blob: 17f7c0d3876850087c27f43fbec84aa02a559ab1 [file] [log] [blame]
Josef Bacik86736342019-06-19 15:12:00 -04001// SPDX-License-Identifier: GPL-2.0
2
3#include "ctree.h"
4#include "delalloc-space.h"
5#include "block-rsv.h"
6#include "btrfs_inode.h"
7#include "space-info.h"
8#include "transaction.h"
9#include "qgroup.h"
10
11int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
12{
13 struct btrfs_root *root = inode->root;
14 struct btrfs_fs_info *fs_info = root->fs_info;
15 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
16 u64 used;
17 int ret = 0;
18 int need_commit = 2;
19 int have_pinned_space;
20
21 /* Make sure bytes are sectorsize aligned */
22 bytes = ALIGN(bytes, fs_info->sectorsize);
23
24 if (btrfs_is_free_space_inode(inode)) {
25 need_commit = 0;
26 ASSERT(current->journal_info);
27 }
28
29again:
30 /* Make sure we have enough space to handle the data first */
31 spin_lock(&data_sinfo->lock);
32 used = btrfs_space_info_used(data_sinfo, true);
33
34 if (used + bytes > data_sinfo->total_bytes) {
35 struct btrfs_trans_handle *trans;
36
37 /*
38 * If we don't have enough free bytes in this space then we need
39 * to alloc a new chunk.
40 */
41 if (!data_sinfo->full) {
42 u64 alloc_target;
43
44 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
45 spin_unlock(&data_sinfo->lock);
46
47 alloc_target = btrfs_data_alloc_profile(fs_info);
48 /*
49 * It is ugly that we don't call nolock join
50 * transaction for the free space inode case here.
51 * But it is safe because we only do the data space
52 * reservation for the free space cache in the
53 * transaction context, the common join transaction
54 * just increase the counter of the current transaction
55 * handler, doesn't try to acquire the trans_lock of
56 * the fs.
57 */
58 trans = btrfs_join_transaction(root);
59 if (IS_ERR(trans))
60 return PTR_ERR(trans);
61
62 ret = btrfs_chunk_alloc(trans, alloc_target,
63 CHUNK_ALLOC_NO_FORCE);
64 btrfs_end_transaction(trans);
65 if (ret < 0) {
66 if (ret != -ENOSPC)
67 return ret;
68 else {
69 have_pinned_space = 1;
70 goto commit_trans;
71 }
72 }
73
74 goto again;
75 }
76
77 /*
78 * If we don't have enough pinned space to deal with this
79 * allocation, and no removed chunk in current transaction,
80 * don't bother committing the transaction.
81 */
82 have_pinned_space = __percpu_counter_compare(
83 &data_sinfo->total_bytes_pinned,
84 used + bytes - data_sinfo->total_bytes,
85 BTRFS_TOTAL_BYTES_PINNED_BATCH);
86 spin_unlock(&data_sinfo->lock);
87
88 /* Commit the current transaction and try again */
89commit_trans:
90 if (need_commit) {
91 need_commit--;
92
93 if (need_commit > 0) {
94 btrfs_start_delalloc_roots(fs_info, -1);
95 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
96 (u64)-1);
97 }
98
99 trans = btrfs_join_transaction(root);
100 if (IS_ERR(trans))
101 return PTR_ERR(trans);
102 if (have_pinned_space >= 0 ||
103 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
104 &trans->transaction->flags) ||
105 need_commit > 0) {
106 ret = btrfs_commit_transaction(trans);
107 if (ret)
108 return ret;
109 /*
110 * The cleaner kthread might still be doing iput
111 * operations. Wait for it to finish so that
112 * more space is released. We don't need to
113 * explicitly run the delayed iputs here because
114 * the commit_transaction would have woken up
115 * the cleaner.
116 */
117 ret = btrfs_wait_on_delayed_iputs(fs_info);
118 if (ret)
119 return ret;
120 goto again;
121 } else {
122 btrfs_end_transaction(trans);
123 }
124 }
125
126 trace_btrfs_space_reservation(fs_info,
127 "space_info:enospc",
128 data_sinfo->flags, bytes, 1);
129 return -ENOSPC;
130 }
131 btrfs_space_info_update_bytes_may_use(fs_info, data_sinfo, bytes);
132 trace_btrfs_space_reservation(fs_info, "space_info",
133 data_sinfo->flags, bytes, 1);
134 spin_unlock(&data_sinfo->lock);
135
136 return 0;
137}
138
139int btrfs_check_data_free_space(struct inode *inode,
140 struct extent_changeset **reserved, u64 start, u64 len)
141{
142 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
143 int ret;
144
145 /* align the range */
146 len = round_up(start + len, fs_info->sectorsize) -
147 round_down(start, fs_info->sectorsize);
148 start = round_down(start, fs_info->sectorsize);
149
150 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
151 if (ret < 0)
152 return ret;
153
154 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
155 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
156 if (ret < 0)
157 btrfs_free_reserved_data_space_noquota(inode, start, len);
158 else
159 ret = 0;
160 return ret;
161}
162
163/*
164 * Called if we need to clear a data reservation for this inode
165 * Normally in a error case.
166 *
167 * This one will *NOT* use accurate qgroup reserved space API, just for case
168 * which we can't sleep and is sure it won't affect qgroup reserved space.
169 * Like clear_bit_hook().
170 */
171void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
172 u64 len)
173{
174 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
175 struct btrfs_space_info *data_sinfo;
176
177 /* Make sure the range is aligned to sectorsize */
178 len = round_up(start + len, fs_info->sectorsize) -
179 round_down(start, fs_info->sectorsize);
180 start = round_down(start, fs_info->sectorsize);
181
182 data_sinfo = fs_info->data_sinfo;
183 spin_lock(&data_sinfo->lock);
184 btrfs_space_info_update_bytes_may_use(fs_info, data_sinfo, -len);
185 trace_btrfs_space_reservation(fs_info, "space_info",
186 data_sinfo->flags, len, 0);
187 spin_unlock(&data_sinfo->lock);
188}
189
190/*
191 * Called if we need to clear a data reservation for this inode
192 * Normally in a error case.
193 *
194 * This one will handle the per-inode data rsv map for accurate reserved
195 * space framework.
196 */
197void btrfs_free_reserved_data_space(struct inode *inode,
198 struct extent_changeset *reserved, u64 start, u64 len)
199{
200 struct btrfs_root *root = BTRFS_I(inode)->root;
201
202 /* Make sure the range is aligned to sectorsize */
203 len = round_up(start + len, root->fs_info->sectorsize) -
204 round_down(start, root->fs_info->sectorsize);
205 start = round_down(start, root->fs_info->sectorsize);
206
207 btrfs_free_reserved_data_space_noquota(inode, start, len);
208 btrfs_qgroup_free_data(inode, reserved, start, len);
209}
210
211/**
212 * btrfs_inode_rsv_release - release any excessive reservation.
213 * @inode - the inode we need to release from.
214 * @qgroup_free - free or convert qgroup meta.
215 * Unlike normal operation, qgroup meta reservation needs to know if we are
216 * freeing qgroup reservation or just converting it into per-trans. Normally
217 * @qgroup_free is true for error handling, and false for normal release.
218 *
219 * This is the same as btrfs_block_rsv_release, except that it handles the
220 * tracepoint for the reservation.
221 */
222static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free)
223{
224 struct btrfs_fs_info *fs_info = inode->root->fs_info;
225 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
226 u64 released = 0;
227 u64 qgroup_to_release = 0;
228
229 /*
230 * Since we statically set the block_rsv->size we just want to say we
231 * are releasing 0 bytes, and then we'll just get the reservation over
232 * the size free'd.
233 */
234 released = __btrfs_block_rsv_release(fs_info, block_rsv, 0,
235 &qgroup_to_release);
236 if (released > 0)
237 trace_btrfs_space_reservation(fs_info, "delalloc",
238 btrfs_ino(inode), released, 0);
239 if (qgroup_free)
240 btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release);
241 else
242 btrfs_qgroup_convert_reserved_meta(inode->root,
243 qgroup_to_release);
244}
245
246static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
247 struct btrfs_inode *inode)
248{
249 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
250 u64 reserve_size = 0;
251 u64 qgroup_rsv_size = 0;
252 u64 csum_leaves;
253 unsigned outstanding_extents;
254
255 lockdep_assert_held(&inode->lock);
256 outstanding_extents = inode->outstanding_extents;
257 if (outstanding_extents)
258 reserve_size = btrfs_calc_trans_metadata_size(fs_info,
259 outstanding_extents + 1);
260 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
261 inode->csum_bytes);
262 reserve_size += btrfs_calc_trans_metadata_size(fs_info,
263 csum_leaves);
264 /*
265 * For qgroup rsv, the calculation is very simple:
266 * account one nodesize for each outstanding extent
267 *
268 * This is overestimating in most cases.
269 */
270 qgroup_rsv_size = (u64)outstanding_extents * fs_info->nodesize;
271
272 spin_lock(&block_rsv->lock);
273 block_rsv->size = reserve_size;
274 block_rsv->qgroup_rsv_size = qgroup_rsv_size;
275 spin_unlock(&block_rsv->lock);
276}
277
278static void calc_inode_reservations(struct btrfs_fs_info *fs_info,
279 u64 num_bytes, u64 *meta_reserve,
280 u64 *qgroup_reserve)
281{
282 u64 nr_extents = count_max_extents(num_bytes);
283 u64 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info, num_bytes);
284
285 /* We add one for the inode update at finish ordered time */
286 *meta_reserve = btrfs_calc_trans_metadata_size(fs_info,
287 nr_extents + csum_leaves + 1);
288 *qgroup_reserve = nr_extents * fs_info->nodesize;
289}
290
291int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
292{
293 struct btrfs_root *root = inode->root;
294 struct btrfs_fs_info *fs_info = root->fs_info;
295 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
296 u64 meta_reserve, qgroup_reserve;
297 unsigned nr_extents;
298 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
299 int ret = 0;
300 bool delalloc_lock = true;
301
302 /*
303 * If we are a free space inode we need to not flush since we will be in
304 * the middle of a transaction commit. We also don't need the delalloc
305 * mutex since we won't race with anybody. We need this mostly to make
306 * lockdep shut its filthy mouth.
307 *
308 * If we have a transaction open (can happen if we call truncate_block
309 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
310 */
311 if (btrfs_is_free_space_inode(inode)) {
312 flush = BTRFS_RESERVE_NO_FLUSH;
313 delalloc_lock = false;
314 } else {
315 if (current->journal_info)
316 flush = BTRFS_RESERVE_FLUSH_LIMIT;
317
318 if (btrfs_transaction_in_commit(fs_info))
319 schedule_timeout(1);
320 }
321
322 if (delalloc_lock)
323 mutex_lock(&inode->delalloc_mutex);
324
325 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
326
327 /*
328 * We always want to do it this way, every other way is wrong and ends
329 * in tears. Pre-reserving the amount we are going to add will always
330 * be the right way, because otherwise if we have enough parallelism we
331 * could end up with thousands of inodes all holding little bits of
332 * reservations they were able to make previously and the only way to
333 * reclaim that space is to ENOSPC out the operations and clear
334 * everything out and try again, which is bad. This way we just
335 * over-reserve slightly, and clean up the mess when we are done.
336 */
337 calc_inode_reservations(fs_info, num_bytes, &meta_reserve,
338 &qgroup_reserve);
339 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserve, true);
340 if (ret)
341 goto out_fail;
342 ret = btrfs_reserve_metadata_bytes(root, block_rsv, meta_reserve, flush);
343 if (ret)
344 goto out_qgroup;
345
346 /*
347 * Now we need to update our outstanding extents and csum bytes _first_
348 * and then add the reservation to the block_rsv. This keeps us from
349 * racing with an ordered completion or some such that would think it
350 * needs to free the reservation we just made.
351 */
352 spin_lock(&inode->lock);
353 nr_extents = count_max_extents(num_bytes);
354 btrfs_mod_outstanding_extents(inode, nr_extents);
355 inode->csum_bytes += num_bytes;
356 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
357 spin_unlock(&inode->lock);
358
359 /* Now we can safely add our space to our block rsv */
360 btrfs_block_rsv_add_bytes(block_rsv, meta_reserve, false);
361 trace_btrfs_space_reservation(root->fs_info, "delalloc",
362 btrfs_ino(inode), meta_reserve, 1);
363
364 spin_lock(&block_rsv->lock);
365 block_rsv->qgroup_rsv_reserved += qgroup_reserve;
366 spin_unlock(&block_rsv->lock);
367
368 if (delalloc_lock)
369 mutex_unlock(&inode->delalloc_mutex);
370 return 0;
371out_qgroup:
372 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserve);
373out_fail:
374 btrfs_inode_rsv_release(inode, true);
375 if (delalloc_lock)
376 mutex_unlock(&inode->delalloc_mutex);
377 return ret;
378}
379
380/**
381 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
382 * @inode: the inode to release the reservation for.
383 * @num_bytes: the number of bytes we are releasing.
384 * @qgroup_free: free qgroup reservation or convert it to per-trans reservation
385 *
386 * This will release the metadata reservation for an inode. This can be called
387 * once we complete IO for a given set of bytes to release their metadata
388 * reservations, or on error for the same reason.
389 */
390void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes,
391 bool qgroup_free)
392{
393 struct btrfs_fs_info *fs_info = inode->root->fs_info;
394
395 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
396 spin_lock(&inode->lock);
397 inode->csum_bytes -= num_bytes;
398 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
399 spin_unlock(&inode->lock);
400
401 if (btrfs_is_testing(fs_info))
402 return;
403
404 btrfs_inode_rsv_release(inode, qgroup_free);
405}
406
407/**
408 * btrfs_delalloc_release_extents - release our outstanding_extents
409 * @inode: the inode to balance the reservation for.
410 * @num_bytes: the number of bytes we originally reserved with
411 * @qgroup_free: do we need to free qgroup meta reservation or convert them.
412 *
413 * When we reserve space we increase outstanding_extents for the extents we may
414 * add. Once we've set the range as delalloc or created our ordered extents we
415 * have outstanding_extents to track the real usage, so we use this to free our
416 * temporarily tracked outstanding_extents. This _must_ be used in conjunction
417 * with btrfs_delalloc_reserve_metadata.
418 */
419void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes,
420 bool qgroup_free)
421{
422 struct btrfs_fs_info *fs_info = inode->root->fs_info;
423 unsigned num_extents;
424
425 spin_lock(&inode->lock);
426 num_extents = count_max_extents(num_bytes);
427 btrfs_mod_outstanding_extents(inode, -num_extents);
428 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
429 spin_unlock(&inode->lock);
430
431 if (btrfs_is_testing(fs_info))
432 return;
433
434 btrfs_inode_rsv_release(inode, qgroup_free);
435}
436
437/**
438 * btrfs_delalloc_reserve_space - reserve data and metadata space for
439 * delalloc
440 * @inode: inode we're writing to
441 * @start: start range we are writing to
442 * @len: how long the range we are writing to
443 * @reserved: mandatory parameter, record actually reserved qgroup ranges of
444 * current reservation.
445 *
446 * This will do the following things
447 *
448 * - reserve space in data space info for num bytes
449 * and reserve precious corresponding qgroup space
450 * (Done in check_data_free_space)
451 *
452 * - reserve space for metadata space, based on the number of outstanding
453 * extents and how much csums will be needed
454 * also reserve metadata space in a per root over-reserve method.
455 * - add to the inodes->delalloc_bytes
456 * - add it to the fs_info's delalloc inodes list.
457 * (Above 3 all done in delalloc_reserve_metadata)
458 *
459 * Return 0 for success
460 * Return <0 for error(-ENOSPC or -EQUOT)
461 */
462int btrfs_delalloc_reserve_space(struct inode *inode,
463 struct extent_changeset **reserved, u64 start, u64 len)
464{
465 int ret;
466
467 ret = btrfs_check_data_free_space(inode, reserved, start, len);
468 if (ret < 0)
469 return ret;
470 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
471 if (ret < 0)
472 btrfs_free_reserved_data_space(inode, *reserved, start, len);
473 return ret;
474}
475
476/**
477 * btrfs_delalloc_release_space - release data and metadata space for delalloc
478 * @inode: inode we're releasing space for
479 * @start: start position of the space already reserved
480 * @len: the len of the space already reserved
481 * @release_bytes: the len of the space we consumed or didn't use
482 *
483 * This function will release the metadata space that was not used and will
484 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
485 * list if there are no delalloc bytes left.
486 * Also it will handle the qgroup reserved space.
487 */
488void btrfs_delalloc_release_space(struct inode *inode,
489 struct extent_changeset *reserved,
490 u64 start, u64 len, bool qgroup_free)
491{
492 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, qgroup_free);
493 btrfs_free_reserved_data_space(inode, reserved, start, len);
494}