 204 | * value is 0xffff. |
| 205 | * So max alarm value is 262 (65536 / 250) seconds |
| 206 | */ |
| 207 | static int ftm_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm) |
| 208 | { |
| 209 | struct rtc_time tm; |
| 210 | unsigned long now, alm_time, cycle; |
| 211 | struct ftm_rtc *rtc = dev_get_drvdata(dev); |
| 212 | |
| 213 | ftm_rtc_read_time(dev, &tm); |
| 214 | rtc_tm_to_time(&tm, &now); |
| 215 | rtc_tm_to_time(&alm->time, &alm_time); |
| 216 | |
| 217 | ftm_clean_alarm(rtc); |
| 218 | cycle = (alm_time - now) * rtc->alarm_freq; |
| 219 | if (cycle > MAX_COUNT_VAL) { |
| 220 | pr_err("Out of alarm range {0~262} seconds.\n"); |
| 221 | return -ERANGE; |
| 222 | } |
| 223 | |
| 224 | ftm_irq_disable(rtc); |
| 225 | |
| 226 | /* |
| 227 | * The counter increments until the value of MOD is reached, |
| 228 | * at which point the counter is reloaded with the value of CNTIN. |
| 229 | * The TOF (the overflow flag) bit is set when the FTM counter |
| 230 | * changes from MOD to CNTIN. So we should using the cycle - 1. |
| 231 | */ |
| 232 | rtc_writel(rtc, FTM_MOD, cycle - 1); |
| 233 | |
| 234 | ftm_counter_enable(rtc); |
| 235 | ftm_irq_enable(rtc); |
| 236 | |
| 237 | return 0; |
| 238 | |
| 239 | } |
| 240 | |
| 241 | static const struct rtc_class_ops ftm_rtc_ops = { |
| 242 | .read_time = ftm_rtc_read_time, |
| 243 | .read_alarm = ftm_rtc_read_alarm, |
| 244 | .set_alarm = ftm_rtc_set_alarm, |
| 245 | .alarm_irq_enable = ftm_rtc_alarm_irq_enable, |
| 246 | }; |
| 247 | |
| 248 | static int ftm_rtc_probe(struct platform_device *pdev) |
| 249 | { |
| 250 | struct device_node *np = pdev->dev.of_node; |
Biwen Li | 7b0b551 | 2019-08-13 11:01:56 +0800 | [diff] [blame] | 251 | int irq; |
| 252 | int ret; |
| 253 | struct ftm_rtc *rtc; |
| 254 | |
| 255 | rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL); |
| 256 | if (unlikely(!rtc)) { |
| 257 | dev_err(&pdev->dev, "cannot alloc memory for rtc\n"); |
| 258 | return -ENOMEM; |
| 259 | } |
| 260 | |
| 261 | platform_set_drvdata(pdev, rtc); |
| 262 | |
| 263 | rtc->rtc_dev = devm_rtc_allocate_device(&pdev->dev); |
| 264 | if (IS_ERR(rtc->rtc_dev)) |
| 265 | return PTR_ERR(rtc->rtc_dev); |
| 266 | |
Markus Elfring | 89576be | 2019-09-21 11:49:01 +0200 | [diff] [blame^] | 267 | rtc->base = devm_platform_ioremap_resource(pdev, 0); |
Biwen Li | 7b0b551 | 2019-08-13 11:01:56 +0800 | [diff] [blame] | 268 | if (IS_ERR(rtc->base)) { |
| 269 | dev_err(&pdev->dev, "cannot ioremap resource for rtc\n"); |
| 270 | return PTR_ERR(rtc->base); |
| 271 | } |
| 272 | |
| 273 | irq = irq_of_parse_and_map(np, 0); |
| 274 | if (irq <= 0) { |
| 275 | dev_err(&pdev->dev, "unable to get IRQ from DT, %d\n", irq); |
| 276 | return -EINVAL; |
| 277 | } |
| 278 | |
| 279 | ret = devm_request_irq(&pdev->dev, irq, ftm_rtc_alarm_interrupt, |
| 280 | IRQF_NO_SUSPEND, dev_name(&pdev->dev), rtc); |
| 281 | if (ret < 0) { |
| 282 | dev_err(&pdev->dev, "failed to request irq\n"); |
| 283 | return ret; |
| 284 | } |
| 285 | |
| 286 | rtc->big_endian = of_property_read_bool(np, "big-endian"); |
| 287 | rtc->alarm_freq = (u32)FIXED_FREQ_CLK / (u32)MAX_FREQ_DIV; |
| 288 | rtc->rtc_dev->ops = &ftm_rtc_ops; |
| 289 | |
| 290 | device_init_wakeup(&pdev->dev, true); |
| 291 | |
| 292 | ret = rtc_register_device(rtc->rtc_dev); |
| 293 | if (ret) { |
| 294 | dev_err(&pdev->dev, "can't register rtc device\n"); |
| 295 | return ret; |
| 296 | } |
| 297 | |
| 298 | return 0; |
| 299 | } |
| 300 | |
| 301 | static const struct of_device_id ftm_rtc_match[] = { |
| 302 | { .compatible = "fsl,ls1012a-ftm-alarm", }, |
| 303 | { .compatible = "fsl,ls1021a-ftm-alarm", }, |
| 304 | { .compatible = "fsl,ls1028a-ftm-alarm", }, |
| 305 | { .compatible = "fsl,ls1043a-ftm-alarm", }, |
| 306 | { .compatible = "fsl,ls1046a-ftm-alarm", }, |
| 307 | { .compatible = "fsl,ls1088a-ftm-alarm", }, |
| 308 | { .compatible = "fsl,ls208xa-ftm-alarm", }, |
| 309 | { .compatible = "fsl,lx2160a-ftm-alarm", }, |
| 310 | { }, |
| 311 | }; |
| 312 | |
| 313 | static struct platform_driver ftm_rtc_driver = { |
| 314 | .probe = ftm_rtc_probe, |
| 315 | .driver = { |
| 316 | .name = "ftm-alarm", |
| 317 | .of_match_table = ftm_rtc_match, |
| 318 | }, |
| 319 | }; |
| 320 | |
| 321 | static int __init ftm_alarm_init(void) |
| 322 | { |
| 323 | return platform_driver_register(&ftm_rtc_driver); |
| 324 | } |
| 325 | |
| 326 | device_initcall(ftm_alarm_init); |
| 327 | |
| 328 | MODULE_DESCRIPTION("NXP/Freescale FlexTimer alarm driver"); |
| 329 | MODULE_AUTHOR("Biwen Li <biwen.li@nxp.com>"); |
| 330 | MODULE_LICENSE("GPL"); |