blob: 80a6eea49e3645f8a32309d635e48c469e463970 [file] [log] [blame]
Ben Hutchings8127d662013-08-29 19:19:29 +01001/****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2012-2013 Solarflare Communications Inc.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation, incorporated herein by reference.
8 */
9
10#include "net_driver.h"
11#include "ef10_regs.h"
12#include "io.h"
13#include "mcdi.h"
14#include "mcdi_pcol.h"
15#include "nic.h"
16#include "workarounds.h"
17#include <linux/in.h>
18#include <linux/jhash.h>
19#include <linux/wait.h>
20#include <linux/workqueue.h>
21
22/* Hardware control for EF10 architecture including 'Huntington'. */
23
24#define EFX_EF10_DRVGEN_EV 7
25enum {
26 EFX_EF10_TEST = 1,
27 EFX_EF10_REFILL,
28};
29
30/* The reserved RSS context value */
31#define EFX_EF10_RSS_CONTEXT_INVALID 0xffffffff
32
33/* The filter table(s) are managed by firmware and we have write-only
34 * access. When removing filters we must identify them to the
35 * firmware by a 64-bit handle, but this is too wide for Linux kernel
36 * interfaces (32-bit for RX NFC, 16-bit for RFS). Also, we need to
37 * be able to tell in advance whether a requested insertion will
38 * replace an existing filter. Therefore we maintain a software hash
39 * table, which should be at least as large as the hardware hash
40 * table.
41 *
42 * Huntington has a single 8K filter table shared between all filter
43 * types and both ports.
44 */
45#define HUNT_FILTER_TBL_ROWS 8192
46
47struct efx_ef10_filter_table {
48/* The RX match field masks supported by this fw & hw, in order of priority */
49 enum efx_filter_match_flags rx_match_flags[
50 MC_CMD_GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES_MAXNUM];
51 unsigned int rx_match_count;
52
53 struct {
54 unsigned long spec; /* pointer to spec plus flag bits */
55/* BUSY flag indicates that an update is in progress. STACK_OLD is
56 * used to mark and sweep stack-owned MAC filters.
57 */
58#define EFX_EF10_FILTER_FLAG_BUSY 1UL
59#define EFX_EF10_FILTER_FLAG_STACK_OLD 2UL
60#define EFX_EF10_FILTER_FLAGS 3UL
61 u64 handle; /* firmware handle */
62 } *entry;
63 wait_queue_head_t waitq;
64/* Shadow of net_device address lists, guarded by mac_lock */
65#define EFX_EF10_FILTER_STACK_UC_MAX 32
66#define EFX_EF10_FILTER_STACK_MC_MAX 256
67 struct {
68 u8 addr[ETH_ALEN];
69 u16 id;
70 } stack_uc_list[EFX_EF10_FILTER_STACK_UC_MAX],
71 stack_mc_list[EFX_EF10_FILTER_STACK_MC_MAX];
72 int stack_uc_count; /* negative for PROMISC */
73 int stack_mc_count; /* negative for PROMISC/ALLMULTI */
74};
75
76/* An arbitrary search limit for the software hash table */
77#define EFX_EF10_FILTER_SEARCH_LIMIT 200
78
79static void efx_ef10_rx_push_indir_table(struct efx_nic *efx);
80static void efx_ef10_rx_free_indir_table(struct efx_nic *efx);
81static void efx_ef10_filter_table_remove(struct efx_nic *efx);
82
83static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
84{
85 efx_dword_t reg;
86
87 efx_readd(efx, &reg, ER_DZ_BIU_MC_SFT_STATUS);
88 return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
89 EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
90}
91
92static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
93{
94 return resource_size(&efx->pci_dev->resource[EFX_MEM_BAR]);
95}
96
97static int efx_ef10_init_capabilities(struct efx_nic *efx)
98{
99 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_OUT_LEN);
100 struct efx_ef10_nic_data *nic_data = efx->nic_data;
101 size_t outlen;
102 int rc;
103
104 BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
105
106 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
107 outbuf, sizeof(outbuf), &outlen);
108 if (rc)
109 return rc;
110
111 if (outlen >= sizeof(outbuf)) {
112 nic_data->datapath_caps =
113 MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
114 if (!(nic_data->datapath_caps &
115 (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))) {
116 netif_err(efx, drv, efx->net_dev,
117 "Capabilities don't indicate TSO support.\n");
118 return -ENODEV;
119 }
120 }
121
122 return 0;
123}
124
125static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
126{
127 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
128 int rc;
129
130 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
131 outbuf, sizeof(outbuf), NULL);
132 if (rc)
133 return rc;
134 rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
135 return rc > 0 ? rc : -ERANGE;
136}
137
138static int efx_ef10_get_mac_address(struct efx_nic *efx, u8 *mac_address)
139{
140 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
141 size_t outlen;
142 int rc;
143
144 BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
145
146 rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
147 outbuf, sizeof(outbuf), &outlen);
148 if (rc)
149 return rc;
150 if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
151 return -EIO;
152
153 memcpy(mac_address,
154 MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE), ETH_ALEN);
155 return 0;
156}
157
158static int efx_ef10_probe(struct efx_nic *efx)
159{
160 struct efx_ef10_nic_data *nic_data;
161 int i, rc;
162
163 /* We can have one VI for each 8K region. However we need
164 * multiple TX queues per channel.
165 */
166 efx->max_channels =
167 min_t(unsigned int,
168 EFX_MAX_CHANNELS,
169 resource_size(&efx->pci_dev->resource[EFX_MEM_BAR]) /
170 (EFX_VI_PAGE_SIZE * EFX_TXQ_TYPES));
171 BUG_ON(efx->max_channels == 0);
172
173 nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
174 if (!nic_data)
175 return -ENOMEM;
176 efx->nic_data = nic_data;
177
178 rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
179 8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
180 if (rc)
181 goto fail1;
182
183 /* Get the MC's warm boot count. In case it's rebooting right
184 * now, be prepared to retry.
185 */
186 i = 0;
187 for (;;) {
188 rc = efx_ef10_get_warm_boot_count(efx);
189 if (rc >= 0)
190 break;
191 if (++i == 5)
192 goto fail2;
193 ssleep(1);
194 }
195 nic_data->warm_boot_count = rc;
196
197 nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
198
199 /* In case we're recovering from a crash (kexec), we want to
200 * cancel any outstanding request by the previous user of this
201 * function. We send a special message using the least
202 * significant bits of the 'high' (doorbell) register.
203 */
204 _efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
205
206 rc = efx_mcdi_init(efx);
207 if (rc)
208 goto fail2;
209
210 /* Reset (most) configuration for this function */
211 rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
212 if (rc)
213 goto fail3;
214
215 /* Enable event logging */
216 rc = efx_mcdi_log_ctrl(efx, true, false, 0);
217 if (rc)
218 goto fail3;
219
220 rc = efx_ef10_init_capabilities(efx);
221 if (rc < 0)
222 goto fail3;
223
224 efx->rx_packet_len_offset =
225 ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
226
227 if (!(nic_data->datapath_caps &
228 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
229 netif_err(efx, probe, efx->net_dev,
230 "current firmware does not support an RX prefix\n");
231 rc = -ENODEV;
232 goto fail3;
233 }
234
235 rc = efx_mcdi_port_get_number(efx);
236 if (rc < 0)
237 goto fail3;
238 efx->port_num = rc;
239
240 rc = efx_ef10_get_mac_address(efx, efx->net_dev->perm_addr);
241 if (rc)
242 goto fail3;
243
244 rc = efx_ef10_get_sysclk_freq(efx);
245 if (rc < 0)
246 goto fail3;
247 efx->timer_quantum_ns = 1536000 / rc; /* 1536 cycles */
248
249 /* Check whether firmware supports bug 35388 workaround */
250 rc = efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG35388, true);
251 if (rc == 0)
252 nic_data->workaround_35388 = true;
253 else if (rc != -ENOSYS && rc != -ENOENT)
254 goto fail3;
255 netif_dbg(efx, probe, efx->net_dev,
256 "workaround for bug 35388 is %sabled\n",
257 nic_data->workaround_35388 ? "en" : "dis");
258
259 rc = efx_mcdi_mon_probe(efx);
260 if (rc)
261 goto fail3;
262
Ben Hutchings8127d662013-08-29 19:19:29 +0100263 return 0;
264
265fail3:
266 efx_mcdi_fini(efx);
267fail2:
268 efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
269fail1:
270 kfree(nic_data);
271 efx->nic_data = NULL;
272 return rc;
273}
274
275static int efx_ef10_free_vis(struct efx_nic *efx)
276{
277 int rc = efx_mcdi_rpc(efx, MC_CMD_FREE_VIS, NULL, 0, NULL, 0, NULL);
278
279 /* -EALREADY means nothing to free, so ignore */
280 if (rc == -EALREADY)
281 rc = 0;
282 return rc;
283}
284
285static void efx_ef10_remove(struct efx_nic *efx)
286{
287 struct efx_ef10_nic_data *nic_data = efx->nic_data;
288 int rc;
289
290 efx_mcdi_mon_remove(efx);
291
292 /* This needs to be after efx_ptp_remove_channel() with no filters */
293 efx_ef10_rx_free_indir_table(efx);
294
295 rc = efx_ef10_free_vis(efx);
296 WARN_ON(rc != 0);
297
298 efx_mcdi_fini(efx);
299 efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
300 kfree(nic_data);
301}
302
303static int efx_ef10_alloc_vis(struct efx_nic *efx,
304 unsigned int min_vis, unsigned int max_vis)
305{
306 MCDI_DECLARE_BUF(inbuf, MC_CMD_ALLOC_VIS_IN_LEN);
307 MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_VIS_OUT_LEN);
308 struct efx_ef10_nic_data *nic_data = efx->nic_data;
309 size_t outlen;
310 int rc;
311
312 MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MIN_VI_COUNT, min_vis);
313 MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MAX_VI_COUNT, max_vis);
314 rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_VIS, inbuf, sizeof(inbuf),
315 outbuf, sizeof(outbuf), &outlen);
316 if (rc != 0)
317 return rc;
318
319 if (outlen < MC_CMD_ALLOC_VIS_OUT_LEN)
320 return -EIO;
321
322 netif_dbg(efx, drv, efx->net_dev, "base VI is A0x%03x\n",
323 MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE));
324
325 nic_data->vi_base = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE);
326 nic_data->n_allocated_vis = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_COUNT);
327 return 0;
328}
329
330static int efx_ef10_dimension_resources(struct efx_nic *efx)
331{
332 unsigned int n_vis =
333 max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
334
335 return efx_ef10_alloc_vis(efx, n_vis, n_vis);
336}
337
338static int efx_ef10_init_nic(struct efx_nic *efx)
339{
340 struct efx_ef10_nic_data *nic_data = efx->nic_data;
341 int rc;
342
343 if (nic_data->must_realloc_vis) {
344 /* We cannot let the number of VIs change now */
345 rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
346 nic_data->n_allocated_vis);
347 if (rc)
348 return rc;
349 nic_data->must_realloc_vis = false;
350 }
351
352 efx_ef10_rx_push_indir_table(efx);
353 return 0;
354}
355
356static int efx_ef10_map_reset_flags(u32 *flags)
357{
358 enum {
359 EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
360 ETH_RESET_SHARED_SHIFT),
361 EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
362 ETH_RESET_OFFLOAD | ETH_RESET_MAC |
363 ETH_RESET_PHY | ETH_RESET_MGMT) <<
364 ETH_RESET_SHARED_SHIFT)
365 };
366
367 /* We assume for now that our PCI function is permitted to
368 * reset everything.
369 */
370
371 if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
372 *flags &= ~EF10_RESET_MC;
373 return RESET_TYPE_WORLD;
374 }
375
376 if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
377 *flags &= ~EF10_RESET_PORT;
378 return RESET_TYPE_ALL;
379 }
380
381 /* no invisible reset implemented */
382
383 return -EINVAL;
384}
385
386#define EF10_DMA_STAT(ext_name, mcdi_name) \
387 [EF10_STAT_ ## ext_name] = \
388 { #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
389#define EF10_DMA_INVIS_STAT(int_name, mcdi_name) \
390 [EF10_STAT_ ## int_name] = \
391 { NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
392#define EF10_OTHER_STAT(ext_name) \
393 [EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
394
395static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
396 EF10_DMA_STAT(tx_bytes, TX_BYTES),
397 EF10_DMA_STAT(tx_packets, TX_PKTS),
398 EF10_DMA_STAT(tx_pause, TX_PAUSE_PKTS),
399 EF10_DMA_STAT(tx_control, TX_CONTROL_PKTS),
400 EF10_DMA_STAT(tx_unicast, TX_UNICAST_PKTS),
401 EF10_DMA_STAT(tx_multicast, TX_MULTICAST_PKTS),
402 EF10_DMA_STAT(tx_broadcast, TX_BROADCAST_PKTS),
403 EF10_DMA_STAT(tx_lt64, TX_LT64_PKTS),
404 EF10_DMA_STAT(tx_64, TX_64_PKTS),
405 EF10_DMA_STAT(tx_65_to_127, TX_65_TO_127_PKTS),
406 EF10_DMA_STAT(tx_128_to_255, TX_128_TO_255_PKTS),
407 EF10_DMA_STAT(tx_256_to_511, TX_256_TO_511_PKTS),
408 EF10_DMA_STAT(tx_512_to_1023, TX_512_TO_1023_PKTS),
409 EF10_DMA_STAT(tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
410 EF10_DMA_STAT(tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
411 EF10_DMA_STAT(rx_bytes, RX_BYTES),
412 EF10_DMA_INVIS_STAT(rx_bytes_minus_good_bytes, RX_BAD_BYTES),
413 EF10_OTHER_STAT(rx_good_bytes),
414 EF10_OTHER_STAT(rx_bad_bytes),
415 EF10_DMA_STAT(rx_packets, RX_PKTS),
416 EF10_DMA_STAT(rx_good, RX_GOOD_PKTS),
417 EF10_DMA_STAT(rx_bad, RX_BAD_FCS_PKTS),
418 EF10_DMA_STAT(rx_pause, RX_PAUSE_PKTS),
419 EF10_DMA_STAT(rx_control, RX_CONTROL_PKTS),
420 EF10_DMA_STAT(rx_unicast, RX_UNICAST_PKTS),
421 EF10_DMA_STAT(rx_multicast, RX_MULTICAST_PKTS),
422 EF10_DMA_STAT(rx_broadcast, RX_BROADCAST_PKTS),
423 EF10_DMA_STAT(rx_lt64, RX_UNDERSIZE_PKTS),
424 EF10_DMA_STAT(rx_64, RX_64_PKTS),
425 EF10_DMA_STAT(rx_65_to_127, RX_65_TO_127_PKTS),
426 EF10_DMA_STAT(rx_128_to_255, RX_128_TO_255_PKTS),
427 EF10_DMA_STAT(rx_256_to_511, RX_256_TO_511_PKTS),
428 EF10_DMA_STAT(rx_512_to_1023, RX_512_TO_1023_PKTS),
429 EF10_DMA_STAT(rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
430 EF10_DMA_STAT(rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
431 EF10_DMA_STAT(rx_gtjumbo, RX_GTJUMBO_PKTS),
432 EF10_DMA_STAT(rx_bad_gtjumbo, RX_JABBER_PKTS),
433 EF10_DMA_STAT(rx_overflow, RX_OVERFLOW_PKTS),
434 EF10_DMA_STAT(rx_align_error, RX_ALIGN_ERROR_PKTS),
435 EF10_DMA_STAT(rx_length_error, RX_LENGTH_ERROR_PKTS),
436 EF10_DMA_STAT(rx_nodesc_drops, RX_NODESC_DROPS),
437};
438
439#define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_tx_bytes) | \
440 (1ULL << EF10_STAT_tx_packets) | \
441 (1ULL << EF10_STAT_tx_pause) | \
442 (1ULL << EF10_STAT_tx_unicast) | \
443 (1ULL << EF10_STAT_tx_multicast) | \
444 (1ULL << EF10_STAT_tx_broadcast) | \
445 (1ULL << EF10_STAT_rx_bytes) | \
446 (1ULL << EF10_STAT_rx_bytes_minus_good_bytes) | \
447 (1ULL << EF10_STAT_rx_good_bytes) | \
448 (1ULL << EF10_STAT_rx_bad_bytes) | \
449 (1ULL << EF10_STAT_rx_packets) | \
450 (1ULL << EF10_STAT_rx_good) | \
451 (1ULL << EF10_STAT_rx_bad) | \
452 (1ULL << EF10_STAT_rx_pause) | \
453 (1ULL << EF10_STAT_rx_control) | \
454 (1ULL << EF10_STAT_rx_unicast) | \
455 (1ULL << EF10_STAT_rx_multicast) | \
456 (1ULL << EF10_STAT_rx_broadcast) | \
457 (1ULL << EF10_STAT_rx_lt64) | \
458 (1ULL << EF10_STAT_rx_64) | \
459 (1ULL << EF10_STAT_rx_65_to_127) | \
460 (1ULL << EF10_STAT_rx_128_to_255) | \
461 (1ULL << EF10_STAT_rx_256_to_511) | \
462 (1ULL << EF10_STAT_rx_512_to_1023) | \
463 (1ULL << EF10_STAT_rx_1024_to_15xx) | \
464 (1ULL << EF10_STAT_rx_15xx_to_jumbo) | \
465 (1ULL << EF10_STAT_rx_gtjumbo) | \
466 (1ULL << EF10_STAT_rx_bad_gtjumbo) | \
467 (1ULL << EF10_STAT_rx_overflow) | \
468 (1ULL << EF10_STAT_rx_nodesc_drops))
469
470/* These statistics are only provided by the 10G MAC. For a 10G/40G
471 * switchable port we do not expose these because they might not
472 * include all the packets they should.
473 */
474#define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_tx_control) | \
475 (1ULL << EF10_STAT_tx_lt64) | \
476 (1ULL << EF10_STAT_tx_64) | \
477 (1ULL << EF10_STAT_tx_65_to_127) | \
478 (1ULL << EF10_STAT_tx_128_to_255) | \
479 (1ULL << EF10_STAT_tx_256_to_511) | \
480 (1ULL << EF10_STAT_tx_512_to_1023) | \
481 (1ULL << EF10_STAT_tx_1024_to_15xx) | \
482 (1ULL << EF10_STAT_tx_15xx_to_jumbo))
483
484/* These statistics are only provided by the 40G MAC. For a 10G/40G
485 * switchable port we do expose these because the errors will otherwise
486 * be silent.
487 */
488#define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_rx_align_error) | \
489 (1ULL << EF10_STAT_rx_length_error))
490
491#if BITS_PER_LONG == 64
492#define STAT_MASK_BITMAP(bits) (bits)
493#else
494#define STAT_MASK_BITMAP(bits) (bits) & 0xffffffff, (bits) >> 32
495#endif
496
497static const unsigned long *efx_ef10_stat_mask(struct efx_nic *efx)
498{
499 static const unsigned long hunt_40g_stat_mask[] = {
500 STAT_MASK_BITMAP(HUNT_COMMON_STAT_MASK |
501 HUNT_40G_EXTRA_STAT_MASK)
502 };
503 static const unsigned long hunt_10g_only_stat_mask[] = {
504 STAT_MASK_BITMAP(HUNT_COMMON_STAT_MASK |
505 HUNT_10G_ONLY_STAT_MASK)
506 };
507 u32 port_caps = efx_mcdi_phy_get_caps(efx);
508
509 if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN))
510 return hunt_40g_stat_mask;
511 else
512 return hunt_10g_only_stat_mask;
513}
514
515static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
516{
517 return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
518 efx_ef10_stat_mask(efx), names);
519}
520
521static int efx_ef10_try_update_nic_stats(struct efx_nic *efx)
522{
523 struct efx_ef10_nic_data *nic_data = efx->nic_data;
524 const unsigned long *stats_mask = efx_ef10_stat_mask(efx);
525 __le64 generation_start, generation_end;
526 u64 *stats = nic_data->stats;
527 __le64 *dma_stats;
528
529 dma_stats = efx->stats_buffer.addr;
530 nic_data = efx->nic_data;
531
532 generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
533 if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
534 return 0;
535 rmb();
536 efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, stats_mask,
537 stats, efx->stats_buffer.addr, false);
538 generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
539 if (generation_end != generation_start)
540 return -EAGAIN;
541
542 /* Update derived statistics */
543 stats[EF10_STAT_rx_good_bytes] =
544 stats[EF10_STAT_rx_bytes] -
545 stats[EF10_STAT_rx_bytes_minus_good_bytes];
546 efx_update_diff_stat(&stats[EF10_STAT_rx_bad_bytes],
547 stats[EF10_STAT_rx_bytes_minus_good_bytes]);
548
549 return 0;
550}
551
552
553static size_t efx_ef10_update_stats(struct efx_nic *efx, u64 *full_stats,
554 struct rtnl_link_stats64 *core_stats)
555{
556 const unsigned long *mask = efx_ef10_stat_mask(efx);
557 struct efx_ef10_nic_data *nic_data = efx->nic_data;
558 u64 *stats = nic_data->stats;
559 size_t stats_count = 0, index;
560 int retry;
561
562 /* If we're unlucky enough to read statistics during the DMA, wait
563 * up to 10ms for it to finish (typically takes <500us)
564 */
565 for (retry = 0; retry < 100; ++retry) {
566 if (efx_ef10_try_update_nic_stats(efx) == 0)
567 break;
568 udelay(100);
569 }
570
571 if (full_stats) {
572 for_each_set_bit(index, mask, EF10_STAT_COUNT) {
573 if (efx_ef10_stat_desc[index].name) {
574 *full_stats++ = stats[index];
575 ++stats_count;
576 }
577 }
578 }
579
580 if (core_stats) {
581 core_stats->rx_packets = stats[EF10_STAT_rx_packets];
582 core_stats->tx_packets = stats[EF10_STAT_tx_packets];
583 core_stats->rx_bytes = stats[EF10_STAT_rx_bytes];
584 core_stats->tx_bytes = stats[EF10_STAT_tx_bytes];
585 core_stats->rx_dropped = stats[EF10_STAT_rx_nodesc_drops];
586 core_stats->multicast = stats[EF10_STAT_rx_multicast];
587 core_stats->rx_length_errors =
588 stats[EF10_STAT_rx_gtjumbo] +
589 stats[EF10_STAT_rx_length_error];
590 core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
591 core_stats->rx_frame_errors = stats[EF10_STAT_rx_align_error];
592 core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
593 core_stats->rx_errors = (core_stats->rx_length_errors +
594 core_stats->rx_crc_errors +
595 core_stats->rx_frame_errors);
596 }
597
598 return stats_count;
599}
600
601static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
602{
603 struct efx_nic *efx = channel->efx;
604 unsigned int mode, value;
605 efx_dword_t timer_cmd;
606
607 if (channel->irq_moderation) {
608 mode = 3;
609 value = channel->irq_moderation - 1;
610 } else {
611 mode = 0;
612 value = 0;
613 }
614
615 if (EFX_EF10_WORKAROUND_35388(efx)) {
616 EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
617 EFE_DD_EVQ_IND_TIMER_FLAGS,
618 ERF_DD_EVQ_IND_TIMER_MODE, mode,
619 ERF_DD_EVQ_IND_TIMER_VAL, value);
620 efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
621 channel->channel);
622 } else {
623 EFX_POPULATE_DWORD_2(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
624 ERF_DZ_TC_TIMER_VAL, value);
625 efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
626 channel->channel);
627 }
628}
629
630static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
631{
632 wol->supported = 0;
633 wol->wolopts = 0;
634 memset(&wol->sopass, 0, sizeof(wol->sopass));
635}
636
637static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
638{
639 if (type != 0)
640 return -EINVAL;
641 return 0;
642}
643
644static void efx_ef10_mcdi_request(struct efx_nic *efx,
645 const efx_dword_t *hdr, size_t hdr_len,
646 const efx_dword_t *sdu, size_t sdu_len)
647{
648 struct efx_ef10_nic_data *nic_data = efx->nic_data;
649 u8 *pdu = nic_data->mcdi_buf.addr;
650
651 memcpy(pdu, hdr, hdr_len);
652 memcpy(pdu + hdr_len, sdu, sdu_len);
653 wmb();
654
655 /* The hardware provides 'low' and 'high' (doorbell) registers
656 * for passing the 64-bit address of an MCDI request to
657 * firmware. However the dwords are swapped by firmware. The
658 * least significant bits of the doorbell are then 0 for all
659 * MCDI requests due to alignment.
660 */
661 _efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
662 ER_DZ_MC_DB_LWRD);
663 _efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
664 ER_DZ_MC_DB_HWRD);
665}
666
667static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
668{
669 struct efx_ef10_nic_data *nic_data = efx->nic_data;
670 const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
671
672 rmb();
673 return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
674}
675
676static void
677efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
678 size_t offset, size_t outlen)
679{
680 struct efx_ef10_nic_data *nic_data = efx->nic_data;
681 const u8 *pdu = nic_data->mcdi_buf.addr;
682
683 memcpy(outbuf, pdu + offset, outlen);
684}
685
686static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
687{
688 struct efx_ef10_nic_data *nic_data = efx->nic_data;
689 int rc;
690
691 rc = efx_ef10_get_warm_boot_count(efx);
692 if (rc < 0) {
693 /* The firmware is presumably in the process of
694 * rebooting. However, we are supposed to report each
695 * reboot just once, so we must only do that once we
696 * can read and store the updated warm boot count.
697 */
698 return 0;
699 }
700
701 if (rc == nic_data->warm_boot_count)
702 return 0;
703
704 nic_data->warm_boot_count = rc;
705
706 /* All our allocations have been reset */
707 nic_data->must_realloc_vis = true;
708 nic_data->must_restore_filters = true;
709 nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
710
Ben Hutchings869070c2013-09-05 22:46:10 +0100711 /* MAC statistics have been cleared on the NIC; clear the local
712 * statistic that we update with efx_update_diff_stat().
713 */
714 nic_data->stats[EF10_STAT_rx_bad_bytes] = 0;
715
Ben Hutchings8127d662013-08-29 19:19:29 +0100716 return -EIO;
717}
718
719/* Handle an MSI interrupt
720 *
721 * Handle an MSI hardware interrupt. This routine schedules event
722 * queue processing. No interrupt acknowledgement cycle is necessary.
723 * Also, we never need to check that the interrupt is for us, since
724 * MSI interrupts cannot be shared.
725 */
726static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
727{
728 struct efx_msi_context *context = dev_id;
729 struct efx_nic *efx = context->efx;
730
731 netif_vdbg(efx, intr, efx->net_dev,
732 "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
733
734 if (likely(ACCESS_ONCE(efx->irq_soft_enabled))) {
735 /* Note test interrupts */
736 if (context->index == efx->irq_level)
737 efx->last_irq_cpu = raw_smp_processor_id();
738
739 /* Schedule processing of the channel */
740 efx_schedule_channel_irq(efx->channel[context->index]);
741 }
742
743 return IRQ_HANDLED;
744}
745
746static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
747{
748 struct efx_nic *efx = dev_id;
749 bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
750 struct efx_channel *channel;
751 efx_dword_t reg;
752 u32 queues;
753
754 /* Read the ISR which also ACKs the interrupts */
755 efx_readd(efx, &reg, ER_DZ_BIU_INT_ISR);
756 queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
757
758 if (queues == 0)
759 return IRQ_NONE;
760
761 if (likely(soft_enabled)) {
762 /* Note test interrupts */
763 if (queues & (1U << efx->irq_level))
764 efx->last_irq_cpu = raw_smp_processor_id();
765
766 efx_for_each_channel(channel, efx) {
767 if (queues & 1)
768 efx_schedule_channel_irq(channel);
769 queues >>= 1;
770 }
771 }
772
773 netif_vdbg(efx, intr, efx->net_dev,
774 "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
775 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
776
777 return IRQ_HANDLED;
778}
779
780static void efx_ef10_irq_test_generate(struct efx_nic *efx)
781{
782 MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
783
784 BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
785
786 MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
787 (void) efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
788 inbuf, sizeof(inbuf), NULL, 0, NULL);
789}
790
791static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
792{
793 return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
794 (tx_queue->ptr_mask + 1) *
795 sizeof(efx_qword_t),
796 GFP_KERNEL);
797}
798
799/* This writes to the TX_DESC_WPTR and also pushes data */
800static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
801 const efx_qword_t *txd)
802{
803 unsigned int write_ptr;
804 efx_oword_t reg;
805
806 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
807 EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
808 reg.qword[0] = *txd;
809 efx_writeo_page(tx_queue->efx, &reg,
810 ER_DZ_TX_DESC_UPD, tx_queue->queue);
811}
812
813static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
814{
815 MCDI_DECLARE_BUF(inbuf, MC_CMD_INIT_TXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
816 EFX_BUF_SIZE));
817 MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_TXQ_OUT_LEN);
818 bool csum_offload = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
819 size_t entries = tx_queue->txd.buf.len / EFX_BUF_SIZE;
820 struct efx_channel *channel = tx_queue->channel;
821 struct efx_nic *efx = tx_queue->efx;
822 size_t inlen, outlen;
823 dma_addr_t dma_addr;
824 efx_qword_t *txd;
825 int rc;
826 int i;
827
828 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_SIZE, tx_queue->ptr_mask + 1);
829 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_TARGET_EVQ, channel->channel);
830 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_LABEL, tx_queue->queue);
831 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_INSTANCE, tx_queue->queue);
832 MCDI_POPULATE_DWORD_2(inbuf, INIT_TXQ_IN_FLAGS,
833 INIT_TXQ_IN_FLAG_IP_CSUM_DIS, !csum_offload,
834 INIT_TXQ_IN_FLAG_TCP_CSUM_DIS, !csum_offload);
835 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_OWNER_ID, 0);
836 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
837
838 dma_addr = tx_queue->txd.buf.dma_addr;
839
840 netif_dbg(efx, hw, efx->net_dev, "pushing TXQ %d. %zu entries (%llx)\n",
841 tx_queue->queue, entries, (u64)dma_addr);
842
843 for (i = 0; i < entries; ++i) {
844 MCDI_SET_ARRAY_QWORD(inbuf, INIT_TXQ_IN_DMA_ADDR, i, dma_addr);
845 dma_addr += EFX_BUF_SIZE;
846 }
847
848 inlen = MC_CMD_INIT_TXQ_IN_LEN(entries);
849
850 rc = efx_mcdi_rpc(efx, MC_CMD_INIT_TXQ, inbuf, inlen,
851 outbuf, sizeof(outbuf), &outlen);
852 if (rc)
853 goto fail;
854
855 /* A previous user of this TX queue might have set us up the
856 * bomb by writing a descriptor to the TX push collector but
857 * not the doorbell. (Each collector belongs to a port, not a
858 * queue or function, so cannot easily be reset.) We must
859 * attempt to push a no-op descriptor in its place.
860 */
861 tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
862 tx_queue->insert_count = 1;
863 txd = efx_tx_desc(tx_queue, 0);
864 EFX_POPULATE_QWORD_4(*txd,
865 ESF_DZ_TX_DESC_IS_OPT, true,
866 ESF_DZ_TX_OPTION_TYPE,
867 ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
868 ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
869 ESF_DZ_TX_OPTION_IP_CSUM, csum_offload);
870 tx_queue->write_count = 1;
871 wmb();
872 efx_ef10_push_tx_desc(tx_queue, txd);
873
874 return;
875
876fail:
877 WARN_ON(true);
878 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
879}
880
881static void efx_ef10_tx_fini(struct efx_tx_queue *tx_queue)
882{
883 MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_TXQ_IN_LEN);
884 MCDI_DECLARE_BUF(outbuf, MC_CMD_FINI_TXQ_OUT_LEN);
885 struct efx_nic *efx = tx_queue->efx;
886 size_t outlen;
887 int rc;
888
889 MCDI_SET_DWORD(inbuf, FINI_TXQ_IN_INSTANCE,
890 tx_queue->queue);
891
892 rc = efx_mcdi_rpc(efx, MC_CMD_FINI_TXQ, inbuf, sizeof(inbuf),
893 outbuf, sizeof(outbuf), &outlen);
894
895 if (rc && rc != -EALREADY)
896 goto fail;
897
898 return;
899
900fail:
901 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
902}
903
904static void efx_ef10_tx_remove(struct efx_tx_queue *tx_queue)
905{
906 efx_nic_free_buffer(tx_queue->efx, &tx_queue->txd.buf);
907}
908
909/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
910static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
911{
912 unsigned int write_ptr;
913 efx_dword_t reg;
914
915 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
916 EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
917 efx_writed_page(tx_queue->efx, &reg,
918 ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
919}
920
921static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
922{
923 unsigned int old_write_count = tx_queue->write_count;
924 struct efx_tx_buffer *buffer;
925 unsigned int write_ptr;
926 efx_qword_t *txd;
927
928 BUG_ON(tx_queue->write_count == tx_queue->insert_count);
929
930 do {
931 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
932 buffer = &tx_queue->buffer[write_ptr];
933 txd = efx_tx_desc(tx_queue, write_ptr);
934 ++tx_queue->write_count;
935
936 /* Create TX descriptor ring entry */
937 if (buffer->flags & EFX_TX_BUF_OPTION) {
938 *txd = buffer->option;
939 } else {
940 BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
941 EFX_POPULATE_QWORD_3(
942 *txd,
943 ESF_DZ_TX_KER_CONT,
944 buffer->flags & EFX_TX_BUF_CONT,
945 ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
946 ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
947 }
948 } while (tx_queue->write_count != tx_queue->insert_count);
949
950 wmb(); /* Ensure descriptors are written before they are fetched */
951
952 if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
953 txd = efx_tx_desc(tx_queue,
954 old_write_count & tx_queue->ptr_mask);
955 efx_ef10_push_tx_desc(tx_queue, txd);
956 ++tx_queue->pushes;
957 } else {
958 efx_ef10_notify_tx_desc(tx_queue);
959 }
960}
961
962static int efx_ef10_alloc_rss_context(struct efx_nic *efx, u32 *context)
963{
964 MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_ALLOC_IN_LEN);
965 MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN);
966 size_t outlen;
967 int rc;
968
969 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_UPSTREAM_PORT_ID,
970 EVB_PORT_ID_ASSIGNED);
971 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_TYPE,
972 MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_EXCLUSIVE);
973 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_NUM_QUEUES,
974 EFX_MAX_CHANNELS);
975
976 rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_ALLOC, inbuf, sizeof(inbuf),
977 outbuf, sizeof(outbuf), &outlen);
978 if (rc != 0)
979 return rc;
980
981 if (outlen < MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN)
982 return -EIO;
983
984 *context = MCDI_DWORD(outbuf, RSS_CONTEXT_ALLOC_OUT_RSS_CONTEXT_ID);
985
986 return 0;
987}
988
989static void efx_ef10_free_rss_context(struct efx_nic *efx, u32 context)
990{
991 MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_FREE_IN_LEN);
992 int rc;
993
994 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_FREE_IN_RSS_CONTEXT_ID,
995 context);
996
997 rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_FREE, inbuf, sizeof(inbuf),
998 NULL, 0, NULL);
999 WARN_ON(rc != 0);
1000}
1001
1002static int efx_ef10_populate_rss_table(struct efx_nic *efx, u32 context)
1003{
1004 MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_SET_TABLE_IN_LEN);
1005 MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_SET_KEY_IN_LEN);
1006 int i, rc;
1007
1008 MCDI_SET_DWORD(tablebuf, RSS_CONTEXT_SET_TABLE_IN_RSS_CONTEXT_ID,
1009 context);
1010 BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1011 MC_CMD_RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE_LEN);
1012
1013 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); ++i)
1014 MCDI_PTR(tablebuf,
1015 RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE)[i] =
1016 (u8) efx->rx_indir_table[i];
1017
1018 rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_TABLE, tablebuf,
1019 sizeof(tablebuf), NULL, 0, NULL);
1020 if (rc != 0)
1021 return rc;
1022
1023 MCDI_SET_DWORD(keybuf, RSS_CONTEXT_SET_KEY_IN_RSS_CONTEXT_ID,
1024 context);
1025 BUILD_BUG_ON(ARRAY_SIZE(efx->rx_hash_key) !=
1026 MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN);
1027 for (i = 0; i < ARRAY_SIZE(efx->rx_hash_key); ++i)
1028 MCDI_PTR(keybuf, RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY)[i] =
1029 efx->rx_hash_key[i];
1030
1031 return efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_KEY, keybuf,
1032 sizeof(keybuf), NULL, 0, NULL);
1033}
1034
1035static void efx_ef10_rx_free_indir_table(struct efx_nic *efx)
1036{
1037 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1038
1039 if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
1040 efx_ef10_free_rss_context(efx, nic_data->rx_rss_context);
1041 nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
1042}
1043
1044static void efx_ef10_rx_push_indir_table(struct efx_nic *efx)
1045{
1046 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1047 int rc;
1048
1049 netif_dbg(efx, drv, efx->net_dev, "pushing RX indirection table\n");
1050
1051 if (nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID) {
1052 rc = efx_ef10_alloc_rss_context(efx, &nic_data->rx_rss_context);
1053 if (rc != 0)
1054 goto fail;
1055 }
1056
1057 rc = efx_ef10_populate_rss_table(efx, nic_data->rx_rss_context);
1058 if (rc != 0)
1059 goto fail;
1060
1061 return;
1062
1063fail:
1064 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1065}
1066
1067static int efx_ef10_rx_probe(struct efx_rx_queue *rx_queue)
1068{
1069 return efx_nic_alloc_buffer(rx_queue->efx, &rx_queue->rxd.buf,
1070 (rx_queue->ptr_mask + 1) *
1071 sizeof(efx_qword_t),
1072 GFP_KERNEL);
1073}
1074
1075static void efx_ef10_rx_init(struct efx_rx_queue *rx_queue)
1076{
1077 MCDI_DECLARE_BUF(inbuf,
1078 MC_CMD_INIT_RXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
1079 EFX_BUF_SIZE));
1080 MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_RXQ_OUT_LEN);
1081 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
1082 size_t entries = rx_queue->rxd.buf.len / EFX_BUF_SIZE;
1083 struct efx_nic *efx = rx_queue->efx;
1084 size_t inlen, outlen;
1085 dma_addr_t dma_addr;
1086 int rc;
1087 int i;
1088
1089 rx_queue->scatter_n = 0;
1090 rx_queue->scatter_len = 0;
1091
1092 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_SIZE, rx_queue->ptr_mask + 1);
1093 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_TARGET_EVQ, channel->channel);
1094 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_LABEL, efx_rx_queue_index(rx_queue));
1095 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_INSTANCE,
1096 efx_rx_queue_index(rx_queue));
1097 MCDI_POPULATE_DWORD_1(inbuf, INIT_RXQ_IN_FLAGS,
1098 INIT_RXQ_IN_FLAG_PREFIX, 1);
1099 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_OWNER_ID, 0);
1100 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1101
1102 dma_addr = rx_queue->rxd.buf.dma_addr;
1103
1104 netif_dbg(efx, hw, efx->net_dev, "pushing RXQ %d. %zu entries (%llx)\n",
1105 efx_rx_queue_index(rx_queue), entries, (u64)dma_addr);
1106
1107 for (i = 0; i < entries; ++i) {
1108 MCDI_SET_ARRAY_QWORD(inbuf, INIT_RXQ_IN_DMA_ADDR, i, dma_addr);
1109 dma_addr += EFX_BUF_SIZE;
1110 }
1111
1112 inlen = MC_CMD_INIT_RXQ_IN_LEN(entries);
1113
1114 rc = efx_mcdi_rpc(efx, MC_CMD_INIT_RXQ, inbuf, inlen,
1115 outbuf, sizeof(outbuf), &outlen);
1116 if (rc)
1117 goto fail;
1118
1119 return;
1120
1121fail:
1122 WARN_ON(true);
1123 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1124}
1125
1126static void efx_ef10_rx_fini(struct efx_rx_queue *rx_queue)
1127{
1128 MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_RXQ_IN_LEN);
1129 MCDI_DECLARE_BUF(outbuf, MC_CMD_FINI_RXQ_OUT_LEN);
1130 struct efx_nic *efx = rx_queue->efx;
1131 size_t outlen;
1132 int rc;
1133
1134 MCDI_SET_DWORD(inbuf, FINI_RXQ_IN_INSTANCE,
1135 efx_rx_queue_index(rx_queue));
1136
1137 rc = efx_mcdi_rpc(efx, MC_CMD_FINI_RXQ, inbuf, sizeof(inbuf),
1138 outbuf, sizeof(outbuf), &outlen);
1139
1140 if (rc && rc != -EALREADY)
1141 goto fail;
1142
1143 return;
1144
1145fail:
1146 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1147}
1148
1149static void efx_ef10_rx_remove(struct efx_rx_queue *rx_queue)
1150{
1151 efx_nic_free_buffer(rx_queue->efx, &rx_queue->rxd.buf);
1152}
1153
1154/* This creates an entry in the RX descriptor queue */
1155static inline void
1156efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
1157{
1158 struct efx_rx_buffer *rx_buf;
1159 efx_qword_t *rxd;
1160
1161 rxd = efx_rx_desc(rx_queue, index);
1162 rx_buf = efx_rx_buffer(rx_queue, index);
1163 EFX_POPULATE_QWORD_2(*rxd,
1164 ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
1165 ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
1166}
1167
1168static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
1169{
1170 struct efx_nic *efx = rx_queue->efx;
1171 unsigned int write_count;
1172 efx_dword_t reg;
1173
1174 /* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
1175 write_count = rx_queue->added_count & ~7;
1176 if (rx_queue->notified_count == write_count)
1177 return;
1178
1179 do
1180 efx_ef10_build_rx_desc(
1181 rx_queue,
1182 rx_queue->notified_count & rx_queue->ptr_mask);
1183 while (++rx_queue->notified_count != write_count);
1184
1185 wmb();
1186 EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
1187 write_count & rx_queue->ptr_mask);
1188 efx_writed_page(efx, &reg, ER_DZ_RX_DESC_UPD,
1189 efx_rx_queue_index(rx_queue));
1190}
1191
1192static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
1193
1194static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
1195{
1196 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
1197 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
1198 efx_qword_t event;
1199
1200 EFX_POPULATE_QWORD_2(event,
1201 ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
1202 ESF_DZ_EV_DATA, EFX_EF10_REFILL);
1203
1204 MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
1205
1206 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
1207 * already swapped the data to little-endian order.
1208 */
1209 memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
1210 sizeof(efx_qword_t));
1211
1212 efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
1213 inbuf, sizeof(inbuf), 0,
1214 efx_ef10_rx_defer_refill_complete, 0);
1215}
1216
1217static void
1218efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
1219 int rc, efx_dword_t *outbuf,
1220 size_t outlen_actual)
1221{
1222 /* nothing to do */
1223}
1224
1225static int efx_ef10_ev_probe(struct efx_channel *channel)
1226{
1227 return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf,
1228 (channel->eventq_mask + 1) *
1229 sizeof(efx_qword_t),
1230 GFP_KERNEL);
1231}
1232
1233static int efx_ef10_ev_init(struct efx_channel *channel)
1234{
1235 MCDI_DECLARE_BUF(inbuf,
1236 MC_CMD_INIT_EVQ_IN_LEN(EFX_MAX_EVQ_SIZE * 8 /
1237 EFX_BUF_SIZE));
1238 MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_EVQ_OUT_LEN);
1239 size_t entries = channel->eventq.buf.len / EFX_BUF_SIZE;
1240 struct efx_nic *efx = channel->efx;
1241 struct efx_ef10_nic_data *nic_data;
1242 bool supports_rx_merge;
1243 size_t inlen, outlen;
1244 dma_addr_t dma_addr;
1245 int rc;
1246 int i;
1247
1248 nic_data = efx->nic_data;
1249 supports_rx_merge =
1250 !!(nic_data->datapath_caps &
1251 1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
1252
1253 /* Fill event queue with all ones (i.e. empty events) */
1254 memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1255
1256 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_SIZE, channel->eventq_mask + 1);
1257 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_INSTANCE, channel->channel);
1258 /* INIT_EVQ expects index in vector table, not absolute */
1259 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_IRQ_NUM, channel->channel);
1260 MCDI_POPULATE_DWORD_4(inbuf, INIT_EVQ_IN_FLAGS,
1261 INIT_EVQ_IN_FLAG_INTERRUPTING, 1,
1262 INIT_EVQ_IN_FLAG_RX_MERGE, 1,
1263 INIT_EVQ_IN_FLAG_TX_MERGE, 1,
1264 INIT_EVQ_IN_FLAG_CUT_THRU, !supports_rx_merge);
1265 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_MODE,
1266 MC_CMD_INIT_EVQ_IN_TMR_MODE_DIS);
1267 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_LOAD, 0);
1268 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_RELOAD, 0);
1269 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_MODE,
1270 MC_CMD_INIT_EVQ_IN_COUNT_MODE_DIS);
1271 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_THRSHLD, 0);
1272
1273 dma_addr = channel->eventq.buf.dma_addr;
1274 for (i = 0; i < entries; ++i) {
1275 MCDI_SET_ARRAY_QWORD(inbuf, INIT_EVQ_IN_DMA_ADDR, i, dma_addr);
1276 dma_addr += EFX_BUF_SIZE;
1277 }
1278
1279 inlen = MC_CMD_INIT_EVQ_IN_LEN(entries);
1280
1281 rc = efx_mcdi_rpc(efx, MC_CMD_INIT_EVQ, inbuf, inlen,
1282 outbuf, sizeof(outbuf), &outlen);
1283 if (rc)
1284 goto fail;
1285
1286 /* IRQ return is ignored */
1287
1288 return 0;
1289
1290fail:
1291 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1292 return rc;
1293}
1294
1295static void efx_ef10_ev_fini(struct efx_channel *channel)
1296{
1297 MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_EVQ_IN_LEN);
1298 MCDI_DECLARE_BUF(outbuf, MC_CMD_FINI_EVQ_OUT_LEN);
1299 struct efx_nic *efx = channel->efx;
1300 size_t outlen;
1301 int rc;
1302
1303 MCDI_SET_DWORD(inbuf, FINI_EVQ_IN_INSTANCE, channel->channel);
1304
1305 rc = efx_mcdi_rpc(efx, MC_CMD_FINI_EVQ, inbuf, sizeof(inbuf),
1306 outbuf, sizeof(outbuf), &outlen);
1307
1308 if (rc && rc != -EALREADY)
1309 goto fail;
1310
1311 return;
1312
1313fail:
1314 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1315}
1316
1317static void efx_ef10_ev_remove(struct efx_channel *channel)
1318{
1319 efx_nic_free_buffer(channel->efx, &channel->eventq.buf);
1320}
1321
1322static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
1323 unsigned int rx_queue_label)
1324{
1325 struct efx_nic *efx = rx_queue->efx;
1326
1327 netif_info(efx, hw, efx->net_dev,
1328 "rx event arrived on queue %d labeled as queue %u\n",
1329 efx_rx_queue_index(rx_queue), rx_queue_label);
1330
1331 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1332}
1333
1334static void
1335efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
1336 unsigned int actual, unsigned int expected)
1337{
1338 unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
1339 struct efx_nic *efx = rx_queue->efx;
1340
1341 netif_info(efx, hw, efx->net_dev,
1342 "dropped %d events (index=%d expected=%d)\n",
1343 dropped, actual, expected);
1344
1345 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1346}
1347
1348/* partially received RX was aborted. clean up. */
1349static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
1350{
1351 unsigned int rx_desc_ptr;
1352
1353 WARN_ON(rx_queue->scatter_n == 0);
1354
1355 netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
1356 "scattered RX aborted (dropping %u buffers)\n",
1357 rx_queue->scatter_n);
1358
1359 rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
1360
1361 efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
1362 0, EFX_RX_PKT_DISCARD);
1363
1364 rx_queue->removed_count += rx_queue->scatter_n;
1365 rx_queue->scatter_n = 0;
1366 rx_queue->scatter_len = 0;
1367 ++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
1368}
1369
1370static int efx_ef10_handle_rx_event(struct efx_channel *channel,
1371 const efx_qword_t *event)
1372{
1373 unsigned int rx_bytes, next_ptr_lbits, rx_queue_label, rx_l4_class;
1374 unsigned int n_descs, n_packets, i;
1375 struct efx_nic *efx = channel->efx;
1376 struct efx_rx_queue *rx_queue;
1377 bool rx_cont;
1378 u16 flags = 0;
1379
1380 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
1381 return 0;
1382
1383 /* Basic packet information */
1384 rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
1385 next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
1386 rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
1387 rx_l4_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L4_CLASS);
1388 rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
1389
1390 WARN_ON(EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT));
1391
1392 rx_queue = efx_channel_get_rx_queue(channel);
1393
1394 if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
1395 efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
1396
1397 n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
1398 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
1399
1400 if (n_descs != rx_queue->scatter_n + 1) {
1401 /* detect rx abort */
1402 if (unlikely(n_descs == rx_queue->scatter_n)) {
1403 WARN_ON(rx_bytes != 0);
1404 efx_ef10_handle_rx_abort(rx_queue);
1405 return 0;
1406 }
1407
1408 if (unlikely(rx_queue->scatter_n != 0)) {
1409 /* Scattered packet completions cannot be
1410 * merged, so something has gone wrong.
1411 */
1412 efx_ef10_handle_rx_bad_lbits(
1413 rx_queue, next_ptr_lbits,
1414 (rx_queue->removed_count +
1415 rx_queue->scatter_n + 1) &
1416 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
1417 return 0;
1418 }
1419
1420 /* Merged completion for multiple non-scattered packets */
1421 rx_queue->scatter_n = 1;
1422 rx_queue->scatter_len = 0;
1423 n_packets = n_descs;
1424 ++channel->n_rx_merge_events;
1425 channel->n_rx_merge_packets += n_packets;
1426 flags |= EFX_RX_PKT_PREFIX_LEN;
1427 } else {
1428 ++rx_queue->scatter_n;
1429 rx_queue->scatter_len += rx_bytes;
1430 if (rx_cont)
1431 return 0;
1432 n_packets = 1;
1433 }
1434
1435 if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)))
1436 flags |= EFX_RX_PKT_DISCARD;
1437
1438 if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR))) {
1439 channel->n_rx_ip_hdr_chksum_err += n_packets;
1440 } else if (unlikely(EFX_QWORD_FIELD(*event,
1441 ESF_DZ_RX_TCPUDP_CKSUM_ERR))) {
1442 channel->n_rx_tcp_udp_chksum_err += n_packets;
1443 } else if (rx_l4_class == ESE_DZ_L4_CLASS_TCP ||
1444 rx_l4_class == ESE_DZ_L4_CLASS_UDP) {
1445 flags |= EFX_RX_PKT_CSUMMED;
1446 }
1447
1448 if (rx_l4_class == ESE_DZ_L4_CLASS_TCP)
1449 flags |= EFX_RX_PKT_TCP;
1450
1451 channel->irq_mod_score += 2 * n_packets;
1452
1453 /* Handle received packet(s) */
1454 for (i = 0; i < n_packets; i++) {
1455 efx_rx_packet(rx_queue,
1456 rx_queue->removed_count & rx_queue->ptr_mask,
1457 rx_queue->scatter_n, rx_queue->scatter_len,
1458 flags);
1459 rx_queue->removed_count += rx_queue->scatter_n;
1460 }
1461
1462 rx_queue->scatter_n = 0;
1463 rx_queue->scatter_len = 0;
1464
1465 return n_packets;
1466}
1467
1468static int
1469efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
1470{
1471 struct efx_nic *efx = channel->efx;
1472 struct efx_tx_queue *tx_queue;
1473 unsigned int tx_ev_desc_ptr;
1474 unsigned int tx_ev_q_label;
1475 int tx_descs = 0;
1476
1477 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
1478 return 0;
1479
1480 if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
1481 return 0;
1482
1483 /* Transmit completion */
1484 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
1485 tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
1486 tx_queue = efx_channel_get_tx_queue(channel,
1487 tx_ev_q_label % EFX_TXQ_TYPES);
1488 tx_descs = ((tx_ev_desc_ptr + 1 - tx_queue->read_count) &
1489 tx_queue->ptr_mask);
1490 efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
1491
1492 return tx_descs;
1493}
1494
1495static void
1496efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1497{
1498 struct efx_nic *efx = channel->efx;
1499 int subcode;
1500
1501 subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
1502
1503 switch (subcode) {
1504 case ESE_DZ_DRV_TIMER_EV:
1505 case ESE_DZ_DRV_WAKE_UP_EV:
1506 break;
1507 case ESE_DZ_DRV_START_UP_EV:
1508 /* event queue init complete. ok. */
1509 break;
1510 default:
1511 netif_err(efx, hw, efx->net_dev,
1512 "channel %d unknown driver event type %d"
1513 " (data " EFX_QWORD_FMT ")\n",
1514 channel->channel, subcode,
1515 EFX_QWORD_VAL(*event));
1516
1517 }
1518}
1519
1520static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
1521 efx_qword_t *event)
1522{
1523 struct efx_nic *efx = channel->efx;
1524 u32 subcode;
1525
1526 subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
1527
1528 switch (subcode) {
1529 case EFX_EF10_TEST:
1530 channel->event_test_cpu = raw_smp_processor_id();
1531 break;
1532 case EFX_EF10_REFILL:
1533 /* The queue must be empty, so we won't receive any rx
1534 * events, so efx_process_channel() won't refill the
1535 * queue. Refill it here
1536 */
1537 efx_fast_push_rx_descriptors(&channel->rx_queue);
1538 break;
1539 default:
1540 netif_err(efx, hw, efx->net_dev,
1541 "channel %d unknown driver event type %u"
1542 " (data " EFX_QWORD_FMT ")\n",
1543 channel->channel, (unsigned) subcode,
1544 EFX_QWORD_VAL(*event));
1545 }
1546}
1547
1548static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
1549{
1550 struct efx_nic *efx = channel->efx;
1551 efx_qword_t event, *p_event;
1552 unsigned int read_ptr;
1553 int ev_code;
1554 int tx_descs = 0;
1555 int spent = 0;
1556
1557 read_ptr = channel->eventq_read_ptr;
1558
1559 for (;;) {
1560 p_event = efx_event(channel, read_ptr);
1561 event = *p_event;
1562
1563 if (!efx_event_present(&event))
1564 break;
1565
1566 EFX_SET_QWORD(*p_event);
1567
1568 ++read_ptr;
1569
1570 ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
1571
1572 netif_vdbg(efx, drv, efx->net_dev,
1573 "processing event on %d " EFX_QWORD_FMT "\n",
1574 channel->channel, EFX_QWORD_VAL(event));
1575
1576 switch (ev_code) {
1577 case ESE_DZ_EV_CODE_MCDI_EV:
1578 efx_mcdi_process_event(channel, &event);
1579 break;
1580 case ESE_DZ_EV_CODE_RX_EV:
1581 spent += efx_ef10_handle_rx_event(channel, &event);
1582 if (spent >= quota) {
1583 /* XXX can we split a merged event to
1584 * avoid going over-quota?
1585 */
1586 spent = quota;
1587 goto out;
1588 }
1589 break;
1590 case ESE_DZ_EV_CODE_TX_EV:
1591 tx_descs += efx_ef10_handle_tx_event(channel, &event);
1592 if (tx_descs > efx->txq_entries) {
1593 spent = quota;
1594 goto out;
1595 } else if (++spent == quota) {
1596 goto out;
1597 }
1598 break;
1599 case ESE_DZ_EV_CODE_DRIVER_EV:
1600 efx_ef10_handle_driver_event(channel, &event);
1601 if (++spent == quota)
1602 goto out;
1603 break;
1604 case EFX_EF10_DRVGEN_EV:
1605 efx_ef10_handle_driver_generated_event(channel, &event);
1606 break;
1607 default:
1608 netif_err(efx, hw, efx->net_dev,
1609 "channel %d unknown event type %d"
1610 " (data " EFX_QWORD_FMT ")\n",
1611 channel->channel, ev_code,
1612 EFX_QWORD_VAL(event));
1613 }
1614 }
1615
1616out:
1617 channel->eventq_read_ptr = read_ptr;
1618 return spent;
1619}
1620
1621static void efx_ef10_ev_read_ack(struct efx_channel *channel)
1622{
1623 struct efx_nic *efx = channel->efx;
1624 efx_dword_t rptr;
1625
1626 if (EFX_EF10_WORKAROUND_35388(efx)) {
1627 BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
1628 (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
1629 BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
1630 (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
1631
1632 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
1633 EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
1634 ERF_DD_EVQ_IND_RPTR,
1635 (channel->eventq_read_ptr &
1636 channel->eventq_mask) >>
1637 ERF_DD_EVQ_IND_RPTR_WIDTH);
1638 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
1639 channel->channel);
1640 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
1641 EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
1642 ERF_DD_EVQ_IND_RPTR,
1643 channel->eventq_read_ptr &
1644 ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
1645 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
1646 channel->channel);
1647 } else {
1648 EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
1649 channel->eventq_read_ptr &
1650 channel->eventq_mask);
1651 efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
1652 }
1653}
1654
1655static void efx_ef10_ev_test_generate(struct efx_channel *channel)
1656{
1657 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
1658 struct efx_nic *efx = channel->efx;
1659 efx_qword_t event;
1660 int rc;
1661
1662 EFX_POPULATE_QWORD_2(event,
1663 ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
1664 ESF_DZ_EV_DATA, EFX_EF10_TEST);
1665
1666 MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
1667
1668 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
1669 * already swapped the data to little-endian order.
1670 */
1671 memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
1672 sizeof(efx_qword_t));
1673
1674 rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
1675 NULL, 0, NULL);
1676 if (rc != 0)
1677 goto fail;
1678
1679 return;
1680
1681fail:
1682 WARN_ON(true);
1683 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1684}
1685
1686void efx_ef10_handle_drain_event(struct efx_nic *efx)
1687{
1688 if (atomic_dec_and_test(&efx->active_queues))
1689 wake_up(&efx->flush_wq);
1690
1691 WARN_ON(atomic_read(&efx->active_queues) < 0);
1692}
1693
1694static int efx_ef10_fini_dmaq(struct efx_nic *efx)
1695{
1696 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1697 struct efx_channel *channel;
1698 struct efx_tx_queue *tx_queue;
1699 struct efx_rx_queue *rx_queue;
1700 int pending;
1701
1702 /* If the MC has just rebooted, the TX/RX queues will have already been
1703 * torn down, but efx->active_queues needs to be set to zero.
1704 */
1705 if (nic_data->must_realloc_vis) {
1706 atomic_set(&efx->active_queues, 0);
1707 return 0;
1708 }
1709
1710 /* Do not attempt to write to the NIC during EEH recovery */
1711 if (efx->state != STATE_RECOVERY) {
1712 efx_for_each_channel(channel, efx) {
1713 efx_for_each_channel_rx_queue(rx_queue, channel)
1714 efx_ef10_rx_fini(rx_queue);
1715 efx_for_each_channel_tx_queue(tx_queue, channel)
1716 efx_ef10_tx_fini(tx_queue);
1717 }
1718
1719 wait_event_timeout(efx->flush_wq,
1720 atomic_read(&efx->active_queues) == 0,
1721 msecs_to_jiffies(EFX_MAX_FLUSH_TIME));
1722 pending = atomic_read(&efx->active_queues);
1723 if (pending) {
1724 netif_err(efx, hw, efx->net_dev, "failed to flush %d queues\n",
1725 pending);
1726 return -ETIMEDOUT;
1727 }
1728 }
1729
1730 return 0;
1731}
1732
1733static bool efx_ef10_filter_equal(const struct efx_filter_spec *left,
1734 const struct efx_filter_spec *right)
1735{
1736 if ((left->match_flags ^ right->match_flags) |
1737 ((left->flags ^ right->flags) &
1738 (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
1739 return false;
1740
1741 return memcmp(&left->outer_vid, &right->outer_vid,
1742 sizeof(struct efx_filter_spec) -
1743 offsetof(struct efx_filter_spec, outer_vid)) == 0;
1744}
1745
1746static unsigned int efx_ef10_filter_hash(const struct efx_filter_spec *spec)
1747{
1748 BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3);
1749 return jhash2((const u32 *)&spec->outer_vid,
1750 (sizeof(struct efx_filter_spec) -
1751 offsetof(struct efx_filter_spec, outer_vid)) / 4,
1752 0);
1753 /* XXX should we randomise the initval? */
1754}
1755
1756/* Decide whether a filter should be exclusive or else should allow
1757 * delivery to additional recipients. Currently we decide that
1758 * filters for specific local unicast MAC and IP addresses are
1759 * exclusive.
1760 */
1761static bool efx_ef10_filter_is_exclusive(const struct efx_filter_spec *spec)
1762{
1763 if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC &&
1764 !is_multicast_ether_addr(spec->loc_mac))
1765 return true;
1766
1767 if ((spec->match_flags &
1768 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
1769 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
1770 if (spec->ether_type == htons(ETH_P_IP) &&
1771 !ipv4_is_multicast(spec->loc_host[0]))
1772 return true;
1773 if (spec->ether_type == htons(ETH_P_IPV6) &&
1774 ((const u8 *)spec->loc_host)[0] != 0xff)
1775 return true;
1776 }
1777
1778 return false;
1779}
1780
1781static struct efx_filter_spec *
1782efx_ef10_filter_entry_spec(const struct efx_ef10_filter_table *table,
1783 unsigned int filter_idx)
1784{
1785 return (struct efx_filter_spec *)(table->entry[filter_idx].spec &
1786 ~EFX_EF10_FILTER_FLAGS);
1787}
1788
1789static unsigned int
1790efx_ef10_filter_entry_flags(const struct efx_ef10_filter_table *table,
1791 unsigned int filter_idx)
1792{
1793 return table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAGS;
1794}
1795
1796static void
1797efx_ef10_filter_set_entry(struct efx_ef10_filter_table *table,
1798 unsigned int filter_idx,
1799 const struct efx_filter_spec *spec,
1800 unsigned int flags)
1801{
1802 table->entry[filter_idx].spec = (unsigned long)spec | flags;
1803}
1804
1805static void efx_ef10_filter_push_prep(struct efx_nic *efx,
1806 const struct efx_filter_spec *spec,
1807 efx_dword_t *inbuf, u64 handle,
1808 bool replacing)
1809{
1810 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1811
1812 memset(inbuf, 0, MC_CMD_FILTER_OP_IN_LEN);
1813
1814 if (replacing) {
1815 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
1816 MC_CMD_FILTER_OP_IN_OP_REPLACE);
1817 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE, handle);
1818 } else {
1819 u32 match_fields = 0;
1820
1821 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
1822 efx_ef10_filter_is_exclusive(spec) ?
1823 MC_CMD_FILTER_OP_IN_OP_INSERT :
1824 MC_CMD_FILTER_OP_IN_OP_SUBSCRIBE);
1825
1826 /* Convert match flags and values. Unlike almost
1827 * everything else in MCDI, these fields are in
1828 * network byte order.
1829 */
1830 if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC_IG)
1831 match_fields |=
1832 is_multicast_ether_addr(spec->loc_mac) ?
1833 1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_MCAST_DST_LBN :
1834 1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_UCAST_DST_LBN;
1835#define COPY_FIELD(gen_flag, gen_field, mcdi_field) \
1836 if (spec->match_flags & EFX_FILTER_MATCH_ ## gen_flag) { \
1837 match_fields |= \
1838 1 << MC_CMD_FILTER_OP_IN_MATCH_ ## \
1839 mcdi_field ## _LBN; \
1840 BUILD_BUG_ON( \
1841 MC_CMD_FILTER_OP_IN_ ## mcdi_field ## _LEN < \
1842 sizeof(spec->gen_field)); \
1843 memcpy(MCDI_PTR(inbuf, FILTER_OP_IN_ ## mcdi_field), \
1844 &spec->gen_field, sizeof(spec->gen_field)); \
1845 }
1846 COPY_FIELD(REM_HOST, rem_host, SRC_IP);
1847 COPY_FIELD(LOC_HOST, loc_host, DST_IP);
1848 COPY_FIELD(REM_MAC, rem_mac, SRC_MAC);
1849 COPY_FIELD(REM_PORT, rem_port, SRC_PORT);
1850 COPY_FIELD(LOC_MAC, loc_mac, DST_MAC);
1851 COPY_FIELD(LOC_PORT, loc_port, DST_PORT);
1852 COPY_FIELD(ETHER_TYPE, ether_type, ETHER_TYPE);
1853 COPY_FIELD(INNER_VID, inner_vid, INNER_VLAN);
1854 COPY_FIELD(OUTER_VID, outer_vid, OUTER_VLAN);
1855 COPY_FIELD(IP_PROTO, ip_proto, IP_PROTO);
1856#undef COPY_FIELD
1857 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_MATCH_FIELDS,
1858 match_fields);
1859 }
1860
1861 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1862 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_DEST,
1863 spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
1864 MC_CMD_FILTER_OP_IN_RX_DEST_DROP :
1865 MC_CMD_FILTER_OP_IN_RX_DEST_HOST);
1866 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DEST,
1867 MC_CMD_FILTER_OP_IN_TX_DEST_DEFAULT);
1868 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_QUEUE, spec->dmaq_id);
1869 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_MODE,
1870 (spec->flags & EFX_FILTER_FLAG_RX_RSS) ?
1871 MC_CMD_FILTER_OP_IN_RX_MODE_RSS :
1872 MC_CMD_FILTER_OP_IN_RX_MODE_SIMPLE);
1873 if (spec->flags & EFX_FILTER_FLAG_RX_RSS)
1874 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_CONTEXT,
1875 spec->rss_context !=
1876 EFX_FILTER_RSS_CONTEXT_DEFAULT ?
1877 spec->rss_context : nic_data->rx_rss_context);
1878}
1879
1880static int efx_ef10_filter_push(struct efx_nic *efx,
1881 const struct efx_filter_spec *spec,
1882 u64 *handle, bool replacing)
1883{
1884 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
1885 MCDI_DECLARE_BUF(outbuf, MC_CMD_FILTER_OP_OUT_LEN);
1886 int rc;
1887
1888 efx_ef10_filter_push_prep(efx, spec, inbuf, *handle, replacing);
1889 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
1890 outbuf, sizeof(outbuf), NULL);
1891 if (rc == 0)
1892 *handle = MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
1893 return rc;
1894}
1895
1896static int efx_ef10_filter_rx_match_pri(struct efx_ef10_filter_table *table,
1897 enum efx_filter_match_flags match_flags)
1898{
1899 unsigned int match_pri;
1900
1901 for (match_pri = 0;
1902 match_pri < table->rx_match_count;
1903 match_pri++)
1904 if (table->rx_match_flags[match_pri] == match_flags)
1905 return match_pri;
1906
1907 return -EPROTONOSUPPORT;
1908}
1909
1910static s32 efx_ef10_filter_insert(struct efx_nic *efx,
1911 struct efx_filter_spec *spec,
1912 bool replace_equal)
1913{
1914 struct efx_ef10_filter_table *table = efx->filter_state;
1915 DECLARE_BITMAP(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
1916 struct efx_filter_spec *saved_spec;
1917 unsigned int match_pri, hash;
1918 unsigned int priv_flags;
1919 bool replacing = false;
1920 int ins_index = -1;
1921 DEFINE_WAIT(wait);
1922 bool is_mc_recip;
1923 s32 rc;
1924
1925 /* For now, only support RX filters */
1926 if ((spec->flags & (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)) !=
1927 EFX_FILTER_FLAG_RX)
1928 return -EINVAL;
1929
1930 rc = efx_ef10_filter_rx_match_pri(table, spec->match_flags);
1931 if (rc < 0)
1932 return rc;
1933 match_pri = rc;
1934
1935 hash = efx_ef10_filter_hash(spec);
1936 is_mc_recip = efx_filter_is_mc_recipient(spec);
1937 if (is_mc_recip)
1938 bitmap_zero(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
1939
1940 /* Find any existing filters with the same match tuple or
1941 * else a free slot to insert at. If any of them are busy,
1942 * we have to wait and retry.
1943 */
1944 for (;;) {
1945 unsigned int depth = 1;
1946 unsigned int i;
1947
1948 spin_lock_bh(&efx->filter_lock);
1949
1950 for (;;) {
1951 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
1952 saved_spec = efx_ef10_filter_entry_spec(table, i);
1953
1954 if (!saved_spec) {
1955 if (ins_index < 0)
1956 ins_index = i;
1957 } else if (efx_ef10_filter_equal(spec, saved_spec)) {
1958 if (table->entry[i].spec &
1959 EFX_EF10_FILTER_FLAG_BUSY)
1960 break;
1961 if (spec->priority < saved_spec->priority &&
1962 !(saved_spec->priority ==
1963 EFX_FILTER_PRI_REQUIRED &&
1964 saved_spec->flags &
1965 EFX_FILTER_FLAG_RX_STACK)) {
1966 rc = -EPERM;
1967 goto out_unlock;
1968 }
1969 if (!is_mc_recip) {
1970 /* This is the only one */
1971 if (spec->priority ==
1972 saved_spec->priority &&
1973 !replace_equal) {
1974 rc = -EEXIST;
1975 goto out_unlock;
1976 }
1977 ins_index = i;
1978 goto found;
1979 } else if (spec->priority >
1980 saved_spec->priority ||
1981 (spec->priority ==
1982 saved_spec->priority &&
1983 replace_equal)) {
1984 if (ins_index < 0)
1985 ins_index = i;
1986 else
1987 __set_bit(depth, mc_rem_map);
1988 }
1989 }
1990
1991 /* Once we reach the maximum search depth, use
1992 * the first suitable slot or return -EBUSY if
1993 * there was none
1994 */
1995 if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
1996 if (ins_index < 0) {
1997 rc = -EBUSY;
1998 goto out_unlock;
1999 }
2000 goto found;
2001 }
2002
2003 ++depth;
2004 }
2005
2006 prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
2007 spin_unlock_bh(&efx->filter_lock);
2008 schedule();
2009 }
2010
2011found:
2012 /* Create a software table entry if necessary, and mark it
2013 * busy. We might yet fail to insert, but any attempt to
2014 * insert a conflicting filter while we're waiting for the
2015 * firmware must find the busy entry.
2016 */
2017 saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
2018 if (saved_spec) {
2019 if (spec->flags & EFX_FILTER_FLAG_RX_STACK) {
2020 /* Just make sure it won't be removed */
2021 saved_spec->flags |= EFX_FILTER_FLAG_RX_STACK;
2022 table->entry[ins_index].spec &=
2023 ~EFX_EF10_FILTER_FLAG_STACK_OLD;
2024 rc = ins_index;
2025 goto out_unlock;
2026 }
2027 replacing = true;
2028 priv_flags = efx_ef10_filter_entry_flags(table, ins_index);
2029 } else {
2030 saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
2031 if (!saved_spec) {
2032 rc = -ENOMEM;
2033 goto out_unlock;
2034 }
2035 *saved_spec = *spec;
2036 priv_flags = 0;
2037 }
2038 efx_ef10_filter_set_entry(table, ins_index, saved_spec,
2039 priv_flags | EFX_EF10_FILTER_FLAG_BUSY);
2040
2041 /* Mark lower-priority multicast recipients busy prior to removal */
2042 if (is_mc_recip) {
2043 unsigned int depth, i;
2044
2045 for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
2046 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2047 if (test_bit(depth, mc_rem_map))
2048 table->entry[i].spec |=
2049 EFX_EF10_FILTER_FLAG_BUSY;
2050 }
2051 }
2052
2053 spin_unlock_bh(&efx->filter_lock);
2054
2055 rc = efx_ef10_filter_push(efx, spec, &table->entry[ins_index].handle,
2056 replacing);
2057
2058 /* Finalise the software table entry */
2059 spin_lock_bh(&efx->filter_lock);
2060 if (rc == 0) {
2061 if (replacing) {
2062 /* Update the fields that may differ */
2063 saved_spec->priority = spec->priority;
2064 saved_spec->flags &= EFX_FILTER_FLAG_RX_STACK;
2065 saved_spec->flags |= spec->flags;
2066 saved_spec->rss_context = spec->rss_context;
2067 saved_spec->dmaq_id = spec->dmaq_id;
2068 }
2069 } else if (!replacing) {
2070 kfree(saved_spec);
2071 saved_spec = NULL;
2072 }
2073 efx_ef10_filter_set_entry(table, ins_index, saved_spec, priv_flags);
2074
2075 /* Remove and finalise entries for lower-priority multicast
2076 * recipients
2077 */
2078 if (is_mc_recip) {
2079 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
2080 unsigned int depth, i;
2081
2082 memset(inbuf, 0, sizeof(inbuf));
2083
2084 for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
2085 if (!test_bit(depth, mc_rem_map))
2086 continue;
2087
2088 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2089 saved_spec = efx_ef10_filter_entry_spec(table, i);
2090 priv_flags = efx_ef10_filter_entry_flags(table, i);
2091
2092 if (rc == 0) {
2093 spin_unlock_bh(&efx->filter_lock);
2094 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2095 MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
2096 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
2097 table->entry[i].handle);
2098 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
2099 inbuf, sizeof(inbuf),
2100 NULL, 0, NULL);
2101 spin_lock_bh(&efx->filter_lock);
2102 }
2103
2104 if (rc == 0) {
2105 kfree(saved_spec);
2106 saved_spec = NULL;
2107 priv_flags = 0;
2108 } else {
2109 priv_flags &= ~EFX_EF10_FILTER_FLAG_BUSY;
2110 }
2111 efx_ef10_filter_set_entry(table, i, saved_spec,
2112 priv_flags);
2113 }
2114 }
2115
2116 /* If successful, return the inserted filter ID */
2117 if (rc == 0)
2118 rc = match_pri * HUNT_FILTER_TBL_ROWS + ins_index;
2119
2120 wake_up_all(&table->waitq);
2121out_unlock:
2122 spin_unlock_bh(&efx->filter_lock);
2123 finish_wait(&table->waitq, &wait);
2124 return rc;
2125}
2126
2127void efx_ef10_filter_update_rx_scatter(struct efx_nic *efx)
2128{
2129 /* no need to do anything here on EF10 */
2130}
2131
2132/* Remove a filter.
2133 * If !stack_requested, remove by ID
2134 * If stack_requested, remove by index
2135 * Filter ID may come from userland and must be range-checked.
2136 */
2137static int efx_ef10_filter_remove_internal(struct efx_nic *efx,
2138 enum efx_filter_priority priority,
2139 u32 filter_id, bool stack_requested)
2140{
2141 unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
2142 struct efx_ef10_filter_table *table = efx->filter_state;
2143 MCDI_DECLARE_BUF(inbuf,
2144 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
2145 MC_CMD_FILTER_OP_IN_HANDLE_LEN);
2146 struct efx_filter_spec *spec;
2147 DEFINE_WAIT(wait);
2148 int rc;
2149
2150 /* Find the software table entry and mark it busy. Don't
2151 * remove it yet; any attempt to update while we're waiting
2152 * for the firmware must find the busy entry.
2153 */
2154 for (;;) {
2155 spin_lock_bh(&efx->filter_lock);
2156 if (!(table->entry[filter_idx].spec &
2157 EFX_EF10_FILTER_FLAG_BUSY))
2158 break;
2159 prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
2160 spin_unlock_bh(&efx->filter_lock);
2161 schedule();
2162 }
2163 spec = efx_ef10_filter_entry_spec(table, filter_idx);
2164 if (!spec || spec->priority > priority ||
2165 (!stack_requested &&
2166 efx_ef10_filter_rx_match_pri(table, spec->match_flags) !=
2167 filter_id / HUNT_FILTER_TBL_ROWS)) {
2168 rc = -ENOENT;
2169 goto out_unlock;
2170 }
2171 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
2172 spin_unlock_bh(&efx->filter_lock);
2173
2174 if (spec->flags & EFX_FILTER_FLAG_RX_STACK && !stack_requested) {
2175 /* Reset steering of a stack-owned filter */
2176
2177 struct efx_filter_spec new_spec = *spec;
2178
2179 new_spec.priority = EFX_FILTER_PRI_REQUIRED;
2180 new_spec.flags = (EFX_FILTER_FLAG_RX |
2181 EFX_FILTER_FLAG_RX_RSS |
2182 EFX_FILTER_FLAG_RX_STACK);
2183 new_spec.dmaq_id = 0;
2184 new_spec.rss_context = EFX_FILTER_RSS_CONTEXT_DEFAULT;
2185 rc = efx_ef10_filter_push(efx, &new_spec,
2186 &table->entry[filter_idx].handle,
2187 true);
2188
2189 spin_lock_bh(&efx->filter_lock);
2190 if (rc == 0)
2191 *spec = new_spec;
2192 } else {
2193 /* Really remove the filter */
2194
2195 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2196 efx_ef10_filter_is_exclusive(spec) ?
2197 MC_CMD_FILTER_OP_IN_OP_REMOVE :
2198 MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
2199 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
2200 table->entry[filter_idx].handle);
2201 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
2202 inbuf, sizeof(inbuf), NULL, 0, NULL);
2203
2204 spin_lock_bh(&efx->filter_lock);
2205 if (rc == 0) {
2206 kfree(spec);
2207 efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
2208 }
2209 }
2210 table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
2211 wake_up_all(&table->waitq);
2212out_unlock:
2213 spin_unlock_bh(&efx->filter_lock);
2214 finish_wait(&table->waitq, &wait);
2215 return rc;
2216}
2217
2218static int efx_ef10_filter_remove_safe(struct efx_nic *efx,
2219 enum efx_filter_priority priority,
2220 u32 filter_id)
2221{
2222 return efx_ef10_filter_remove_internal(efx, priority, filter_id, false);
2223}
2224
2225static int efx_ef10_filter_get_safe(struct efx_nic *efx,
2226 enum efx_filter_priority priority,
2227 u32 filter_id, struct efx_filter_spec *spec)
2228{
2229 unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
2230 struct efx_ef10_filter_table *table = efx->filter_state;
2231 const struct efx_filter_spec *saved_spec;
2232 int rc;
2233
2234 spin_lock_bh(&efx->filter_lock);
2235 saved_spec = efx_ef10_filter_entry_spec(table, filter_idx);
2236 if (saved_spec && saved_spec->priority == priority &&
2237 efx_ef10_filter_rx_match_pri(table, saved_spec->match_flags) ==
2238 filter_id / HUNT_FILTER_TBL_ROWS) {
2239 *spec = *saved_spec;
2240 rc = 0;
2241 } else {
2242 rc = -ENOENT;
2243 }
2244 spin_unlock_bh(&efx->filter_lock);
2245 return rc;
2246}
2247
2248static void efx_ef10_filter_clear_rx(struct efx_nic *efx,
2249 enum efx_filter_priority priority)
2250{
2251 /* TODO */
2252}
2253
2254static u32 efx_ef10_filter_count_rx_used(struct efx_nic *efx,
2255 enum efx_filter_priority priority)
2256{
2257 struct efx_ef10_filter_table *table = efx->filter_state;
2258 unsigned int filter_idx;
2259 s32 count = 0;
2260
2261 spin_lock_bh(&efx->filter_lock);
2262 for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
2263 if (table->entry[filter_idx].spec &&
2264 efx_ef10_filter_entry_spec(table, filter_idx)->priority ==
2265 priority)
2266 ++count;
2267 }
2268 spin_unlock_bh(&efx->filter_lock);
2269 return count;
2270}
2271
2272static u32 efx_ef10_filter_get_rx_id_limit(struct efx_nic *efx)
2273{
2274 struct efx_ef10_filter_table *table = efx->filter_state;
2275
2276 return table->rx_match_count * HUNT_FILTER_TBL_ROWS;
2277}
2278
2279static s32 efx_ef10_filter_get_rx_ids(struct efx_nic *efx,
2280 enum efx_filter_priority priority,
2281 u32 *buf, u32 size)
2282{
2283 struct efx_ef10_filter_table *table = efx->filter_state;
2284 struct efx_filter_spec *spec;
2285 unsigned int filter_idx;
2286 s32 count = 0;
2287
2288 spin_lock_bh(&efx->filter_lock);
2289 for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
2290 spec = efx_ef10_filter_entry_spec(table, filter_idx);
2291 if (spec && spec->priority == priority) {
2292 if (count == size) {
2293 count = -EMSGSIZE;
2294 break;
2295 }
2296 buf[count++] = (efx_ef10_filter_rx_match_pri(
2297 table, spec->match_flags) *
2298 HUNT_FILTER_TBL_ROWS +
2299 filter_idx);
2300 }
2301 }
2302 spin_unlock_bh(&efx->filter_lock);
2303 return count;
2304}
2305
2306#ifdef CONFIG_RFS_ACCEL
2307
2308static efx_mcdi_async_completer efx_ef10_filter_rfs_insert_complete;
2309
2310static s32 efx_ef10_filter_rfs_insert(struct efx_nic *efx,
2311 struct efx_filter_spec *spec)
2312{
2313 struct efx_ef10_filter_table *table = efx->filter_state;
2314 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
2315 struct efx_filter_spec *saved_spec;
2316 unsigned int hash, i, depth = 1;
2317 bool replacing = false;
2318 int ins_index = -1;
2319 u64 cookie;
2320 s32 rc;
2321
2322 /* Must be an RX filter without RSS and not for a multicast
2323 * destination address (RFS only works for connected sockets).
2324 * These restrictions allow us to pass only a tiny amount of
2325 * data through to the completion function.
2326 */
2327 EFX_WARN_ON_PARANOID(spec->flags !=
2328 (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_RX_SCATTER));
2329 EFX_WARN_ON_PARANOID(spec->priority != EFX_FILTER_PRI_HINT);
2330 EFX_WARN_ON_PARANOID(efx_filter_is_mc_recipient(spec));
2331
2332 hash = efx_ef10_filter_hash(spec);
2333
2334 spin_lock_bh(&efx->filter_lock);
2335
2336 /* Find any existing filter with the same match tuple or else
2337 * a free slot to insert at. If an existing filter is busy,
2338 * we have to give up.
2339 */
2340 for (;;) {
2341 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2342 saved_spec = efx_ef10_filter_entry_spec(table, i);
2343
2344 if (!saved_spec) {
2345 if (ins_index < 0)
2346 ins_index = i;
2347 } else if (efx_ef10_filter_equal(spec, saved_spec)) {
2348 if (table->entry[i].spec & EFX_EF10_FILTER_FLAG_BUSY) {
2349 rc = -EBUSY;
2350 goto fail_unlock;
2351 }
2352 EFX_WARN_ON_PARANOID(saved_spec->flags &
2353 EFX_FILTER_FLAG_RX_STACK);
2354 if (spec->priority < saved_spec->priority) {
2355 rc = -EPERM;
2356 goto fail_unlock;
2357 }
2358 ins_index = i;
2359 break;
2360 }
2361
2362 /* Once we reach the maximum search depth, use the
2363 * first suitable slot or return -EBUSY if there was
2364 * none
2365 */
2366 if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
2367 if (ins_index < 0) {
2368 rc = -EBUSY;
2369 goto fail_unlock;
2370 }
2371 break;
2372 }
2373
2374 ++depth;
2375 }
2376
2377 /* Create a software table entry if necessary, and mark it
2378 * busy. We might yet fail to insert, but any attempt to
2379 * insert a conflicting filter while we're waiting for the
2380 * firmware must find the busy entry.
2381 */
2382 saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
2383 if (saved_spec) {
2384 replacing = true;
2385 } else {
2386 saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
2387 if (!saved_spec) {
2388 rc = -ENOMEM;
2389 goto fail_unlock;
2390 }
2391 *saved_spec = *spec;
2392 }
2393 efx_ef10_filter_set_entry(table, ins_index, saved_spec,
2394 EFX_EF10_FILTER_FLAG_BUSY);
2395
2396 spin_unlock_bh(&efx->filter_lock);
2397
2398 /* Pack up the variables needed on completion */
2399 cookie = replacing << 31 | ins_index << 16 | spec->dmaq_id;
2400
2401 efx_ef10_filter_push_prep(efx, spec, inbuf,
2402 table->entry[ins_index].handle, replacing);
2403 efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
2404 MC_CMD_FILTER_OP_OUT_LEN,
2405 efx_ef10_filter_rfs_insert_complete, cookie);
2406
2407 return ins_index;
2408
2409fail_unlock:
2410 spin_unlock_bh(&efx->filter_lock);
2411 return rc;
2412}
2413
2414static void
2415efx_ef10_filter_rfs_insert_complete(struct efx_nic *efx, unsigned long cookie,
2416 int rc, efx_dword_t *outbuf,
2417 size_t outlen_actual)
2418{
2419 struct efx_ef10_filter_table *table = efx->filter_state;
2420 unsigned int ins_index, dmaq_id;
2421 struct efx_filter_spec *spec;
2422 bool replacing;
2423
2424 /* Unpack the cookie */
2425 replacing = cookie >> 31;
2426 ins_index = (cookie >> 16) & (HUNT_FILTER_TBL_ROWS - 1);
2427 dmaq_id = cookie & 0xffff;
2428
2429 spin_lock_bh(&efx->filter_lock);
2430 spec = efx_ef10_filter_entry_spec(table, ins_index);
2431 if (rc == 0) {
2432 table->entry[ins_index].handle =
2433 MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
2434 if (replacing)
2435 spec->dmaq_id = dmaq_id;
2436 } else if (!replacing) {
2437 kfree(spec);
2438 spec = NULL;
2439 }
2440 efx_ef10_filter_set_entry(table, ins_index, spec, 0);
2441 spin_unlock_bh(&efx->filter_lock);
2442
2443 wake_up_all(&table->waitq);
2444}
2445
2446static void
2447efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
2448 unsigned long filter_idx,
2449 int rc, efx_dword_t *outbuf,
2450 size_t outlen_actual);
2451
2452static bool efx_ef10_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
2453 unsigned int filter_idx)
2454{
2455 struct efx_ef10_filter_table *table = efx->filter_state;
2456 struct efx_filter_spec *spec =
2457 efx_ef10_filter_entry_spec(table, filter_idx);
2458 MCDI_DECLARE_BUF(inbuf,
2459 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
2460 MC_CMD_FILTER_OP_IN_HANDLE_LEN);
2461
2462 if (!spec ||
2463 (table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAG_BUSY) ||
2464 spec->priority != EFX_FILTER_PRI_HINT ||
2465 !rps_may_expire_flow(efx->net_dev, spec->dmaq_id,
2466 flow_id, filter_idx))
2467 return false;
2468
2469 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2470 MC_CMD_FILTER_OP_IN_OP_REMOVE);
2471 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
2472 table->entry[filter_idx].handle);
2473 if (efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf), 0,
2474 efx_ef10_filter_rfs_expire_complete, filter_idx))
2475 return false;
2476
2477 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
2478 return true;
2479}
2480
2481static void
2482efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
2483 unsigned long filter_idx,
2484 int rc, efx_dword_t *outbuf,
2485 size_t outlen_actual)
2486{
2487 struct efx_ef10_filter_table *table = efx->filter_state;
2488 struct efx_filter_spec *spec =
2489 efx_ef10_filter_entry_spec(table, filter_idx);
2490
2491 spin_lock_bh(&efx->filter_lock);
2492 if (rc == 0) {
2493 kfree(spec);
2494 efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
2495 }
2496 table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
2497 wake_up_all(&table->waitq);
2498 spin_unlock_bh(&efx->filter_lock);
2499}
2500
2501#endif /* CONFIG_RFS_ACCEL */
2502
2503static int efx_ef10_filter_match_flags_from_mcdi(u32 mcdi_flags)
2504{
2505 int match_flags = 0;
2506
2507#define MAP_FLAG(gen_flag, mcdi_field) { \
2508 u32 old_mcdi_flags = mcdi_flags; \
2509 mcdi_flags &= ~(1 << MC_CMD_FILTER_OP_IN_MATCH_ ## \
2510 mcdi_field ## _LBN); \
2511 if (mcdi_flags != old_mcdi_flags) \
2512 match_flags |= EFX_FILTER_MATCH_ ## gen_flag; \
2513 }
2514 MAP_FLAG(LOC_MAC_IG, UNKNOWN_UCAST_DST);
2515 MAP_FLAG(LOC_MAC_IG, UNKNOWN_MCAST_DST);
2516 MAP_FLAG(REM_HOST, SRC_IP);
2517 MAP_FLAG(LOC_HOST, DST_IP);
2518 MAP_FLAG(REM_MAC, SRC_MAC);
2519 MAP_FLAG(REM_PORT, SRC_PORT);
2520 MAP_FLAG(LOC_MAC, DST_MAC);
2521 MAP_FLAG(LOC_PORT, DST_PORT);
2522 MAP_FLAG(ETHER_TYPE, ETHER_TYPE);
2523 MAP_FLAG(INNER_VID, INNER_VLAN);
2524 MAP_FLAG(OUTER_VID, OUTER_VLAN);
2525 MAP_FLAG(IP_PROTO, IP_PROTO);
2526#undef MAP_FLAG
2527
2528 /* Did we map them all? */
2529 if (mcdi_flags)
2530 return -EINVAL;
2531
2532 return match_flags;
2533}
2534
2535static int efx_ef10_filter_table_probe(struct efx_nic *efx)
2536{
2537 MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_PARSER_DISP_INFO_IN_LEN);
2538 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_PARSER_DISP_INFO_OUT_LENMAX);
2539 unsigned int pd_match_pri, pd_match_count;
2540 struct efx_ef10_filter_table *table;
2541 size_t outlen;
2542 int rc;
2543
2544 table = kzalloc(sizeof(*table), GFP_KERNEL);
2545 if (!table)
2546 return -ENOMEM;
2547
2548 /* Find out which RX filter types are supported, and their priorities */
2549 MCDI_SET_DWORD(inbuf, GET_PARSER_DISP_INFO_IN_OP,
2550 MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_RX_MATCHES);
2551 rc = efx_mcdi_rpc(efx, MC_CMD_GET_PARSER_DISP_INFO,
2552 inbuf, sizeof(inbuf), outbuf, sizeof(outbuf),
2553 &outlen);
2554 if (rc)
2555 goto fail;
2556 pd_match_count = MCDI_VAR_ARRAY_LEN(
2557 outlen, GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES);
2558 table->rx_match_count = 0;
2559
2560 for (pd_match_pri = 0; pd_match_pri < pd_match_count; pd_match_pri++) {
2561 u32 mcdi_flags =
2562 MCDI_ARRAY_DWORD(
2563 outbuf,
2564 GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES,
2565 pd_match_pri);
2566 rc = efx_ef10_filter_match_flags_from_mcdi(mcdi_flags);
2567 if (rc < 0) {
2568 netif_dbg(efx, probe, efx->net_dev,
2569 "%s: fw flags %#x pri %u not supported in driver\n",
2570 __func__, mcdi_flags, pd_match_pri);
2571 } else {
2572 netif_dbg(efx, probe, efx->net_dev,
2573 "%s: fw flags %#x pri %u supported as driver flags %#x pri %u\n",
2574 __func__, mcdi_flags, pd_match_pri,
2575 rc, table->rx_match_count);
2576 table->rx_match_flags[table->rx_match_count++] = rc;
2577 }
2578 }
2579
2580 table->entry = vzalloc(HUNT_FILTER_TBL_ROWS * sizeof(*table->entry));
2581 if (!table->entry) {
2582 rc = -ENOMEM;
2583 goto fail;
2584 }
2585
2586 efx->filter_state = table;
2587 init_waitqueue_head(&table->waitq);
2588 return 0;
2589
2590fail:
2591 kfree(table);
2592 return rc;
2593}
2594
2595static void efx_ef10_filter_table_restore(struct efx_nic *efx)
2596{
2597 struct efx_ef10_filter_table *table = efx->filter_state;
2598 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2599 struct efx_filter_spec *spec;
2600 unsigned int filter_idx;
2601 bool failed = false;
2602 int rc;
2603
2604 if (!nic_data->must_restore_filters)
2605 return;
2606
2607 spin_lock_bh(&efx->filter_lock);
2608
2609 for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
2610 spec = efx_ef10_filter_entry_spec(table, filter_idx);
2611 if (!spec)
2612 continue;
2613
2614 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
2615 spin_unlock_bh(&efx->filter_lock);
2616
2617 rc = efx_ef10_filter_push(efx, spec,
2618 &table->entry[filter_idx].handle,
2619 false);
2620 if (rc)
2621 failed = true;
2622
2623 spin_lock_bh(&efx->filter_lock);
2624 if (rc) {
2625 kfree(spec);
2626 efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
2627 } else {
2628 table->entry[filter_idx].spec &=
2629 ~EFX_EF10_FILTER_FLAG_BUSY;
2630 }
2631 }
2632
2633 spin_unlock_bh(&efx->filter_lock);
2634
2635 if (failed)
2636 netif_err(efx, hw, efx->net_dev,
2637 "unable to restore all filters\n");
2638 else
2639 nic_data->must_restore_filters = false;
2640}
2641
2642static void efx_ef10_filter_table_remove(struct efx_nic *efx)
2643{
2644 struct efx_ef10_filter_table *table = efx->filter_state;
2645 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
2646 struct efx_filter_spec *spec;
2647 unsigned int filter_idx;
2648 int rc;
2649
2650 for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
2651 spec = efx_ef10_filter_entry_spec(table, filter_idx);
2652 if (!spec)
2653 continue;
2654
2655 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2656 efx_ef10_filter_is_exclusive(spec) ?
2657 MC_CMD_FILTER_OP_IN_OP_REMOVE :
2658 MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
2659 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
2660 table->entry[filter_idx].handle);
2661 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
2662 NULL, 0, NULL);
2663
2664 WARN_ON(rc != 0);
2665 kfree(spec);
2666 }
2667
2668 vfree(table->entry);
2669 kfree(table);
2670}
2671
2672static void efx_ef10_filter_sync_rx_mode(struct efx_nic *efx)
2673{
2674 struct efx_ef10_filter_table *table = efx->filter_state;
2675 struct net_device *net_dev = efx->net_dev;
2676 struct efx_filter_spec spec;
2677 bool remove_failed = false;
2678 struct netdev_hw_addr *uc;
2679 struct netdev_hw_addr *mc;
2680 unsigned int filter_idx;
2681 int i, n, rc;
2682
2683 if (!efx_dev_registered(efx))
2684 return;
2685
2686 /* Mark old filters that may need to be removed */
2687 spin_lock_bh(&efx->filter_lock);
2688 n = table->stack_uc_count < 0 ? 1 : table->stack_uc_count;
2689 for (i = 0; i < n; i++) {
2690 filter_idx = table->stack_uc_list[i].id % HUNT_FILTER_TBL_ROWS;
2691 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_STACK_OLD;
2692 }
2693 n = table->stack_mc_count < 0 ? 1 : table->stack_mc_count;
2694 for (i = 0; i < n; i++) {
2695 filter_idx = table->stack_mc_list[i].id % HUNT_FILTER_TBL_ROWS;
2696 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_STACK_OLD;
2697 }
2698 spin_unlock_bh(&efx->filter_lock);
2699
2700 /* Copy/convert the address lists; add the primary station
2701 * address and broadcast address
2702 */
2703 netif_addr_lock_bh(net_dev);
2704 if (net_dev->flags & IFF_PROMISC ||
2705 netdev_uc_count(net_dev) >= EFX_EF10_FILTER_STACK_UC_MAX) {
2706 table->stack_uc_count = -1;
2707 } else {
2708 table->stack_uc_count = 1 + netdev_uc_count(net_dev);
2709 memcpy(table->stack_uc_list[0].addr, net_dev->dev_addr,
2710 ETH_ALEN);
2711 i = 1;
2712 netdev_for_each_uc_addr(uc, net_dev) {
2713 memcpy(table->stack_uc_list[i].addr,
2714 uc->addr, ETH_ALEN);
2715 i++;
2716 }
2717 }
2718 if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI) ||
2719 netdev_mc_count(net_dev) >= EFX_EF10_FILTER_STACK_MC_MAX) {
2720 table->stack_mc_count = -1;
2721 } else {
2722 table->stack_mc_count = 1 + netdev_mc_count(net_dev);
2723 eth_broadcast_addr(table->stack_mc_list[0].addr);
2724 i = 1;
2725 netdev_for_each_mc_addr(mc, net_dev) {
2726 memcpy(table->stack_mc_list[i].addr,
2727 mc->addr, ETH_ALEN);
2728 i++;
2729 }
2730 }
2731 netif_addr_unlock_bh(net_dev);
2732
2733 /* Insert/renew unicast filters */
2734 if (table->stack_uc_count >= 0) {
2735 for (i = 0; i < table->stack_uc_count; i++) {
2736 efx_filter_init_rx(&spec, EFX_FILTER_PRI_REQUIRED,
2737 EFX_FILTER_FLAG_RX_RSS |
2738 EFX_FILTER_FLAG_RX_STACK,
2739 0);
2740 efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC,
2741 table->stack_uc_list[i].addr);
2742 rc = efx_ef10_filter_insert(efx, &spec, true);
2743 if (rc < 0) {
2744 /* Fall back to unicast-promisc */
2745 while (i--)
2746 efx_ef10_filter_remove_safe(
2747 efx, EFX_FILTER_PRI_REQUIRED,
2748 table->stack_uc_list[i].id);
2749 table->stack_uc_count = -1;
2750 break;
2751 }
2752 table->stack_uc_list[i].id = rc;
2753 }
2754 }
2755 if (table->stack_uc_count < 0) {
2756 efx_filter_init_rx(&spec, EFX_FILTER_PRI_REQUIRED,
2757 EFX_FILTER_FLAG_RX_RSS |
2758 EFX_FILTER_FLAG_RX_STACK,
2759 0);
2760 efx_filter_set_uc_def(&spec);
2761 rc = efx_ef10_filter_insert(efx, &spec, true);
2762 if (rc < 0) {
2763 WARN_ON(1);
2764 table->stack_uc_count = 0;
2765 } else {
2766 table->stack_uc_list[0].id = rc;
2767 }
2768 }
2769
2770 /* Insert/renew multicast filters */
2771 if (table->stack_mc_count >= 0) {
2772 for (i = 0; i < table->stack_mc_count; i++) {
2773 efx_filter_init_rx(&spec, EFX_FILTER_PRI_REQUIRED,
2774 EFX_FILTER_FLAG_RX_RSS |
2775 EFX_FILTER_FLAG_RX_STACK,
2776 0);
2777 efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC,
2778 table->stack_mc_list[i].addr);
2779 rc = efx_ef10_filter_insert(efx, &spec, true);
2780 if (rc < 0) {
2781 /* Fall back to multicast-promisc */
2782 while (i--)
2783 efx_ef10_filter_remove_safe(
2784 efx, EFX_FILTER_PRI_REQUIRED,
2785 table->stack_mc_list[i].id);
2786 table->stack_mc_count = -1;
2787 break;
2788 }
2789 table->stack_mc_list[i].id = rc;
2790 }
2791 }
2792 if (table->stack_mc_count < 0) {
2793 efx_filter_init_rx(&spec, EFX_FILTER_PRI_REQUIRED,
2794 EFX_FILTER_FLAG_RX_RSS |
2795 EFX_FILTER_FLAG_RX_STACK,
2796 0);
2797 efx_filter_set_mc_def(&spec);
2798 rc = efx_ef10_filter_insert(efx, &spec, true);
2799 if (rc < 0) {
2800 WARN_ON(1);
2801 table->stack_mc_count = 0;
2802 } else {
2803 table->stack_mc_list[0].id = rc;
2804 }
2805 }
2806
2807 /* Remove filters that weren't renewed. Since nothing else
2808 * changes the STACK_OLD flag or removes these filters, we
2809 * don't need to hold the filter_lock while scanning for
2810 * these filters.
2811 */
2812 for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
2813 if (ACCESS_ONCE(table->entry[i].spec) &
2814 EFX_EF10_FILTER_FLAG_STACK_OLD) {
2815 if (efx_ef10_filter_remove_internal(efx,
2816 EFX_FILTER_PRI_REQUIRED,
2817 i, true) < 0)
2818 remove_failed = true;
2819 }
2820 }
2821 WARN_ON(remove_failed);
2822}
2823
2824static int efx_ef10_mac_reconfigure(struct efx_nic *efx)
2825{
2826 efx_ef10_filter_sync_rx_mode(efx);
2827
2828 return efx_mcdi_set_mac(efx);
2829}
2830
2831#ifdef CONFIG_SFC_MTD
2832
2833struct efx_ef10_nvram_type_info {
2834 u16 type, type_mask;
2835 u8 port;
2836 const char *name;
2837};
2838
2839static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
2840 { NVRAM_PARTITION_TYPE_MC_FIRMWARE, 0, 0, "sfc_mcfw" },
2841 { NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0, 0, "sfc_mcfw_backup" },
2842 { NVRAM_PARTITION_TYPE_EXPANSION_ROM, 0, 0, "sfc_exp_rom" },
2843 { NVRAM_PARTITION_TYPE_STATIC_CONFIG, 0, 0, "sfc_static_cfg" },
2844 { NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG, 0, 0, "sfc_dynamic_cfg" },
2845 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0, 0, "sfc_exp_rom_cfg" },
2846 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0, 1, "sfc_exp_rom_cfg" },
2847 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0, 2, "sfc_exp_rom_cfg" },
2848 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0, 3, "sfc_exp_rom_cfg" },
2849 { NVRAM_PARTITION_TYPE_PHY_MIN, 0xff, 0, "sfc_phy_fw" },
2850};
2851
2852static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
2853 struct efx_mcdi_mtd_partition *part,
2854 unsigned int type)
2855{
2856 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
2857 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
2858 const struct efx_ef10_nvram_type_info *info;
2859 size_t size, erase_size, outlen;
2860 bool protected;
2861 int rc;
2862
2863 for (info = efx_ef10_nvram_types; ; info++) {
2864 if (info ==
2865 efx_ef10_nvram_types + ARRAY_SIZE(efx_ef10_nvram_types))
2866 return -ENODEV;
2867 if ((type & ~info->type_mask) == info->type)
2868 break;
2869 }
2870 if (info->port != efx_port_num(efx))
2871 return -ENODEV;
2872
2873 rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
2874 if (rc)
2875 return rc;
2876 if (protected)
2877 return -ENODEV; /* hide it */
2878
2879 part->nvram_type = type;
2880
2881 MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
2882 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
2883 outbuf, sizeof(outbuf), &outlen);
2884 if (rc)
2885 return rc;
2886 if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
2887 return -EIO;
2888 if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
2889 (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
2890 part->fw_subtype = MCDI_DWORD(outbuf,
2891 NVRAM_METADATA_OUT_SUBTYPE);
2892
2893 part->common.dev_type_name = "EF10 NVRAM manager";
2894 part->common.type_name = info->name;
2895
2896 part->common.mtd.type = MTD_NORFLASH;
2897 part->common.mtd.flags = MTD_CAP_NORFLASH;
2898 part->common.mtd.size = size;
2899 part->common.mtd.erasesize = erase_size;
2900
2901 return 0;
2902}
2903
2904static int efx_ef10_mtd_probe(struct efx_nic *efx)
2905{
2906 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
2907 struct efx_mcdi_mtd_partition *parts;
2908 size_t outlen, n_parts_total, i, n_parts;
2909 unsigned int type;
2910 int rc;
2911
2912 ASSERT_RTNL();
2913
2914 BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
2915 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
2916 outbuf, sizeof(outbuf), &outlen);
2917 if (rc)
2918 return rc;
2919 if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
2920 return -EIO;
2921
2922 n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
2923 if (n_parts_total >
2924 MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
2925 return -EIO;
2926
2927 parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
2928 if (!parts)
2929 return -ENOMEM;
2930
2931 n_parts = 0;
2932 for (i = 0; i < n_parts_total; i++) {
2933 type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
2934 i);
2935 rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type);
2936 if (rc == 0)
2937 n_parts++;
2938 else if (rc != -ENODEV)
2939 goto fail;
2940 }
2941
2942 rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
2943fail:
2944 if (rc)
2945 kfree(parts);
2946 return rc;
2947}
2948
2949#endif /* CONFIG_SFC_MTD */
2950
2951static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
2952{
2953 _efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
2954}
2955
2956const struct efx_nic_type efx_hunt_a0_nic_type = {
2957 .mem_map_size = efx_ef10_mem_map_size,
2958 .probe = efx_ef10_probe,
2959 .remove = efx_ef10_remove,
2960 .dimension_resources = efx_ef10_dimension_resources,
2961 .init = efx_ef10_init_nic,
2962 .fini = efx_port_dummy_op_void,
2963 .map_reset_reason = efx_mcdi_map_reset_reason,
2964 .map_reset_flags = efx_ef10_map_reset_flags,
2965 .reset = efx_mcdi_reset,
2966 .probe_port = efx_mcdi_port_probe,
2967 .remove_port = efx_mcdi_port_remove,
2968 .fini_dmaq = efx_ef10_fini_dmaq,
2969 .describe_stats = efx_ef10_describe_stats,
2970 .update_stats = efx_ef10_update_stats,
2971 .start_stats = efx_mcdi_mac_start_stats,
2972 .stop_stats = efx_mcdi_mac_stop_stats,
2973 .set_id_led = efx_mcdi_set_id_led,
2974 .push_irq_moderation = efx_ef10_push_irq_moderation,
2975 .reconfigure_mac = efx_ef10_mac_reconfigure,
2976 .check_mac_fault = efx_mcdi_mac_check_fault,
2977 .reconfigure_port = efx_mcdi_port_reconfigure,
2978 .get_wol = efx_ef10_get_wol,
2979 .set_wol = efx_ef10_set_wol,
2980 .resume_wol = efx_port_dummy_op_void,
2981 /* TODO: test_chip */
2982 .test_nvram = efx_mcdi_nvram_test_all,
2983 .mcdi_request = efx_ef10_mcdi_request,
2984 .mcdi_poll_response = efx_ef10_mcdi_poll_response,
2985 .mcdi_read_response = efx_ef10_mcdi_read_response,
2986 .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
2987 .irq_enable_master = efx_port_dummy_op_void,
2988 .irq_test_generate = efx_ef10_irq_test_generate,
2989 .irq_disable_non_ev = efx_port_dummy_op_void,
2990 .irq_handle_msi = efx_ef10_msi_interrupt,
2991 .irq_handle_legacy = efx_ef10_legacy_interrupt,
2992 .tx_probe = efx_ef10_tx_probe,
2993 .tx_init = efx_ef10_tx_init,
2994 .tx_remove = efx_ef10_tx_remove,
2995 .tx_write = efx_ef10_tx_write,
2996 .rx_push_indir_table = efx_ef10_rx_push_indir_table,
2997 .rx_probe = efx_ef10_rx_probe,
2998 .rx_init = efx_ef10_rx_init,
2999 .rx_remove = efx_ef10_rx_remove,
3000 .rx_write = efx_ef10_rx_write,
3001 .rx_defer_refill = efx_ef10_rx_defer_refill,
3002 .ev_probe = efx_ef10_ev_probe,
3003 .ev_init = efx_ef10_ev_init,
3004 .ev_fini = efx_ef10_ev_fini,
3005 .ev_remove = efx_ef10_ev_remove,
3006 .ev_process = efx_ef10_ev_process,
3007 .ev_read_ack = efx_ef10_ev_read_ack,
3008 .ev_test_generate = efx_ef10_ev_test_generate,
3009 .filter_table_probe = efx_ef10_filter_table_probe,
3010 .filter_table_restore = efx_ef10_filter_table_restore,
3011 .filter_table_remove = efx_ef10_filter_table_remove,
3012 .filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
3013 .filter_insert = efx_ef10_filter_insert,
3014 .filter_remove_safe = efx_ef10_filter_remove_safe,
3015 .filter_get_safe = efx_ef10_filter_get_safe,
3016 .filter_clear_rx = efx_ef10_filter_clear_rx,
3017 .filter_count_rx_used = efx_ef10_filter_count_rx_used,
3018 .filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
3019 .filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
3020#ifdef CONFIG_RFS_ACCEL
3021 .filter_rfs_insert = efx_ef10_filter_rfs_insert,
3022 .filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
3023#endif
3024#ifdef CONFIG_SFC_MTD
3025 .mtd_probe = efx_ef10_mtd_probe,
3026 .mtd_rename = efx_mcdi_mtd_rename,
3027 .mtd_read = efx_mcdi_mtd_read,
3028 .mtd_erase = efx_mcdi_mtd_erase,
3029 .mtd_write = efx_mcdi_mtd_write,
3030 .mtd_sync = efx_mcdi_mtd_sync,
3031#endif
3032 .ptp_write_host_time = efx_ef10_ptp_write_host_time,
3033
3034 .revision = EFX_REV_HUNT_A0,
3035 .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
3036 .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
3037 .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
3038 .can_rx_scatter = true,
3039 .always_rx_scatter = true,
3040 .max_interrupt_mode = EFX_INT_MODE_MSIX,
3041 .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
3042 .offload_features = (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3043 NETIF_F_RXHASH | NETIF_F_NTUPLE),
3044 .mcdi_max_ver = 2,
3045 .max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
3046};