blob: 8764232bf0f1321df0e7bcd04a4307583611c7a2 [file] [log] [blame]
Joe Perchesc767a542012-05-21 19:50:07 -07001#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
Alok Katariabfc0f592008-07-01 11:43:24 -07003#include <linux/kernel.h>
Alok Kataria0ef95532008-07-01 11:43:18 -07004#include <linux/sched.h>
5#include <linux/init.h>
6#include <linux/module.h>
7#include <linux/timer.h>
Alok Katariabfc0f592008-07-01 11:43:24 -07008#include <linux/acpi_pmtmr.h>
Alok Kataria2dbe06f2008-07-01 11:43:31 -07009#include <linux/cpufreq.h>
Alok Kataria8fbbc4b2008-07-01 11:43:34 -070010#include <linux/delay.h>
11#include <linux/clocksource.h>
12#include <linux/percpu.h>
Arnd Bergmann08604bd2009-06-16 15:31:12 -070013#include <linux/timex.h>
Peter Zijlstra10b033d2013-11-28 19:01:40 +010014#include <linux/static_key.h>
Alok Katariabfc0f592008-07-01 11:43:24 -070015
16#include <asm/hpet.h>
Alok Kataria8fbbc4b2008-07-01 11:43:34 -070017#include <asm/timer.h>
18#include <asm/vgtod.h>
19#include <asm/time.h>
20#include <asm/delay.h>
Alok Kataria88b094f2008-10-27 10:41:46 -070021#include <asm/hypervisor.h>
Thomas Gleixner08047c42009-08-20 16:27:41 +020022#include <asm/nmi.h>
Thomas Gleixner2d826402009-08-20 17:06:25 +020023#include <asm/x86_init.h>
Alok Kataria0ef95532008-07-01 11:43:18 -070024
Ingo Molnarf24ade3a2009-03-10 19:02:30 +010025unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
Alok Kataria0ef95532008-07-01 11:43:18 -070026EXPORT_SYMBOL(cpu_khz);
Ingo Molnarf24ade3a2009-03-10 19:02:30 +010027
28unsigned int __read_mostly tsc_khz;
Alok Kataria0ef95532008-07-01 11:43:18 -070029EXPORT_SYMBOL(tsc_khz);
30
31/*
32 * TSC can be unstable due to cpufreq or due to unsynced TSCs
33 */
Ingo Molnarf24ade3a2009-03-10 19:02:30 +010034static int __read_mostly tsc_unstable;
Alok Kataria0ef95532008-07-01 11:43:18 -070035
36/* native_sched_clock() is called before tsc_init(), so
37 we must start with the TSC soft disabled to prevent
38 erroneous rdtsc usage on !cpu_has_tsc processors */
Ingo Molnarf24ade3a2009-03-10 19:02:30 +010039static int __read_mostly tsc_disabled = -1;
Alok Kataria0ef95532008-07-01 11:43:18 -070040
Peter Zijlstra10b033d2013-11-28 19:01:40 +010041static struct static_key __use_tsc = STATIC_KEY_INIT;
42
Suresh Siddha28a00182011-11-04 15:42:17 -070043int tsc_clocksource_reliable;
Peter Zijlstra57c67da2013-11-29 15:39:25 +010044
Peter Zijlstra20d1c862013-11-29 15:40:29 +010045/*
46 * Use a ring-buffer like data structure, where a writer advances the head by
47 * writing a new data entry and a reader advances the tail when it observes a
48 * new entry.
49 *
50 * Writers are made to wait on readers until there's space to write a new
51 * entry.
52 *
53 * This means that we can always use an {offset, mul} pair to compute a ns
54 * value that is 'roughly' in the right direction, even if we're writing a new
55 * {offset, mul} pair during the clock read.
56 *
57 * The down-side is that we can no longer guarantee strict monotonicity anymore
58 * (assuming the TSC was that to begin with), because while we compute the
59 * intersection point of the two clock slopes and make sure the time is
60 * continuous at the point of switching; we can no longer guarantee a reader is
61 * strictly before or after the switch point.
62 *
63 * It does mean a reader no longer needs to disable IRQs in order to avoid
64 * CPU-Freq updates messing with his times, and similarly an NMI reader will
65 * no longer run the risk of hitting half-written state.
66 */
67
68struct cyc2ns {
69 struct cyc2ns_data data[2]; /* 0 + 2*24 = 48 */
70 struct cyc2ns_data *head; /* 48 + 8 = 56 */
71 struct cyc2ns_data *tail; /* 56 + 8 = 64 */
72}; /* exactly fits one cacheline */
73
74static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
75
76struct cyc2ns_data *cyc2ns_read_begin(void)
77{
78 struct cyc2ns_data *head;
79
80 preempt_disable();
81
82 head = this_cpu_read(cyc2ns.head);
83 /*
84 * Ensure we observe the entry when we observe the pointer to it.
85 * matches the wmb from cyc2ns_write_end().
86 */
87 smp_read_barrier_depends();
88 head->__count++;
89 barrier();
90
91 return head;
92}
93
94void cyc2ns_read_end(struct cyc2ns_data *head)
95{
96 barrier();
97 /*
98 * If we're the outer most nested read; update the tail pointer
99 * when we're done. This notifies possible pending writers
100 * that we've observed the head pointer and that the other
101 * entry is now free.
102 */
103 if (!--head->__count) {
104 /*
105 * x86-TSO does not reorder writes with older reads;
106 * therefore once this write becomes visible to another
107 * cpu, we must be finished reading the cyc2ns_data.
108 *
109 * matches with cyc2ns_write_begin().
110 */
111 this_cpu_write(cyc2ns.tail, head);
112 }
113 preempt_enable();
114}
115
116/*
117 * Begin writing a new @data entry for @cpu.
118 *
119 * Assumes some sort of write side lock; currently 'provided' by the assumption
120 * that cpufreq will call its notifiers sequentially.
121 */
122static struct cyc2ns_data *cyc2ns_write_begin(int cpu)
123{
124 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
125 struct cyc2ns_data *data = c2n->data;
126
127 if (data == c2n->head)
128 data++;
129
130 /* XXX send an IPI to @cpu in order to guarantee a read? */
131
132 /*
133 * When we observe the tail write from cyc2ns_read_end(),
134 * the cpu must be done with that entry and its safe
135 * to start writing to it.
136 */
137 while (c2n->tail == data)
138 cpu_relax();
139
140 return data;
141}
142
143static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data)
144{
145 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
146
147 /*
148 * Ensure the @data writes are visible before we publish the
149 * entry. Matches the data-depencency in cyc2ns_read_begin().
150 */
151 smp_wmb();
152
153 ACCESS_ONCE(c2n->head) = data;
154}
155
156/*
157 * Accelerators for sched_clock()
Peter Zijlstra57c67da2013-11-29 15:39:25 +0100158 * convert from cycles(64bits) => nanoseconds (64bits)
159 * basic equation:
160 * ns = cycles / (freq / ns_per_sec)
161 * ns = cycles * (ns_per_sec / freq)
162 * ns = cycles * (10^9 / (cpu_khz * 10^3))
163 * ns = cycles * (10^6 / cpu_khz)
164 *
165 * Then we use scaling math (suggested by george@mvista.com) to get:
166 * ns = cycles * (10^6 * SC / cpu_khz) / SC
167 * ns = cycles * cyc2ns_scale / SC
168 *
169 * And since SC is a constant power of two, we can convert the div
170 * into a shift.
171 *
172 * We can use khz divisor instead of mhz to keep a better precision, since
173 * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
174 * (mathieu.desnoyers@polymtl.ca)
175 *
176 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
177 */
178
Peter Zijlstra57c67da2013-11-29 15:39:25 +0100179#define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
180
Peter Zijlstra20d1c862013-11-29 15:40:29 +0100181static void cyc2ns_data_init(struct cyc2ns_data *data)
182{
Peter Zijlstra5e3c1af2014-01-22 22:08:14 +0100183 data->cyc2ns_mul = 0;
Peter Zijlstra20d1c862013-11-29 15:40:29 +0100184 data->cyc2ns_shift = CYC2NS_SCALE_FACTOR;
185 data->cyc2ns_offset = 0;
186 data->__count = 0;
187}
188
189static void cyc2ns_init(int cpu)
190{
191 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
192
193 cyc2ns_data_init(&c2n->data[0]);
194 cyc2ns_data_init(&c2n->data[1]);
195
196 c2n->head = c2n->data;
197 c2n->tail = c2n->data;
198}
199
Peter Zijlstra57c67da2013-11-29 15:39:25 +0100200static inline unsigned long long cycles_2_ns(unsigned long long cyc)
201{
Peter Zijlstra20d1c862013-11-29 15:40:29 +0100202 struct cyc2ns_data *data, *tail;
203 unsigned long long ns;
204
205 /*
206 * See cyc2ns_read_*() for details; replicated in order to avoid
207 * an extra few instructions that came with the abstraction.
208 * Notable, it allows us to only do the __count and tail update
209 * dance when its actually needed.
210 */
211
Steven Rostedt569d6552014-02-04 14:13:15 -0500212 preempt_disable_notrace();
Peter Zijlstra20d1c862013-11-29 15:40:29 +0100213 data = this_cpu_read(cyc2ns.head);
214 tail = this_cpu_read(cyc2ns.tail);
215
216 if (likely(data == tail)) {
217 ns = data->cyc2ns_offset;
218 ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR);
219 } else {
220 data->__count++;
221
222 barrier();
223
224 ns = data->cyc2ns_offset;
225 ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR);
226
227 barrier();
228
229 if (!--data->__count)
230 this_cpu_write(cyc2ns.tail, data);
231 }
Steven Rostedt569d6552014-02-04 14:13:15 -0500232 preempt_enable_notrace();
Peter Zijlstra20d1c862013-11-29 15:40:29 +0100233
Peter Zijlstra57c67da2013-11-29 15:39:25 +0100234 return ns;
235}
236
237static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
238{
Peter Zijlstra20d1c862013-11-29 15:40:29 +0100239 unsigned long long tsc_now, ns_now;
240 struct cyc2ns_data *data;
241 unsigned long flags;
Peter Zijlstra57c67da2013-11-29 15:39:25 +0100242
243 local_irq_save(flags);
244 sched_clock_idle_sleep_event();
245
Peter Zijlstra20d1c862013-11-29 15:40:29 +0100246 if (!cpu_khz)
247 goto done;
248
249 data = cyc2ns_write_begin(cpu);
Peter Zijlstra57c67da2013-11-29 15:39:25 +0100250
251 rdtscll(tsc_now);
252 ns_now = cycles_2_ns(tsc_now);
253
Peter Zijlstra20d1c862013-11-29 15:40:29 +0100254 /*
255 * Compute a new multiplier as per the above comment and ensure our
256 * time function is continuous; see the comment near struct
257 * cyc2ns_data.
258 */
Michal Nazarewicz89171572014-06-19 03:58:36 +0200259 data->cyc2ns_mul =
260 DIV_ROUND_CLOSEST(NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR,
261 cpu_khz);
Peter Zijlstra20d1c862013-11-29 15:40:29 +0100262 data->cyc2ns_shift = CYC2NS_SCALE_FACTOR;
263 data->cyc2ns_offset = ns_now -
264 mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR);
Peter Zijlstra57c67da2013-11-29 15:39:25 +0100265
Peter Zijlstra20d1c862013-11-29 15:40:29 +0100266 cyc2ns_write_end(cpu, data);
267
268done:
Peter Zijlstra57c67da2013-11-29 15:39:25 +0100269 sched_clock_idle_wakeup_event(0);
270 local_irq_restore(flags);
271}
Alok Kataria0ef95532008-07-01 11:43:18 -0700272/*
273 * Scheduler clock - returns current time in nanosec units.
274 */
275u64 native_sched_clock(void)
276{
Peter Zijlstra20d1c862013-11-29 15:40:29 +0100277 u64 tsc_now;
Alok Kataria0ef95532008-07-01 11:43:18 -0700278
279 /*
280 * Fall back to jiffies if there's no TSC available:
281 * ( But note that we still use it if the TSC is marked
282 * unstable. We do this because unlike Time Of Day,
283 * the scheduler clock tolerates small errors and it's
284 * very important for it to be as fast as the platform
Daniel Mack3ad2f3fb2010-02-03 08:01:28 +0800285 * can achieve it. )
Alok Kataria0ef95532008-07-01 11:43:18 -0700286 */
Peter Zijlstra10b033d2013-11-28 19:01:40 +0100287 if (!static_key_false(&__use_tsc)) {
Alok Kataria0ef95532008-07-01 11:43:18 -0700288 /* No locking but a rare wrong value is not a big deal: */
289 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
290 }
291
292 /* read the Time Stamp Counter: */
Peter Zijlstra20d1c862013-11-29 15:40:29 +0100293 rdtscll(tsc_now);
Alok Kataria0ef95532008-07-01 11:43:18 -0700294
295 /* return the value in ns */
Peter Zijlstra20d1c862013-11-29 15:40:29 +0100296 return cycles_2_ns(tsc_now);
Alok Kataria0ef95532008-07-01 11:43:18 -0700297}
298
299/* We need to define a real function for sched_clock, to override the
300 weak default version */
301#ifdef CONFIG_PARAVIRT
302unsigned long long sched_clock(void)
303{
304 return paravirt_sched_clock();
305}
306#else
307unsigned long long
308sched_clock(void) __attribute__((alias("native_sched_clock")));
309#endif
310
David Vrabelce37f402012-10-08 13:07:30 +0100311unsigned long long native_read_tsc(void)
312{
313 return __native_read_tsc();
314}
315EXPORT_SYMBOL(native_read_tsc);
316
Alok Kataria0ef95532008-07-01 11:43:18 -0700317int check_tsc_unstable(void)
318{
319 return tsc_unstable;
320}
321EXPORT_SYMBOL_GPL(check_tsc_unstable);
322
Adrian Hunterc73deb62013-06-28 16:22:18 +0300323int check_tsc_disabled(void)
324{
325 return tsc_disabled;
326}
327EXPORT_SYMBOL_GPL(check_tsc_disabled);
328
Alok Kataria0ef95532008-07-01 11:43:18 -0700329#ifdef CONFIG_X86_TSC
330int __init notsc_setup(char *str)
331{
Joe Perchesc767a542012-05-21 19:50:07 -0700332 pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
Alok Kataria0ef95532008-07-01 11:43:18 -0700333 tsc_disabled = 1;
334 return 1;
335}
336#else
337/*
338 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
339 * in cpu/common.c
340 */
341int __init notsc_setup(char *str)
342{
343 setup_clear_cpu_cap(X86_FEATURE_TSC);
344 return 1;
345}
346#endif
347
348__setup("notsc", notsc_setup);
Alok Katariabfc0f592008-07-01 11:43:24 -0700349
Venkatesh Pallipadie82b8e42010-10-04 17:03:20 -0700350static int no_sched_irq_time;
351
Alok Kataria395628e2008-10-24 17:22:01 -0700352static int __init tsc_setup(char *str)
353{
354 if (!strcmp(str, "reliable"))
355 tsc_clocksource_reliable = 1;
Venkatesh Pallipadie82b8e42010-10-04 17:03:20 -0700356 if (!strncmp(str, "noirqtime", 9))
357 no_sched_irq_time = 1;
Alok Kataria395628e2008-10-24 17:22:01 -0700358 return 1;
359}
360
361__setup("tsc=", tsc_setup);
362
Alok Katariabfc0f592008-07-01 11:43:24 -0700363#define MAX_RETRIES 5
364#define SMI_TRESHOLD 50000
365
366/*
367 * Read TSC and the reference counters. Take care of SMI disturbance
368 */
Thomas Gleixner827014b2008-09-04 15:18:53 +0000369static u64 tsc_read_refs(u64 *p, int hpet)
Alok Katariabfc0f592008-07-01 11:43:24 -0700370{
371 u64 t1, t2;
372 int i;
373
374 for (i = 0; i < MAX_RETRIES; i++) {
375 t1 = get_cycles();
376 if (hpet)
Thomas Gleixner827014b2008-09-04 15:18:53 +0000377 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
Alok Katariabfc0f592008-07-01 11:43:24 -0700378 else
Thomas Gleixner827014b2008-09-04 15:18:53 +0000379 *p = acpi_pm_read_early();
Alok Katariabfc0f592008-07-01 11:43:24 -0700380 t2 = get_cycles();
381 if ((t2 - t1) < SMI_TRESHOLD)
382 return t2;
383 }
384 return ULLONG_MAX;
385}
386
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700387/*
Thomas Gleixnerd683ef72008-09-04 15:18:48 +0000388 * Calculate the TSC frequency from HPET reference
389 */
390static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
391{
392 u64 tmp;
393
394 if (hpet2 < hpet1)
395 hpet2 += 0x100000000ULL;
396 hpet2 -= hpet1;
397 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
398 do_div(tmp, 1000000);
399 do_div(deltatsc, tmp);
400
401 return (unsigned long) deltatsc;
402}
403
404/*
405 * Calculate the TSC frequency from PMTimer reference
406 */
407static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
408{
409 u64 tmp;
410
411 if (!pm1 && !pm2)
412 return ULONG_MAX;
413
414 if (pm2 < pm1)
415 pm2 += (u64)ACPI_PM_OVRRUN;
416 pm2 -= pm1;
417 tmp = pm2 * 1000000000LL;
418 do_div(tmp, PMTMR_TICKS_PER_SEC);
419 do_div(deltatsc, tmp);
420
421 return (unsigned long) deltatsc;
422}
423
Thomas Gleixnera977c402008-09-04 15:18:59 +0000424#define CAL_MS 10
Deepak Saxenab7743972011-11-01 14:25:07 -0700425#define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
Thomas Gleixnera977c402008-09-04 15:18:59 +0000426#define CAL_PIT_LOOPS 1000
427
428#define CAL2_MS 50
Deepak Saxenab7743972011-11-01 14:25:07 -0700429#define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
Thomas Gleixnera977c402008-09-04 15:18:59 +0000430#define CAL2_PIT_LOOPS 5000
431
Thomas Gleixnercce3e052008-09-04 15:18:44 +0000432
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700433/*
434 * Try to calibrate the TSC against the Programmable
435 * Interrupt Timer and return the frequency of the TSC
436 * in kHz.
437 *
438 * Return ULONG_MAX on failure to calibrate.
439 */
Thomas Gleixnera977c402008-09-04 15:18:59 +0000440static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700441{
442 u64 tsc, t1, t2, delta;
443 unsigned long tscmin, tscmax;
444 int pitcnt;
445
446 /* Set the Gate high, disable speaker */
447 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
448
449 /*
450 * Setup CTC channel 2* for mode 0, (interrupt on terminal
451 * count mode), binary count. Set the latch register to 50ms
452 * (LSB then MSB) to begin countdown.
453 */
454 outb(0xb0, 0x43);
Thomas Gleixnera977c402008-09-04 15:18:59 +0000455 outb(latch & 0xff, 0x42);
456 outb(latch >> 8, 0x42);
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700457
458 tsc = t1 = t2 = get_cycles();
459
460 pitcnt = 0;
461 tscmax = 0;
462 tscmin = ULONG_MAX;
463 while ((inb(0x61) & 0x20) == 0) {
464 t2 = get_cycles();
465 delta = t2 - tsc;
466 tsc = t2;
467 if ((unsigned long) delta < tscmin)
468 tscmin = (unsigned int) delta;
469 if ((unsigned long) delta > tscmax)
470 tscmax = (unsigned int) delta;
471 pitcnt++;
472 }
473
474 /*
475 * Sanity checks:
476 *
Thomas Gleixnera977c402008-09-04 15:18:59 +0000477 * If we were not able to read the PIT more than loopmin
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700478 * times, then we have been hit by a massive SMI
479 *
480 * If the maximum is 10 times larger than the minimum,
481 * then we got hit by an SMI as well.
482 */
Thomas Gleixnera977c402008-09-04 15:18:59 +0000483 if (pitcnt < loopmin || tscmax > 10 * tscmin)
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700484 return ULONG_MAX;
485
486 /* Calculate the PIT value */
487 delta = t2 - t1;
Thomas Gleixnera977c402008-09-04 15:18:59 +0000488 do_div(delta, ms);
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700489 return delta;
490}
491
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700492/*
493 * This reads the current MSB of the PIT counter, and
494 * checks if we are running on sufficiently fast and
495 * non-virtualized hardware.
496 *
497 * Our expectations are:
498 *
499 * - the PIT is running at roughly 1.19MHz
500 *
501 * - each IO is going to take about 1us on real hardware,
502 * but we allow it to be much faster (by a factor of 10) or
503 * _slightly_ slower (ie we allow up to a 2us read+counter
504 * update - anything else implies a unacceptably slow CPU
505 * or PIT for the fast calibration to work.
506 *
507 * - with 256 PIT ticks to read the value, we have 214us to
508 * see the same MSB (and overhead like doing a single TSC
509 * read per MSB value etc).
510 *
511 * - We're doing 2 reads per loop (LSB, MSB), and we expect
512 * them each to take about a microsecond on real hardware.
513 * So we expect a count value of around 100. But we'll be
514 * generous, and accept anything over 50.
515 *
516 * - if the PIT is stuck, and we see *many* more reads, we
517 * return early (and the next caller of pit_expect_msb()
518 * then consider it a failure when they don't see the
519 * next expected value).
520 *
521 * These expectations mean that we know that we have seen the
522 * transition from one expected value to another with a fairly
523 * high accuracy, and we didn't miss any events. We can thus
524 * use the TSC value at the transitions to calculate a pretty
525 * good value for the TSC frequencty.
526 */
Linus Torvaldsb6e61ee2009-07-31 12:45:41 -0700527static inline int pit_verify_msb(unsigned char val)
528{
529 /* Ignore LSB */
530 inb(0x42);
531 return inb(0x42) == val;
532}
533
Linus Torvalds9e8912e2009-03-17 08:13:17 -0700534static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700535{
Linus Torvalds9e8912e2009-03-17 08:13:17 -0700536 int count;
Linus Torvalds68f30fb2012-01-17 15:35:37 -0800537 u64 tsc = 0, prev_tsc = 0;
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700538
539 for (count = 0; count < 50000; count++) {
Linus Torvaldsb6e61ee2009-07-31 12:45:41 -0700540 if (!pit_verify_msb(val))
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700541 break;
Linus Torvalds68f30fb2012-01-17 15:35:37 -0800542 prev_tsc = tsc;
Linus Torvalds9e8912e2009-03-17 08:13:17 -0700543 tsc = get_cycles();
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700544 }
Linus Torvalds68f30fb2012-01-17 15:35:37 -0800545 *deltap = get_cycles() - prev_tsc;
Linus Torvalds9e8912e2009-03-17 08:13:17 -0700546 *tscp = tsc;
547
548 /*
549 * We require _some_ success, but the quality control
550 * will be based on the error terms on the TSC values.
551 */
552 return count > 5;
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700553}
554
555/*
Linus Torvalds9e8912e2009-03-17 08:13:17 -0700556 * How many MSB values do we want to see? We aim for
557 * a maximum error rate of 500ppm (in practice the
558 * real error is much smaller), but refuse to spend
Linus Torvalds68f30fb2012-01-17 15:35:37 -0800559 * more than 50ms on it.
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700560 */
Linus Torvalds68f30fb2012-01-17 15:35:37 -0800561#define MAX_QUICK_PIT_MS 50
Linus Torvalds9e8912e2009-03-17 08:13:17 -0700562#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700563
564static unsigned long quick_pit_calibrate(void)
565{
Linus Torvalds9e8912e2009-03-17 08:13:17 -0700566 int i;
567 u64 tsc, delta;
568 unsigned long d1, d2;
569
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700570 /* Set the Gate high, disable speaker */
571 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
572
573 /*
574 * Counter 2, mode 0 (one-shot), binary count
575 *
576 * NOTE! Mode 2 decrements by two (and then the
577 * output is flipped each time, giving the same
578 * final output frequency as a decrement-by-one),
579 * so mode 0 is much better when looking at the
580 * individual counts.
581 */
582 outb(0xb0, 0x43);
583
584 /* Start at 0xffff */
585 outb(0xff, 0x42);
586 outb(0xff, 0x42);
587
Linus Torvaldsa6a80e12009-03-17 07:58:26 -0700588 /*
589 * The PIT starts counting at the next edge, so we
590 * need to delay for a microsecond. The easiest way
591 * to do that is to just read back the 16-bit counter
592 * once from the PIT.
593 */
Linus Torvaldsb6e61ee2009-07-31 12:45:41 -0700594 pit_verify_msb(0);
Linus Torvaldsa6a80e12009-03-17 07:58:26 -0700595
Linus Torvalds9e8912e2009-03-17 08:13:17 -0700596 if (pit_expect_msb(0xff, &tsc, &d1)) {
597 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
598 if (!pit_expect_msb(0xff-i, &delta, &d2))
599 break;
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700600
Linus Torvalds9e8912e2009-03-17 08:13:17 -0700601 /*
602 * Iterate until the error is less than 500 ppm
603 */
604 delta -= tsc;
Linus Torvaldsb6e61ee2009-07-31 12:45:41 -0700605 if (d1+d2 >= delta >> 11)
606 continue;
607
608 /*
609 * Check the PIT one more time to verify that
610 * all TSC reads were stable wrt the PIT.
611 *
612 * This also guarantees serialization of the
613 * last cycle read ('d2') in pit_expect_msb.
614 */
615 if (!pit_verify_msb(0xfe - i))
616 break;
617 goto success;
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700618 }
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700619 }
Joe Perchesc767a542012-05-21 19:50:07 -0700620 pr_err("Fast TSC calibration failed\n");
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700621 return 0;
Linus Torvalds9e8912e2009-03-17 08:13:17 -0700622
623success:
624 /*
625 * Ok, if we get here, then we've seen the
626 * MSB of the PIT decrement 'i' times, and the
627 * error has shrunk to less than 500 ppm.
628 *
629 * As a result, we can depend on there not being
630 * any odd delays anywhere, and the TSC reads are
Linus Torvalds68f30fb2012-01-17 15:35:37 -0800631 * reliable (within the error).
Linus Torvalds9e8912e2009-03-17 08:13:17 -0700632 *
633 * kHz = ticks / time-in-seconds / 1000;
634 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
635 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
636 */
Linus Torvalds9e8912e2009-03-17 08:13:17 -0700637 delta *= PIT_TICK_RATE;
638 do_div(delta, i*256*1000);
Joe Perchesc767a542012-05-21 19:50:07 -0700639 pr_info("Fast TSC calibration using PIT\n");
Linus Torvalds9e8912e2009-03-17 08:13:17 -0700640 return delta;
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700641}
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700642
Alok Katariabfc0f592008-07-01 11:43:24 -0700643/**
Alok Katariae93ef942008-07-01 11:43:36 -0700644 * native_calibrate_tsc - calibrate the tsc on boot
Alok Katariabfc0f592008-07-01 11:43:24 -0700645 */
Alok Katariae93ef942008-07-01 11:43:36 -0700646unsigned long native_calibrate_tsc(void)
Alok Katariabfc0f592008-07-01 11:43:24 -0700647{
Thomas Gleixner827014b2008-09-04 15:18:53 +0000648 u64 tsc1, tsc2, delta, ref1, ref2;
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200649 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
Thomas Gleixner2d826402009-08-20 17:06:25 +0200650 unsigned long flags, latch, ms, fast_calibrate;
Thomas Gleixnera977c402008-09-04 15:18:59 +0000651 int hpet = is_hpet_enabled(), i, loopmin;
Alok Katariabfc0f592008-07-01 11:43:24 -0700652
Bin Gao7da7c152013-10-21 09:16:33 -0700653 /* Calibrate TSC using MSR for Intel Atom SoCs */
654 local_irq_save(flags);
Thomas Gleixner5f0e0302014-02-19 13:52:29 +0200655 fast_calibrate = try_msr_calibrate_tsc();
Bin Gao7da7c152013-10-21 09:16:33 -0700656 local_irq_restore(flags);
Thomas Gleixner5f0e0302014-02-19 13:52:29 +0200657 if (fast_calibrate)
Bin Gao7da7c152013-10-21 09:16:33 -0700658 return fast_calibrate;
Bin Gao7da7c152013-10-21 09:16:33 -0700659
Alok Katariabfc0f592008-07-01 11:43:24 -0700660 local_irq_save(flags);
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700661 fast_calibrate = quick_pit_calibrate();
Alok Katariabfc0f592008-07-01 11:43:24 -0700662 local_irq_restore(flags);
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700663 if (fast_calibrate)
664 return fast_calibrate;
Alok Katariabfc0f592008-07-01 11:43:24 -0700665
666 /*
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200667 * Run 5 calibration loops to get the lowest frequency value
668 * (the best estimate). We use two different calibration modes
669 * here:
670 *
671 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
672 * load a timeout of 50ms. We read the time right after we
673 * started the timer and wait until the PIT count down reaches
674 * zero. In each wait loop iteration we read the TSC and check
675 * the delta to the previous read. We keep track of the min
676 * and max values of that delta. The delta is mostly defined
677 * by the IO time of the PIT access, so we can detect when a
Lucas De Marchi0d2eb442011-03-17 16:24:16 -0300678 * SMI/SMM disturbance happened between the two reads. If the
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200679 * maximum time is significantly larger than the minimum time,
680 * then we discard the result and have another try.
681 *
682 * 2) Reference counter. If available we use the HPET or the
683 * PMTIMER as a reference to check the sanity of that value.
684 * We use separate TSC readouts and check inside of the
685 * reference read for a SMI/SMM disturbance. We dicard
686 * disturbed values here as well. We do that around the PIT
687 * calibration delay loop as we have to wait for a certain
688 * amount of time anyway.
Alok Katariabfc0f592008-07-01 11:43:24 -0700689 */
Alok Katariabfc0f592008-07-01 11:43:24 -0700690
Thomas Gleixnera977c402008-09-04 15:18:59 +0000691 /* Preset PIT loop values */
692 latch = CAL_LATCH;
693 ms = CAL_MS;
694 loopmin = CAL_PIT_LOOPS;
695
696 for (i = 0; i < 3; i++) {
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700697 unsigned long tsc_pit_khz;
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200698
699 /*
700 * Read the start value and the reference count of
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700701 * hpet/pmtimer when available. Then do the PIT
702 * calibration, which will take at least 50ms, and
703 * read the end value.
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200704 */
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700705 local_irq_save(flags);
Thomas Gleixner827014b2008-09-04 15:18:53 +0000706 tsc1 = tsc_read_refs(&ref1, hpet);
Thomas Gleixnera977c402008-09-04 15:18:59 +0000707 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
Thomas Gleixner827014b2008-09-04 15:18:53 +0000708 tsc2 = tsc_read_refs(&ref2, hpet);
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200709 local_irq_restore(flags);
710
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700711 /* Pick the lowest PIT TSC calibration so far */
712 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200713
714 /* hpet or pmtimer available ? */
John Stultz62627be2011-01-14 09:06:28 -0800715 if (ref1 == ref2)
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200716 continue;
717
718 /* Check, whether the sampling was disturbed by an SMI */
719 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
720 continue;
721
722 tsc2 = (tsc2 - tsc1) * 1000000LL;
Thomas Gleixnerd683ef72008-09-04 15:18:48 +0000723 if (hpet)
Thomas Gleixner827014b2008-09-04 15:18:53 +0000724 tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
Thomas Gleixnerd683ef72008-09-04 15:18:48 +0000725 else
Thomas Gleixner827014b2008-09-04 15:18:53 +0000726 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200727
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200728 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
Thomas Gleixnera977c402008-09-04 15:18:59 +0000729
730 /* Check the reference deviation */
731 delta = ((u64) tsc_pit_min) * 100;
732 do_div(delta, tsc_ref_min);
733
734 /*
735 * If both calibration results are inside a 10% window
736 * then we can be sure, that the calibration
737 * succeeded. We break out of the loop right away. We
738 * use the reference value, as it is more precise.
739 */
740 if (delta >= 90 && delta <= 110) {
Joe Perchesc767a542012-05-21 19:50:07 -0700741 pr_info("PIT calibration matches %s. %d loops\n",
742 hpet ? "HPET" : "PMTIMER", i + 1);
Thomas Gleixnera977c402008-09-04 15:18:59 +0000743 return tsc_ref_min;
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200744 }
745
Thomas Gleixnera977c402008-09-04 15:18:59 +0000746 /*
747 * Check whether PIT failed more than once. This
748 * happens in virtualized environments. We need to
749 * give the virtual PC a slightly longer timeframe for
750 * the HPET/PMTIMER to make the result precise.
751 */
752 if (i == 1 && tsc_pit_min == ULONG_MAX) {
753 latch = CAL2_LATCH;
754 ms = CAL2_MS;
755 loopmin = CAL2_PIT_LOOPS;
756 }
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200757 }
758
759 /*
760 * Now check the results.
761 */
762 if (tsc_pit_min == ULONG_MAX) {
763 /* PIT gave no useful value */
Joe Perchesc767a542012-05-21 19:50:07 -0700764 pr_warn("Unable to calibrate against PIT\n");
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200765
766 /* We don't have an alternative source, disable TSC */
Thomas Gleixner827014b2008-09-04 15:18:53 +0000767 if (!hpet && !ref1 && !ref2) {
Joe Perchesc767a542012-05-21 19:50:07 -0700768 pr_notice("No reference (HPET/PMTIMER) available\n");
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200769 return 0;
770 }
771
772 /* The alternative source failed as well, disable TSC */
773 if (tsc_ref_min == ULONG_MAX) {
Joe Perchesc767a542012-05-21 19:50:07 -0700774 pr_warn("HPET/PMTIMER calibration failed\n");
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200775 return 0;
776 }
777
778 /* Use the alternative source */
Joe Perchesc767a542012-05-21 19:50:07 -0700779 pr_info("using %s reference calibration\n",
780 hpet ? "HPET" : "PMTIMER");
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200781
782 return tsc_ref_min;
783 }
784
785 /* We don't have an alternative source, use the PIT calibration value */
Thomas Gleixner827014b2008-09-04 15:18:53 +0000786 if (!hpet && !ref1 && !ref2) {
Joe Perchesc767a542012-05-21 19:50:07 -0700787 pr_info("Using PIT calibration value\n");
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200788 return tsc_pit_min;
Alok Katariabfc0f592008-07-01 11:43:24 -0700789 }
790
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200791 /* The alternative source failed, use the PIT calibration value */
792 if (tsc_ref_min == ULONG_MAX) {
Joe Perchesc767a542012-05-21 19:50:07 -0700793 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200794 return tsc_pit_min;
Alok Katariabfc0f592008-07-01 11:43:24 -0700795 }
796
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200797 /*
798 * The calibration values differ too much. In doubt, we use
799 * the PIT value as we know that there are PMTIMERs around
Thomas Gleixnera977c402008-09-04 15:18:59 +0000800 * running at double speed. At least we let the user know:
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200801 */
Joe Perchesc767a542012-05-21 19:50:07 -0700802 pr_warn("PIT calibration deviates from %s: %lu %lu\n",
803 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
804 pr_info("Using PIT calibration value\n");
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200805 return tsc_pit_min;
Alok Katariabfc0f592008-07-01 11:43:24 -0700806}
807
Alok Katariabfc0f592008-07-01 11:43:24 -0700808int recalibrate_cpu_khz(void)
809{
810#ifndef CONFIG_SMP
811 unsigned long cpu_khz_old = cpu_khz;
812
813 if (cpu_has_tsc) {
Thomas Gleixner2d826402009-08-20 17:06:25 +0200814 tsc_khz = x86_platform.calibrate_tsc();
Alok Katariae93ef942008-07-01 11:43:36 -0700815 cpu_khz = tsc_khz;
Alok Katariabfc0f592008-07-01 11:43:24 -0700816 cpu_data(0).loops_per_jiffy =
817 cpufreq_scale(cpu_data(0).loops_per_jiffy,
818 cpu_khz_old, cpu_khz);
819 return 0;
820 } else
821 return -ENODEV;
822#else
823 return -ENODEV;
824#endif
825}
826
827EXPORT_SYMBOL(recalibrate_cpu_khz);
828
Alok Kataria2dbe06f2008-07-01 11:43:31 -0700829
Suresh Siddhacd7240c2010-08-19 17:03:38 -0700830static unsigned long long cyc2ns_suspend;
831
Marcelo Tosattib74f05d62012-02-13 11:07:27 -0200832void tsc_save_sched_clock_state(void)
Suresh Siddhacd7240c2010-08-19 17:03:38 -0700833{
Peter Zijlstra35af99e2013-11-28 19:38:42 +0100834 if (!sched_clock_stable())
Suresh Siddhacd7240c2010-08-19 17:03:38 -0700835 return;
836
837 cyc2ns_suspend = sched_clock();
838}
839
840/*
841 * Even on processors with invariant TSC, TSC gets reset in some the
842 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
843 * arbitrary value (still sync'd across cpu's) during resume from such sleep
844 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
845 * that sched_clock() continues from the point where it was left off during
846 * suspend.
847 */
Marcelo Tosattib74f05d62012-02-13 11:07:27 -0200848void tsc_restore_sched_clock_state(void)
Suresh Siddhacd7240c2010-08-19 17:03:38 -0700849{
850 unsigned long long offset;
851 unsigned long flags;
852 int cpu;
853
Peter Zijlstra35af99e2013-11-28 19:38:42 +0100854 if (!sched_clock_stable())
Suresh Siddhacd7240c2010-08-19 17:03:38 -0700855 return;
856
857 local_irq_save(flags);
858
Peter Zijlstra20d1c862013-11-29 15:40:29 +0100859 /*
860 * We're comming out of suspend, there's no concurrency yet; don't
861 * bother being nice about the RCU stuff, just write to both
862 * data fields.
863 */
864
865 this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
866 this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
867
Suresh Siddhacd7240c2010-08-19 17:03:38 -0700868 offset = cyc2ns_suspend - sched_clock();
869
Peter Zijlstra20d1c862013-11-29 15:40:29 +0100870 for_each_possible_cpu(cpu) {
871 per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
872 per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
873 }
Suresh Siddhacd7240c2010-08-19 17:03:38 -0700874
875 local_irq_restore(flags);
876}
877
Alok Kataria2dbe06f2008-07-01 11:43:31 -0700878#ifdef CONFIG_CPU_FREQ
879
880/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
881 * changes.
882 *
883 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
884 * not that important because current Opteron setups do not support
885 * scaling on SMP anyroads.
886 *
887 * Should fix up last_tsc too. Currently gettimeofday in the
888 * first tick after the change will be slightly wrong.
889 */
890
891static unsigned int ref_freq;
892static unsigned long loops_per_jiffy_ref;
893static unsigned long tsc_khz_ref;
894
895static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
896 void *data)
897{
898 struct cpufreq_freqs *freq = data;
Dave Jones931db6a2009-06-01 12:29:55 -0400899 unsigned long *lpj;
Alok Kataria2dbe06f2008-07-01 11:43:31 -0700900
901 if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
902 return 0;
903
Alok Kataria2dbe06f2008-07-01 11:43:31 -0700904 lpj = &boot_cpu_data.loops_per_jiffy;
Dave Jones931db6a2009-06-01 12:29:55 -0400905#ifdef CONFIG_SMP
906 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
907 lpj = &cpu_data(freq->cpu).loops_per_jiffy;
Alok Kataria2dbe06f2008-07-01 11:43:31 -0700908#endif
909
910 if (!ref_freq) {
911 ref_freq = freq->old;
912 loops_per_jiffy_ref = *lpj;
913 tsc_khz_ref = tsc_khz;
914 }
915 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
Viresh Kumar0b443ea2014-03-19 11:24:58 +0530916 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
Felipe Contreras878f4f52009-09-17 00:38:38 +0300917 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
Alok Kataria2dbe06f2008-07-01 11:43:31 -0700918
919 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
920 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
921 mark_tsc_unstable("cpufreq changes");
922 }
923
Peter Zijlstra52a89682008-08-25 13:35:06 +0200924 set_cyc2ns_scale(tsc_khz, freq->cpu);
Alok Kataria2dbe06f2008-07-01 11:43:31 -0700925
926 return 0;
927}
928
929static struct notifier_block time_cpufreq_notifier_block = {
930 .notifier_call = time_cpufreq_notifier
931};
932
933static int __init cpufreq_tsc(void)
934{
Linus Torvalds060700b2008-08-24 11:52:06 -0700935 if (!cpu_has_tsc)
936 return 0;
937 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
938 return 0;
Alok Kataria2dbe06f2008-07-01 11:43:31 -0700939 cpufreq_register_notifier(&time_cpufreq_notifier_block,
940 CPUFREQ_TRANSITION_NOTIFIER);
941 return 0;
942}
943
944core_initcall(cpufreq_tsc);
945
946#endif /* CONFIG_CPU_FREQ */
Alok Kataria8fbbc4b2008-07-01 11:43:34 -0700947
948/* clocksource code */
949
950static struct clocksource clocksource_tsc;
951
952/*
953 * We compare the TSC to the cycle_last value in the clocksource
954 * structure to avoid a nasty time-warp. This can be observed in a
955 * very small window right after one CPU updated cycle_last under
956 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
957 * is smaller than the cycle_last reference value due to a TSC which
958 * is slighty behind. This delta is nowhere else observable, but in
959 * that case it results in a forward time jump in the range of hours
960 * due to the unsigned delta calculation of the time keeping core
961 * code, which is necessary to support wrapping clocksources like pm
962 * timer.
963 */
Magnus Damm8e196082009-04-21 12:24:00 -0700964static cycle_t read_tsc(struct clocksource *cs)
Alok Kataria8fbbc4b2008-07-01 11:43:34 -0700965{
966 cycle_t ret = (cycle_t)get_cycles();
967
968 return ret >= clocksource_tsc.cycle_last ?
969 ret : clocksource_tsc.cycle_last;
970}
971
Magnus Damm17622332010-02-02 14:41:39 -0800972static void resume_tsc(struct clocksource *cs)
Martin Schwidefsky1be39672009-08-14 15:47:20 +0200973{
Feng Tang82f9c082013-03-12 11:56:47 +0800974 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
975 clocksource_tsc.cycle_last = 0;
Martin Schwidefsky1be39672009-08-14 15:47:20 +0200976}
977
Alok Kataria8fbbc4b2008-07-01 11:43:34 -0700978static struct clocksource clocksource_tsc = {
979 .name = "tsc",
980 .rating = 300,
981 .read = read_tsc,
Martin Schwidefsky1be39672009-08-14 15:47:20 +0200982 .resume = resume_tsc,
Alok Kataria8fbbc4b2008-07-01 11:43:34 -0700983 .mask = CLOCKSOURCE_MASK(64),
Alok Kataria8fbbc4b2008-07-01 11:43:34 -0700984 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
985 CLOCK_SOURCE_MUST_VERIFY,
Andy Lutomirski98d0ac32011-07-14 06:47:22 -0400986 .archdata = { .vclock_mode = VCLOCK_TSC },
Alok Kataria8fbbc4b2008-07-01 11:43:34 -0700987};
988
989void mark_tsc_unstable(char *reason)
990{
991 if (!tsc_unstable) {
992 tsc_unstable = 1;
Peter Zijlstra35af99e2013-11-28 19:38:42 +0100993 clear_sched_clock_stable();
Venkatesh Pallipadie82b8e42010-10-04 17:03:20 -0700994 disable_sched_clock_irqtime();
Joe Perchesc767a542012-05-21 19:50:07 -0700995 pr_info("Marking TSC unstable due to %s\n", reason);
Alok Kataria8fbbc4b2008-07-01 11:43:34 -0700996 /* Change only the rating, when not registered */
997 if (clocksource_tsc.mult)
Thomas Gleixner7285dd72009-08-28 20:25:24 +0200998 clocksource_mark_unstable(&clocksource_tsc);
999 else {
1000 clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001001 clocksource_tsc.rating = 0;
Thomas Gleixner7285dd72009-08-28 20:25:24 +02001002 }
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001003 }
1004}
1005
1006EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1007
Alok Kataria395628e2008-10-24 17:22:01 -07001008static void __init check_system_tsc_reliable(void)
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001009{
Alok Kataria395628e2008-10-24 17:22:01 -07001010#ifdef CONFIG_MGEODE_LX
1011 /* RTSC counts during suspend */
1012#define RTSC_SUSP 0x100
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001013 unsigned long res_low, res_high;
1014
1015 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
Thadeu Lima de Souza Cascardo00097c42010-01-17 19:44:44 -02001016 /* Geode_LX - the OLPC CPU has a very reliable TSC */
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001017 if (res_low & RTSC_SUSP)
Alok Kataria395628e2008-10-24 17:22:01 -07001018 tsc_clocksource_reliable = 1;
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001019#endif
Alok Kataria395628e2008-10-24 17:22:01 -07001020 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1021 tsc_clocksource_reliable = 1;
1022}
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001023
1024/*
1025 * Make an educated guess if the TSC is trustworthy and synchronized
1026 * over all CPUs.
1027 */
Paul Gortmaker148f9bb2013-06-18 18:23:59 -04001028int unsynchronized_tsc(void)
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001029{
1030 if (!cpu_has_tsc || tsc_unstable)
1031 return 1;
1032
Ingo Molnar3e5095d2009-01-27 17:07:08 +01001033#ifdef CONFIG_SMP
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001034 if (apic_is_clustered_box())
1035 return 1;
1036#endif
1037
1038 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1039 return 0;
john stultzd3b8f882009-08-17 16:40:47 -07001040
1041 if (tsc_clocksource_reliable)
1042 return 0;
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001043 /*
1044 * Intel systems are normally all synchronized.
1045 * Exceptions must mark TSC as unstable:
1046 */
1047 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1048 /* assume multi socket systems are not synchronized: */
1049 if (num_possible_cpus() > 1)
john stultzd3b8f882009-08-17 16:40:47 -07001050 return 1;
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001051 }
1052
john stultzd3b8f882009-08-17 16:40:47 -07001053 return 0;
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001054}
1055
John Stultz08ec0c52010-07-27 17:00:00 -07001056
1057static void tsc_refine_calibration_work(struct work_struct *work);
1058static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1059/**
1060 * tsc_refine_calibration_work - Further refine tsc freq calibration
1061 * @work - ignored.
1062 *
1063 * This functions uses delayed work over a period of a
1064 * second to further refine the TSC freq value. Since this is
1065 * timer based, instead of loop based, we don't block the boot
1066 * process while this longer calibration is done.
1067 *
Lucas De Marchi0d2eb442011-03-17 16:24:16 -03001068 * If there are any calibration anomalies (too many SMIs, etc),
John Stultz08ec0c52010-07-27 17:00:00 -07001069 * or the refined calibration is off by 1% of the fast early
1070 * calibration, we throw out the new calibration and use the
1071 * early calibration.
1072 */
1073static void tsc_refine_calibration_work(struct work_struct *work)
1074{
1075 static u64 tsc_start = -1, ref_start;
1076 static int hpet;
1077 u64 tsc_stop, ref_stop, delta;
1078 unsigned long freq;
1079
1080 /* Don't bother refining TSC on unstable systems */
1081 if (check_tsc_unstable())
1082 goto out;
1083
1084 /*
1085 * Since the work is started early in boot, we may be
1086 * delayed the first time we expire. So set the workqueue
1087 * again once we know timers are working.
1088 */
1089 if (tsc_start == -1) {
1090 /*
1091 * Only set hpet once, to avoid mixing hardware
1092 * if the hpet becomes enabled later.
1093 */
1094 hpet = is_hpet_enabled();
1095 schedule_delayed_work(&tsc_irqwork, HZ);
1096 tsc_start = tsc_read_refs(&ref_start, hpet);
1097 return;
1098 }
1099
1100 tsc_stop = tsc_read_refs(&ref_stop, hpet);
1101
1102 /* hpet or pmtimer available ? */
John Stultz62627be2011-01-14 09:06:28 -08001103 if (ref_start == ref_stop)
John Stultz08ec0c52010-07-27 17:00:00 -07001104 goto out;
1105
1106 /* Check, whether the sampling was disturbed by an SMI */
1107 if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
1108 goto out;
1109
1110 delta = tsc_stop - tsc_start;
1111 delta *= 1000000LL;
1112 if (hpet)
1113 freq = calc_hpet_ref(delta, ref_start, ref_stop);
1114 else
1115 freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1116
1117 /* Make sure we're within 1% */
1118 if (abs(tsc_khz - freq) > tsc_khz/100)
1119 goto out;
1120
1121 tsc_khz = freq;
Joe Perchesc767a542012-05-21 19:50:07 -07001122 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1123 (unsigned long)tsc_khz / 1000,
1124 (unsigned long)tsc_khz % 1000);
John Stultz08ec0c52010-07-27 17:00:00 -07001125
1126out:
1127 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1128}
1129
1130
1131static int __init init_tsc_clocksource(void)
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001132{
Thomas Gleixner29fe3592011-01-11 11:40:48 +01001133 if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz)
Thomas Gleixnera8760ec2010-12-13 11:28:02 +01001134 return 0;
1135
Alok Kataria395628e2008-10-24 17:22:01 -07001136 if (tsc_clocksource_reliable)
1137 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001138 /* lower the rating if we already know its unstable: */
1139 if (check_tsc_unstable()) {
1140 clocksource_tsc.rating = 0;
1141 clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
1142 }
Alok Kataria57779dc2012-02-21 18:19:55 -08001143
Feng Tang82f9c082013-03-12 11:56:47 +08001144 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1145 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1146
Alok Kataria57779dc2012-02-21 18:19:55 -08001147 /*
1148 * Trust the results of the earlier calibration on systems
1149 * exporting a reliable TSC.
1150 */
1151 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
1152 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1153 return 0;
1154 }
1155
John Stultz08ec0c52010-07-27 17:00:00 -07001156 schedule_delayed_work(&tsc_irqwork, 0);
1157 return 0;
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001158}
John Stultz08ec0c52010-07-27 17:00:00 -07001159/*
1160 * We use device_initcall here, to ensure we run after the hpet
1161 * is fully initialized, which may occur at fs_initcall time.
1162 */
1163device_initcall(init_tsc_clocksource);
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001164
1165void __init tsc_init(void)
1166{
1167 u64 lpj;
1168 int cpu;
1169
Thomas Gleixner845b3942009-08-19 15:37:03 +02001170 x86_init.timers.tsc_pre_init();
1171
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001172 if (!cpu_has_tsc)
1173 return;
1174
Thomas Gleixner2d826402009-08-20 17:06:25 +02001175 tsc_khz = x86_platform.calibrate_tsc();
Alok Katariae93ef942008-07-01 11:43:36 -07001176 cpu_khz = tsc_khz;
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001177
Alok Katariae93ef942008-07-01 11:43:36 -07001178 if (!tsc_khz) {
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001179 mark_tsc_unstable("could not calculate TSC khz");
1180 return;
1181 }
1182
Joe Perchesc767a542012-05-21 19:50:07 -07001183 pr_info("Detected %lu.%03lu MHz processor\n",
1184 (unsigned long)cpu_khz / 1000,
1185 (unsigned long)cpu_khz % 1000);
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001186
1187 /*
1188 * Secondary CPUs do not run through tsc_init(), so set up
1189 * all the scale factors for all CPUs, assuming the same
1190 * speed as the bootup CPU. (cpufreq notifiers will fix this
1191 * up if their speed diverges)
1192 */
Peter Zijlstra20d1c862013-11-29 15:40:29 +01001193 for_each_possible_cpu(cpu) {
1194 cyc2ns_init(cpu);
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001195 set_cyc2ns_scale(cpu_khz, cpu);
Peter Zijlstra20d1c862013-11-29 15:40:29 +01001196 }
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001197
1198 if (tsc_disabled > 0)
1199 return;
1200
1201 /* now allow native_sched_clock() to use rdtsc */
Peter Zijlstra10b033d2013-11-28 19:01:40 +01001202
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001203 tsc_disabled = 0;
Peter Zijlstra10b033d2013-11-28 19:01:40 +01001204 static_key_slow_inc(&__use_tsc);
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001205
Venkatesh Pallipadie82b8e42010-10-04 17:03:20 -07001206 if (!no_sched_irq_time)
1207 enable_sched_clock_irqtime();
1208
Alok Kataria70de9a92008-11-03 11:18:47 -08001209 lpj = ((u64)tsc_khz * 1000);
1210 do_div(lpj, HZ);
1211 lpj_fine = lpj;
1212
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001213 use_tsc_delay();
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001214
1215 if (unsynchronized_tsc())
1216 mark_tsc_unstable("TSCs unsynchronized");
1217
Alok Kataria395628e2008-10-24 17:22:01 -07001218 check_system_tsc_reliable();
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001219}
1220
Jack Steinerb5652012011-11-15 15:33:56 -08001221#ifdef CONFIG_SMP
1222/*
1223 * If we have a constant TSC and are using the TSC for the delay loop,
1224 * we can skip clock calibration if another cpu in the same socket has already
1225 * been calibrated. This assumes that CONSTANT_TSC applies to all
1226 * cpus in the socket - this should be a safe assumption.
1227 */
Paul Gortmaker148f9bb2013-06-18 18:23:59 -04001228unsigned long calibrate_delay_is_known(void)
Jack Steinerb5652012011-11-15 15:33:56 -08001229{
1230 int i, cpu = smp_processor_id();
1231
1232 if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
1233 return 0;
1234
1235 for_each_online_cpu(i)
1236 if (cpu_data(i).phys_proc_id == cpu_data(cpu).phys_proc_id)
1237 return cpu_data(i).loops_per_jiffy;
1238 return 0;
1239}
1240#endif