blob: 036536945dd9e06f53adf21c165f087a4700c3cc [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/mm/vmalloc.c
3 *
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
Christoph Lameter930fc452005-10-29 18:15:41 -07008 * Numa awareness, Christoph Lameter, SGI, June 2005
Linus Torvalds1da177e2005-04-16 15:20:36 -07009 */
10
Nick Piggindb64fe02008-10-18 20:27:03 -070011#include <linux/vmalloc.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070012#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
15#include <linux/slab.h>
16#include <linux/spinlock.h>
17#include <linux/interrupt.h>
Alexey Dobriyan5f6a6a92008-10-06 03:50:47 +040018#include <linux/proc_fs.h>
Christoph Lametera10aa572008-04-28 02:12:40 -070019#include <linux/seq_file.h>
Thomas Gleixner3ac7fe52008-04-30 00:55:01 -070020#include <linux/debugobjects.h>
Christoph Lameter23016962008-04-28 02:12:42 -070021#include <linux/kallsyms.h>
Nick Piggindb64fe02008-10-18 20:27:03 -070022#include <linux/list.h>
23#include <linux/rbtree.h>
24#include <linux/radix-tree.h>
25#include <linux/rcupdate.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070026
Nick Piggindb64fe02008-10-18 20:27:03 -070027#include <asm/atomic.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070028#include <asm/uaccess.h>
29#include <asm/tlbflush.h>
30
31
Nick Piggindb64fe02008-10-18 20:27:03 -070032/*** Page table manipulation functions ***/
Adrian Bunkb2213852006-09-25 23:31:02 -070033
Linus Torvalds1da177e2005-04-16 15:20:36 -070034static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
35{
36 pte_t *pte;
37
38 pte = pte_offset_kernel(pmd, addr);
39 do {
40 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
41 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
42 } while (pte++, addr += PAGE_SIZE, addr != end);
43}
44
Nick Piggindb64fe02008-10-18 20:27:03 -070045static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
Linus Torvalds1da177e2005-04-16 15:20:36 -070046{
47 pmd_t *pmd;
48 unsigned long next;
49
50 pmd = pmd_offset(pud, addr);
51 do {
52 next = pmd_addr_end(addr, end);
53 if (pmd_none_or_clear_bad(pmd))
54 continue;
55 vunmap_pte_range(pmd, addr, next);
56 } while (pmd++, addr = next, addr != end);
57}
58
Nick Piggindb64fe02008-10-18 20:27:03 -070059static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
Linus Torvalds1da177e2005-04-16 15:20:36 -070060{
61 pud_t *pud;
62 unsigned long next;
63
64 pud = pud_offset(pgd, addr);
65 do {
66 next = pud_addr_end(addr, end);
67 if (pud_none_or_clear_bad(pud))
68 continue;
69 vunmap_pmd_range(pud, addr, next);
70 } while (pud++, addr = next, addr != end);
71}
72
Nick Piggindb64fe02008-10-18 20:27:03 -070073static void vunmap_page_range(unsigned long addr, unsigned long end)
Linus Torvalds1da177e2005-04-16 15:20:36 -070074{
75 pgd_t *pgd;
76 unsigned long next;
Linus Torvalds1da177e2005-04-16 15:20:36 -070077
78 BUG_ON(addr >= end);
79 pgd = pgd_offset_k(addr);
80 flush_cache_vunmap(addr, end);
81 do {
82 next = pgd_addr_end(addr, end);
83 if (pgd_none_or_clear_bad(pgd))
84 continue;
85 vunmap_pud_range(pgd, addr, next);
86 } while (pgd++, addr = next, addr != end);
Linus Torvalds1da177e2005-04-16 15:20:36 -070087}
88
89static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
Nick Piggindb64fe02008-10-18 20:27:03 -070090 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
Linus Torvalds1da177e2005-04-16 15:20:36 -070091{
92 pte_t *pte;
93
Nick Piggindb64fe02008-10-18 20:27:03 -070094 /*
95 * nr is a running index into the array which helps higher level
96 * callers keep track of where we're up to.
97 */
98
Hugh Dickins872fec12005-10-29 18:16:21 -070099 pte = pte_alloc_kernel(pmd, addr);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700100 if (!pte)
101 return -ENOMEM;
102 do {
Nick Piggindb64fe02008-10-18 20:27:03 -0700103 struct page *page = pages[*nr];
104
105 if (WARN_ON(!pte_none(*pte)))
106 return -EBUSY;
107 if (WARN_ON(!page))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700108 return -ENOMEM;
109 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
Nick Piggindb64fe02008-10-18 20:27:03 -0700110 (*nr)++;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700111 } while (pte++, addr += PAGE_SIZE, addr != end);
112 return 0;
113}
114
Nick Piggindb64fe02008-10-18 20:27:03 -0700115static int vmap_pmd_range(pud_t *pud, unsigned long addr,
116 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700117{
118 pmd_t *pmd;
119 unsigned long next;
120
121 pmd = pmd_alloc(&init_mm, pud, addr);
122 if (!pmd)
123 return -ENOMEM;
124 do {
125 next = pmd_addr_end(addr, end);
Nick Piggindb64fe02008-10-18 20:27:03 -0700126 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700127 return -ENOMEM;
128 } while (pmd++, addr = next, addr != end);
129 return 0;
130}
131
Nick Piggindb64fe02008-10-18 20:27:03 -0700132static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
133 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700134{
135 pud_t *pud;
136 unsigned long next;
137
138 pud = pud_alloc(&init_mm, pgd, addr);
139 if (!pud)
140 return -ENOMEM;
141 do {
142 next = pud_addr_end(addr, end);
Nick Piggindb64fe02008-10-18 20:27:03 -0700143 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700144 return -ENOMEM;
145 } while (pud++, addr = next, addr != end);
146 return 0;
147}
148
Nick Piggindb64fe02008-10-18 20:27:03 -0700149/*
150 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
151 * will have pfns corresponding to the "pages" array.
152 *
153 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
154 */
155static int vmap_page_range(unsigned long addr, unsigned long end,
156 pgprot_t prot, struct page **pages)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700157{
158 pgd_t *pgd;
159 unsigned long next;
Nick Piggindb64fe02008-10-18 20:27:03 -0700160 int err = 0;
161 int nr = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700162
163 BUG_ON(addr >= end);
164 pgd = pgd_offset_k(addr);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700165 do {
166 next = pgd_addr_end(addr, end);
Nick Piggindb64fe02008-10-18 20:27:03 -0700167 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700168 if (err)
169 break;
170 } while (pgd++, addr = next, addr != end);
Nick Piggindb64fe02008-10-18 20:27:03 -0700171 flush_cache_vmap(addr, end);
172
173 if (unlikely(err))
174 return err;
175 return nr;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700176}
177
Linus Torvalds73bdf0a2008-10-15 08:35:12 -0700178static inline int is_vmalloc_or_module_addr(const void *x)
179{
180 /*
181 * x86-64 and sparc64 put modules in a special place,
182 * and fall back on vmalloc() if that fails. Others
183 * just put it in the vmalloc space.
184 */
185#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
186 unsigned long addr = (unsigned long)x;
187 if (addr >= MODULES_VADDR && addr < MODULES_END)
188 return 1;
189#endif
190 return is_vmalloc_addr(x);
191}
192
Christoph Lameter48667e72008-02-04 22:28:31 -0800193/*
Nick Piggindb64fe02008-10-18 20:27:03 -0700194 * Walk a vmap address to the struct page it maps.
Christoph Lameter48667e72008-02-04 22:28:31 -0800195 */
Christoph Lameterb3bdda02008-02-04 22:28:32 -0800196struct page *vmalloc_to_page(const void *vmalloc_addr)
Christoph Lameter48667e72008-02-04 22:28:31 -0800197{
198 unsigned long addr = (unsigned long) vmalloc_addr;
199 struct page *page = NULL;
200 pgd_t *pgd = pgd_offset_k(addr);
Christoph Lameter48667e72008-02-04 22:28:31 -0800201
Ingo Molnar7aa413d2008-06-19 13:28:11 +0200202 /*
203 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
204 * architectures that do not vmalloc module space
205 */
Linus Torvalds73bdf0a2008-10-15 08:35:12 -0700206 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
Jiri Slaby59ea7462008-06-12 13:56:40 +0200207
Christoph Lameter48667e72008-02-04 22:28:31 -0800208 if (!pgd_none(*pgd)) {
Nick Piggindb64fe02008-10-18 20:27:03 -0700209 pud_t *pud = pud_offset(pgd, addr);
Christoph Lameter48667e72008-02-04 22:28:31 -0800210 if (!pud_none(*pud)) {
Nick Piggindb64fe02008-10-18 20:27:03 -0700211 pmd_t *pmd = pmd_offset(pud, addr);
Christoph Lameter48667e72008-02-04 22:28:31 -0800212 if (!pmd_none(*pmd)) {
Nick Piggindb64fe02008-10-18 20:27:03 -0700213 pte_t *ptep, pte;
214
Christoph Lameter48667e72008-02-04 22:28:31 -0800215 ptep = pte_offset_map(pmd, addr);
216 pte = *ptep;
217 if (pte_present(pte))
218 page = pte_page(pte);
219 pte_unmap(ptep);
220 }
221 }
222 }
223 return page;
224}
225EXPORT_SYMBOL(vmalloc_to_page);
226
227/*
228 * Map a vmalloc()-space virtual address to the physical page frame number.
229 */
Christoph Lameterb3bdda02008-02-04 22:28:32 -0800230unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
Christoph Lameter48667e72008-02-04 22:28:31 -0800231{
232 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
233}
234EXPORT_SYMBOL(vmalloc_to_pfn);
235
Nick Piggindb64fe02008-10-18 20:27:03 -0700236
237/*** Global kva allocator ***/
238
239#define VM_LAZY_FREE 0x01
240#define VM_LAZY_FREEING 0x02
241#define VM_VM_AREA 0x04
242
243struct vmap_area {
244 unsigned long va_start;
245 unsigned long va_end;
246 unsigned long flags;
247 struct rb_node rb_node; /* address sorted rbtree */
248 struct list_head list; /* address sorted list */
249 struct list_head purge_list; /* "lazy purge" list */
250 void *private;
251 struct rcu_head rcu_head;
252};
253
254static DEFINE_SPINLOCK(vmap_area_lock);
255static struct rb_root vmap_area_root = RB_ROOT;
256static LIST_HEAD(vmap_area_list);
257
258static struct vmap_area *__find_vmap_area(unsigned long addr)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700259{
Nick Piggindb64fe02008-10-18 20:27:03 -0700260 struct rb_node *n = vmap_area_root.rb_node;
261
262 while (n) {
263 struct vmap_area *va;
264
265 va = rb_entry(n, struct vmap_area, rb_node);
266 if (addr < va->va_start)
267 n = n->rb_left;
268 else if (addr > va->va_start)
269 n = n->rb_right;
270 else
271 return va;
272 }
273
274 return NULL;
275}
276
277static void __insert_vmap_area(struct vmap_area *va)
278{
279 struct rb_node **p = &vmap_area_root.rb_node;
280 struct rb_node *parent = NULL;
281 struct rb_node *tmp;
282
283 while (*p) {
284 struct vmap_area *tmp;
285
286 parent = *p;
287 tmp = rb_entry(parent, struct vmap_area, rb_node);
288 if (va->va_start < tmp->va_end)
289 p = &(*p)->rb_left;
290 else if (va->va_end > tmp->va_start)
291 p = &(*p)->rb_right;
292 else
293 BUG();
294 }
295
296 rb_link_node(&va->rb_node, parent, p);
297 rb_insert_color(&va->rb_node, &vmap_area_root);
298
299 /* address-sort this list so it is usable like the vmlist */
300 tmp = rb_prev(&va->rb_node);
301 if (tmp) {
302 struct vmap_area *prev;
303 prev = rb_entry(tmp, struct vmap_area, rb_node);
304 list_add_rcu(&va->list, &prev->list);
305 } else
306 list_add_rcu(&va->list, &vmap_area_list);
307}
308
309static void purge_vmap_area_lazy(void);
310
311/*
312 * Allocate a region of KVA of the specified size and alignment, within the
313 * vstart and vend.
314 */
315static struct vmap_area *alloc_vmap_area(unsigned long size,
316 unsigned long align,
317 unsigned long vstart, unsigned long vend,
318 int node, gfp_t gfp_mask)
319{
320 struct vmap_area *va;
321 struct rb_node *n;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700322 unsigned long addr;
Nick Piggindb64fe02008-10-18 20:27:03 -0700323 int purged = 0;
324
325 BUG_ON(size & ~PAGE_MASK);
326
327 addr = ALIGN(vstart, align);
328
329 va = kmalloc_node(sizeof(struct vmap_area),
330 gfp_mask & GFP_RECLAIM_MASK, node);
331 if (unlikely(!va))
332 return ERR_PTR(-ENOMEM);
333
334retry:
335 spin_lock(&vmap_area_lock);
336 /* XXX: could have a last_hole cache */
337 n = vmap_area_root.rb_node;
338 if (n) {
339 struct vmap_area *first = NULL;
340
341 do {
342 struct vmap_area *tmp;
343 tmp = rb_entry(n, struct vmap_area, rb_node);
344 if (tmp->va_end >= addr) {
345 if (!first && tmp->va_start < addr + size)
346 first = tmp;
347 n = n->rb_left;
348 } else {
349 first = tmp;
350 n = n->rb_right;
351 }
352 } while (n);
353
354 if (!first)
355 goto found;
356
357 if (first->va_end < addr) {
358 n = rb_next(&first->rb_node);
359 if (n)
360 first = rb_entry(n, struct vmap_area, rb_node);
361 else
362 goto found;
363 }
364
365 while (addr + size >= first->va_start && addr + size <= vend) {
366 addr = ALIGN(first->va_end + PAGE_SIZE, align);
367
368 n = rb_next(&first->rb_node);
369 if (n)
370 first = rb_entry(n, struct vmap_area, rb_node);
371 else
372 goto found;
373 }
374 }
375found:
376 if (addr + size > vend) {
377 spin_unlock(&vmap_area_lock);
378 if (!purged) {
379 purge_vmap_area_lazy();
380 purged = 1;
381 goto retry;
382 }
383 if (printk_ratelimit())
384 printk(KERN_WARNING "vmap allocation failed: "
385 "use vmalloc=<size> to increase size.\n");
386 return ERR_PTR(-EBUSY);
387 }
388
389 BUG_ON(addr & (align-1));
390
391 va->va_start = addr;
392 va->va_end = addr + size;
393 va->flags = 0;
394 __insert_vmap_area(va);
395 spin_unlock(&vmap_area_lock);
396
397 return va;
398}
399
400static void rcu_free_va(struct rcu_head *head)
401{
402 struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
403
404 kfree(va);
405}
406
407static void __free_vmap_area(struct vmap_area *va)
408{
409 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
410 rb_erase(&va->rb_node, &vmap_area_root);
411 RB_CLEAR_NODE(&va->rb_node);
412 list_del_rcu(&va->list);
413
414 call_rcu(&va->rcu_head, rcu_free_va);
415}
416
417/*
418 * Free a region of KVA allocated by alloc_vmap_area
419 */
420static void free_vmap_area(struct vmap_area *va)
421{
422 spin_lock(&vmap_area_lock);
423 __free_vmap_area(va);
424 spin_unlock(&vmap_area_lock);
425}
426
427/*
428 * Clear the pagetable entries of a given vmap_area
429 */
430static void unmap_vmap_area(struct vmap_area *va)
431{
432 vunmap_page_range(va->va_start, va->va_end);
433}
434
435/*
436 * lazy_max_pages is the maximum amount of virtual address space we gather up
437 * before attempting to purge with a TLB flush.
438 *
439 * There is a tradeoff here: a larger number will cover more kernel page tables
440 * and take slightly longer to purge, but it will linearly reduce the number of
441 * global TLB flushes that must be performed. It would seem natural to scale
442 * this number up linearly with the number of CPUs (because vmapping activity
443 * could also scale linearly with the number of CPUs), however it is likely
444 * that in practice, workloads might be constrained in other ways that mean
445 * vmap activity will not scale linearly with CPUs. Also, I want to be
446 * conservative and not introduce a big latency on huge systems, so go with
447 * a less aggressive log scale. It will still be an improvement over the old
448 * code, and it will be simple to change the scale factor if we find that it
449 * becomes a problem on bigger systems.
450 */
451static unsigned long lazy_max_pages(void)
452{
453 unsigned int log;
454
455 log = fls(num_online_cpus());
456
457 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
458}
459
460static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
461
462/*
463 * Purges all lazily-freed vmap areas.
464 *
465 * If sync is 0 then don't purge if there is already a purge in progress.
466 * If force_flush is 1, then flush kernel TLBs between *start and *end even
467 * if we found no lazy vmap areas to unmap (callers can use this to optimise
468 * their own TLB flushing).
469 * Returns with *start = min(*start, lowest purged address)
470 * *end = max(*end, highest purged address)
471 */
472static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
473 int sync, int force_flush)
474{
475 static DEFINE_SPINLOCK(purge_lock);
476 LIST_HEAD(valist);
477 struct vmap_area *va;
478 int nr = 0;
479
480 /*
481 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
482 * should not expect such behaviour. This just simplifies locking for
483 * the case that isn't actually used at the moment anyway.
484 */
485 if (!sync && !force_flush) {
486 if (!spin_trylock(&purge_lock))
487 return;
488 } else
489 spin_lock(&purge_lock);
490
491 rcu_read_lock();
492 list_for_each_entry_rcu(va, &vmap_area_list, list) {
493 if (va->flags & VM_LAZY_FREE) {
494 if (va->va_start < *start)
495 *start = va->va_start;
496 if (va->va_end > *end)
497 *end = va->va_end;
498 nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
499 unmap_vmap_area(va);
500 list_add_tail(&va->purge_list, &valist);
501 va->flags |= VM_LAZY_FREEING;
502 va->flags &= ~VM_LAZY_FREE;
503 }
504 }
505 rcu_read_unlock();
506
507 if (nr) {
508 BUG_ON(nr > atomic_read(&vmap_lazy_nr));
509 atomic_sub(nr, &vmap_lazy_nr);
510 }
511
512 if (nr || force_flush)
513 flush_tlb_kernel_range(*start, *end);
514
515 if (nr) {
516 spin_lock(&vmap_area_lock);
517 list_for_each_entry(va, &valist, purge_list)
518 __free_vmap_area(va);
519 spin_unlock(&vmap_area_lock);
520 }
521 spin_unlock(&purge_lock);
522}
523
524/*
525 * Kick off a purge of the outstanding lazy areas.
526 */
527static void purge_vmap_area_lazy(void)
528{
529 unsigned long start = ULONG_MAX, end = 0;
530
531 __purge_vmap_area_lazy(&start, &end, 0, 0);
532}
533
534/*
535 * Free and unmap a vmap area
536 */
537static void free_unmap_vmap_area(struct vmap_area *va)
538{
539 va->flags |= VM_LAZY_FREE;
540 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
541 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
542 purge_vmap_area_lazy();
543}
544
545static struct vmap_area *find_vmap_area(unsigned long addr)
546{
547 struct vmap_area *va;
548
549 spin_lock(&vmap_area_lock);
550 va = __find_vmap_area(addr);
551 spin_unlock(&vmap_area_lock);
552
553 return va;
554}
555
556static void free_unmap_vmap_area_addr(unsigned long addr)
557{
558 struct vmap_area *va;
559
560 va = find_vmap_area(addr);
561 BUG_ON(!va);
562 free_unmap_vmap_area(va);
563}
564
565
566/*** Per cpu kva allocator ***/
567
568/*
569 * vmap space is limited especially on 32 bit architectures. Ensure there is
570 * room for at least 16 percpu vmap blocks per CPU.
571 */
572/*
573 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
574 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
575 * instead (we just need a rough idea)
576 */
577#if BITS_PER_LONG == 32
578#define VMALLOC_SPACE (128UL*1024*1024)
579#else
580#define VMALLOC_SPACE (128UL*1024*1024*1024)
581#endif
582
583#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
584#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
585#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
586#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
587#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
588#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
589#define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
590 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
591 VMALLOC_PAGES / NR_CPUS / 16))
592
593#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
594
595struct vmap_block_queue {
596 spinlock_t lock;
597 struct list_head free;
598 struct list_head dirty;
599 unsigned int nr_dirty;
600};
601
602struct vmap_block {
603 spinlock_t lock;
604 struct vmap_area *va;
605 struct vmap_block_queue *vbq;
606 unsigned long free, dirty;
607 DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
608 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
609 union {
610 struct {
611 struct list_head free_list;
612 struct list_head dirty_list;
613 };
614 struct rcu_head rcu_head;
615 };
616};
617
618/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
619static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
620
621/*
622 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
623 * in the free path. Could get rid of this if we change the API to return a
624 * "cookie" from alloc, to be passed to free. But no big deal yet.
625 */
626static DEFINE_SPINLOCK(vmap_block_tree_lock);
627static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
628
629/*
630 * We should probably have a fallback mechanism to allocate virtual memory
631 * out of partially filled vmap blocks. However vmap block sizing should be
632 * fairly reasonable according to the vmalloc size, so it shouldn't be a
633 * big problem.
634 */
635
636static unsigned long addr_to_vb_idx(unsigned long addr)
637{
638 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
639 addr /= VMAP_BLOCK_SIZE;
640 return addr;
641}
642
643static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
644{
645 struct vmap_block_queue *vbq;
646 struct vmap_block *vb;
647 struct vmap_area *va;
648 unsigned long vb_idx;
649 int node, err;
650
651 node = numa_node_id();
652
653 vb = kmalloc_node(sizeof(struct vmap_block),
654 gfp_mask & GFP_RECLAIM_MASK, node);
655 if (unlikely(!vb))
656 return ERR_PTR(-ENOMEM);
657
658 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
659 VMALLOC_START, VMALLOC_END,
660 node, gfp_mask);
661 if (unlikely(IS_ERR(va))) {
662 kfree(vb);
663 return ERR_PTR(PTR_ERR(va));
664 }
665
666 err = radix_tree_preload(gfp_mask);
667 if (unlikely(err)) {
668 kfree(vb);
669 free_vmap_area(va);
670 return ERR_PTR(err);
671 }
672
673 spin_lock_init(&vb->lock);
674 vb->va = va;
675 vb->free = VMAP_BBMAP_BITS;
676 vb->dirty = 0;
677 bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
678 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
679 INIT_LIST_HEAD(&vb->free_list);
680 INIT_LIST_HEAD(&vb->dirty_list);
681
682 vb_idx = addr_to_vb_idx(va->va_start);
683 spin_lock(&vmap_block_tree_lock);
684 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
685 spin_unlock(&vmap_block_tree_lock);
686 BUG_ON(err);
687 radix_tree_preload_end();
688
689 vbq = &get_cpu_var(vmap_block_queue);
690 vb->vbq = vbq;
691 spin_lock(&vbq->lock);
692 list_add(&vb->free_list, &vbq->free);
693 spin_unlock(&vbq->lock);
694 put_cpu_var(vmap_cpu_blocks);
695
696 return vb;
697}
698
699static void rcu_free_vb(struct rcu_head *head)
700{
701 struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
702
703 kfree(vb);
704}
705
706static void free_vmap_block(struct vmap_block *vb)
707{
708 struct vmap_block *tmp;
709 unsigned long vb_idx;
710
711 spin_lock(&vb->vbq->lock);
712 if (!list_empty(&vb->free_list))
713 list_del(&vb->free_list);
714 if (!list_empty(&vb->dirty_list))
715 list_del(&vb->dirty_list);
716 spin_unlock(&vb->vbq->lock);
717
718 vb_idx = addr_to_vb_idx(vb->va->va_start);
719 spin_lock(&vmap_block_tree_lock);
720 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
721 spin_unlock(&vmap_block_tree_lock);
722 BUG_ON(tmp != vb);
723
724 free_unmap_vmap_area(vb->va);
725 call_rcu(&vb->rcu_head, rcu_free_vb);
726}
727
728static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
729{
730 struct vmap_block_queue *vbq;
731 struct vmap_block *vb;
732 unsigned long addr = 0;
733 unsigned int order;
734
735 BUG_ON(size & ~PAGE_MASK);
736 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
737 order = get_order(size);
738
739again:
740 rcu_read_lock();
741 vbq = &get_cpu_var(vmap_block_queue);
742 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
743 int i;
744
745 spin_lock(&vb->lock);
746 i = bitmap_find_free_region(vb->alloc_map,
747 VMAP_BBMAP_BITS, order);
748
749 if (i >= 0) {
750 addr = vb->va->va_start + (i << PAGE_SHIFT);
751 BUG_ON(addr_to_vb_idx(addr) !=
752 addr_to_vb_idx(vb->va->va_start));
753 vb->free -= 1UL << order;
754 if (vb->free == 0) {
755 spin_lock(&vbq->lock);
756 list_del_init(&vb->free_list);
757 spin_unlock(&vbq->lock);
758 }
759 spin_unlock(&vb->lock);
760 break;
761 }
762 spin_unlock(&vb->lock);
763 }
764 put_cpu_var(vmap_cpu_blocks);
765 rcu_read_unlock();
766
767 if (!addr) {
768 vb = new_vmap_block(gfp_mask);
769 if (IS_ERR(vb))
770 return vb;
771 goto again;
772 }
773
774 return (void *)addr;
775}
776
777static void vb_free(const void *addr, unsigned long size)
778{
779 unsigned long offset;
780 unsigned long vb_idx;
781 unsigned int order;
782 struct vmap_block *vb;
783
784 BUG_ON(size & ~PAGE_MASK);
785 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
786 order = get_order(size);
787
788 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
789
790 vb_idx = addr_to_vb_idx((unsigned long)addr);
791 rcu_read_lock();
792 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
793 rcu_read_unlock();
794 BUG_ON(!vb);
795
796 spin_lock(&vb->lock);
797 bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order);
798 if (!vb->dirty) {
799 spin_lock(&vb->vbq->lock);
800 list_add(&vb->dirty_list, &vb->vbq->dirty);
801 spin_unlock(&vb->vbq->lock);
802 }
803 vb->dirty += 1UL << order;
804 if (vb->dirty == VMAP_BBMAP_BITS) {
805 BUG_ON(vb->free || !list_empty(&vb->free_list));
806 spin_unlock(&vb->lock);
807 free_vmap_block(vb);
808 } else
809 spin_unlock(&vb->lock);
810}
811
812/**
813 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
814 *
815 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
816 * to amortize TLB flushing overheads. What this means is that any page you
817 * have now, may, in a former life, have been mapped into kernel virtual
818 * address by the vmap layer and so there might be some CPUs with TLB entries
819 * still referencing that page (additional to the regular 1:1 kernel mapping).
820 *
821 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
822 * be sure that none of the pages we have control over will have any aliases
823 * from the vmap layer.
824 */
825void vm_unmap_aliases(void)
826{
827 unsigned long start = ULONG_MAX, end = 0;
828 int cpu;
829 int flush = 0;
830
831 for_each_possible_cpu(cpu) {
832 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
833 struct vmap_block *vb;
834
835 rcu_read_lock();
836 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
837 int i;
838
839 spin_lock(&vb->lock);
840 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
841 while (i < VMAP_BBMAP_BITS) {
842 unsigned long s, e;
843 int j;
844 j = find_next_zero_bit(vb->dirty_map,
845 VMAP_BBMAP_BITS, i);
846
847 s = vb->va->va_start + (i << PAGE_SHIFT);
848 e = vb->va->va_start + (j << PAGE_SHIFT);
849 vunmap_page_range(s, e);
850 flush = 1;
851
852 if (s < start)
853 start = s;
854 if (e > end)
855 end = e;
856
857 i = j;
858 i = find_next_bit(vb->dirty_map,
859 VMAP_BBMAP_BITS, i);
860 }
861 spin_unlock(&vb->lock);
862 }
863 rcu_read_unlock();
864 }
865
866 __purge_vmap_area_lazy(&start, &end, 1, flush);
867}
868EXPORT_SYMBOL_GPL(vm_unmap_aliases);
869
870/**
871 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
872 * @mem: the pointer returned by vm_map_ram
873 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
874 */
875void vm_unmap_ram(const void *mem, unsigned int count)
876{
877 unsigned long size = count << PAGE_SHIFT;
878 unsigned long addr = (unsigned long)mem;
879
880 BUG_ON(!addr);
881 BUG_ON(addr < VMALLOC_START);
882 BUG_ON(addr > VMALLOC_END);
883 BUG_ON(addr & (PAGE_SIZE-1));
884
885 debug_check_no_locks_freed(mem, size);
886
887 if (likely(count <= VMAP_MAX_ALLOC))
888 vb_free(mem, size);
889 else
890 free_unmap_vmap_area_addr(addr);
891}
892EXPORT_SYMBOL(vm_unmap_ram);
893
894/**
895 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
896 * @pages: an array of pointers to the pages to be mapped
897 * @count: number of pages
898 * @node: prefer to allocate data structures on this node
899 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
900 * @returns: a pointer to the address that has been mapped, or NULL on failure
901 */
902void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
903{
904 unsigned long size = count << PAGE_SHIFT;
905 unsigned long addr;
906 void *mem;
907
908 if (likely(count <= VMAP_MAX_ALLOC)) {
909 mem = vb_alloc(size, GFP_KERNEL);
910 if (IS_ERR(mem))
911 return NULL;
912 addr = (unsigned long)mem;
913 } else {
914 struct vmap_area *va;
915 va = alloc_vmap_area(size, PAGE_SIZE,
916 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
917 if (IS_ERR(va))
918 return NULL;
919
920 addr = va->va_start;
921 mem = (void *)addr;
922 }
923 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
924 vm_unmap_ram(mem, count);
925 return NULL;
926 }
927 return mem;
928}
929EXPORT_SYMBOL(vm_map_ram);
930
931void __init vmalloc_init(void)
932{
933 int i;
934
935 for_each_possible_cpu(i) {
936 struct vmap_block_queue *vbq;
937
938 vbq = &per_cpu(vmap_block_queue, i);
939 spin_lock_init(&vbq->lock);
940 INIT_LIST_HEAD(&vbq->free);
941 INIT_LIST_HEAD(&vbq->dirty);
942 vbq->nr_dirty = 0;
943 }
944}
945
946void unmap_kernel_range(unsigned long addr, unsigned long size)
947{
948 unsigned long end = addr + size;
949 vunmap_page_range(addr, end);
950 flush_tlb_kernel_range(addr, end);
951}
952
953int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
954{
955 unsigned long addr = (unsigned long)area->addr;
956 unsigned long end = addr + area->size - PAGE_SIZE;
957 int err;
958
959 err = vmap_page_range(addr, end, prot, *pages);
960 if (err > 0) {
961 *pages += err;
962 err = 0;
963 }
964
965 return err;
966}
967EXPORT_SYMBOL_GPL(map_vm_area);
968
969/*** Old vmalloc interfaces ***/
970DEFINE_RWLOCK(vmlist_lock);
971struct vm_struct *vmlist;
972
973static struct vm_struct *__get_vm_area_node(unsigned long size,
974 unsigned long flags, unsigned long start, unsigned long end,
975 int node, gfp_t gfp_mask, void *caller)
976{
977 static struct vmap_area *va;
978 struct vm_struct *area;
979 struct vm_struct *tmp, **p;
980 unsigned long align = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700981
Giridhar Pemmasani52fd24c2006-10-28 10:38:34 -0700982 BUG_ON(in_interrupt());
Linus Torvalds1da177e2005-04-16 15:20:36 -0700983 if (flags & VM_IOREMAP) {
984 int bit = fls(size);
985
986 if (bit > IOREMAP_MAX_ORDER)
987 bit = IOREMAP_MAX_ORDER;
988 else if (bit < PAGE_SHIFT)
989 bit = PAGE_SHIFT;
990
991 align = 1ul << bit;
992 }
Nick Piggindb64fe02008-10-18 20:27:03 -0700993
Linus Torvalds1da177e2005-04-16 15:20:36 -0700994 size = PAGE_ALIGN(size);
OGAWA Hirofumi31be8302006-11-16 01:19:29 -0800995 if (unlikely(!size))
996 return NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700997
Christoph Lameter6cb06222007-10-16 01:25:41 -0700998 area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700999 if (unlikely(!area))
1000 return NULL;
1001
Linus Torvalds1da177e2005-04-16 15:20:36 -07001002 /*
1003 * We always allocate a guard page.
1004 */
1005 size += PAGE_SIZE;
1006
Nick Piggindb64fe02008-10-18 20:27:03 -07001007 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1008 if (IS_ERR(va)) {
1009 kfree(area);
1010 return NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001011 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001012
1013 area->flags = flags;
Nick Piggindb64fe02008-10-18 20:27:03 -07001014 area->addr = (void *)va->va_start;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001015 area->size = size;
1016 area->pages = NULL;
1017 area->nr_pages = 0;
1018 area->phys_addr = 0;
Christoph Lameter23016962008-04-28 02:12:42 -07001019 area->caller = caller;
Nick Piggindb64fe02008-10-18 20:27:03 -07001020 va->private = area;
1021 va->flags |= VM_VM_AREA;
1022
1023 write_lock(&vmlist_lock);
1024 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1025 if (tmp->addr >= area->addr)
1026 break;
1027 }
1028 area->next = *p;
1029 *p = area;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001030 write_unlock(&vmlist_lock);
1031
1032 return area;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001033}
1034
Christoph Lameter930fc452005-10-29 18:15:41 -07001035struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1036 unsigned long start, unsigned long end)
1037{
Christoph Lameter23016962008-04-28 02:12:42 -07001038 return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL,
1039 __builtin_return_address(0));
Christoph Lameter930fc452005-10-29 18:15:41 -07001040}
Rusty Russell5992b6d2007-07-19 01:49:21 -07001041EXPORT_SYMBOL_GPL(__get_vm_area);
Christoph Lameter930fc452005-10-29 18:15:41 -07001042
Linus Torvalds1da177e2005-04-16 15:20:36 -07001043/**
Simon Arlott183ff222007-10-20 01:27:18 +02001044 * get_vm_area - reserve a contiguous kernel virtual area
Linus Torvalds1da177e2005-04-16 15:20:36 -07001045 * @size: size of the area
1046 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1047 *
1048 * Search an area of @size in the kernel virtual mapping area,
1049 * and reserved it for out purposes. Returns the area descriptor
1050 * on success or %NULL on failure.
1051 */
1052struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1053{
Christoph Lameter23016962008-04-28 02:12:42 -07001054 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
1055 -1, GFP_KERNEL, __builtin_return_address(0));
1056}
1057
1058struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1059 void *caller)
1060{
1061 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
1062 -1, GFP_KERNEL, caller);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001063}
1064
Giridhar Pemmasani52fd24c2006-10-28 10:38:34 -07001065struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
1066 int node, gfp_t gfp_mask)
Christoph Lameter930fc452005-10-29 18:15:41 -07001067{
Giridhar Pemmasani52fd24c2006-10-28 10:38:34 -07001068 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node,
Christoph Lameter23016962008-04-28 02:12:42 -07001069 gfp_mask, __builtin_return_address(0));
Christoph Lameter930fc452005-10-29 18:15:41 -07001070}
1071
Nick Piggindb64fe02008-10-18 20:27:03 -07001072static struct vm_struct *find_vm_area(const void *addr)
Nick Piggin83342312006-06-23 02:03:20 -07001073{
Nick Piggindb64fe02008-10-18 20:27:03 -07001074 struct vmap_area *va;
Nick Piggin83342312006-06-23 02:03:20 -07001075
Nick Piggindb64fe02008-10-18 20:27:03 -07001076 va = find_vmap_area((unsigned long)addr);
1077 if (va && va->flags & VM_VM_AREA)
1078 return va->private;
Nick Piggin83342312006-06-23 02:03:20 -07001079
Andi Kleen7856dfe2005-05-20 14:27:57 -07001080 return NULL;
Andi Kleen7856dfe2005-05-20 14:27:57 -07001081}
1082
Linus Torvalds1da177e2005-04-16 15:20:36 -07001083/**
Simon Arlott183ff222007-10-20 01:27:18 +02001084 * remove_vm_area - find and remove a continuous kernel virtual area
Linus Torvalds1da177e2005-04-16 15:20:36 -07001085 * @addr: base address
1086 *
1087 * Search for the kernel VM area starting at @addr, and remove it.
1088 * This function returns the found VM area, but using it is NOT safe
Andi Kleen7856dfe2005-05-20 14:27:57 -07001089 * on SMP machines, except for its size or flags.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001090 */
Christoph Lameterb3bdda02008-02-04 22:28:32 -08001091struct vm_struct *remove_vm_area(const void *addr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001092{
Nick Piggindb64fe02008-10-18 20:27:03 -07001093 struct vmap_area *va;
1094
1095 va = find_vmap_area((unsigned long)addr);
1096 if (va && va->flags & VM_VM_AREA) {
1097 struct vm_struct *vm = va->private;
1098 struct vm_struct *tmp, **p;
1099 free_unmap_vmap_area(va);
1100 vm->size -= PAGE_SIZE;
1101
1102 write_lock(&vmlist_lock);
1103 for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1104 ;
1105 *p = tmp->next;
1106 write_unlock(&vmlist_lock);
1107
1108 return vm;
1109 }
1110 return NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001111}
1112
Christoph Lameterb3bdda02008-02-04 22:28:32 -08001113static void __vunmap(const void *addr, int deallocate_pages)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001114{
1115 struct vm_struct *area;
1116
1117 if (!addr)
1118 return;
1119
1120 if ((PAGE_SIZE-1) & (unsigned long)addr) {
Arjan van de Ven4c8573e2008-07-25 19:45:37 -07001121 WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001122 return;
1123 }
1124
1125 area = remove_vm_area(addr);
1126 if (unlikely(!area)) {
Arjan van de Ven4c8573e2008-07-25 19:45:37 -07001127 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
Linus Torvalds1da177e2005-04-16 15:20:36 -07001128 addr);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001129 return;
1130 }
1131
Ingo Molnar9a11b49a2006-07-03 00:24:33 -07001132 debug_check_no_locks_freed(addr, area->size);
Thomas Gleixner3ac7fe52008-04-30 00:55:01 -07001133 debug_check_no_obj_freed(addr, area->size);
Ingo Molnar9a11b49a2006-07-03 00:24:33 -07001134
Linus Torvalds1da177e2005-04-16 15:20:36 -07001135 if (deallocate_pages) {
1136 int i;
1137
1138 for (i = 0; i < area->nr_pages; i++) {
Christoph Lameterbf53d6f2008-02-04 22:28:34 -08001139 struct page *page = area->pages[i];
1140
1141 BUG_ON(!page);
1142 __free_page(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001143 }
1144
Jan Kiszka8757d5f2006-07-14 00:23:56 -07001145 if (area->flags & VM_VPAGES)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001146 vfree(area->pages);
1147 else
1148 kfree(area->pages);
1149 }
1150
1151 kfree(area);
1152 return;
1153}
1154
1155/**
1156 * vfree - release memory allocated by vmalloc()
Linus Torvalds1da177e2005-04-16 15:20:36 -07001157 * @addr: memory base address
1158 *
Simon Arlott183ff222007-10-20 01:27:18 +02001159 * Free the virtually continuous memory area starting at @addr, as
Pekka Enberg80e93ef2005-09-09 13:10:16 -07001160 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1161 * NULL, no operation is performed.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001162 *
Pekka Enberg80e93ef2005-09-09 13:10:16 -07001163 * Must not be called in interrupt context.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001164 */
Christoph Lameterb3bdda02008-02-04 22:28:32 -08001165void vfree(const void *addr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001166{
1167 BUG_ON(in_interrupt());
1168 __vunmap(addr, 1);
1169}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001170EXPORT_SYMBOL(vfree);
1171
1172/**
1173 * vunmap - release virtual mapping obtained by vmap()
Linus Torvalds1da177e2005-04-16 15:20:36 -07001174 * @addr: memory base address
1175 *
1176 * Free the virtually contiguous memory area starting at @addr,
1177 * which was created from the page array passed to vmap().
1178 *
Pekka Enberg80e93ef2005-09-09 13:10:16 -07001179 * Must not be called in interrupt context.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001180 */
Christoph Lameterb3bdda02008-02-04 22:28:32 -08001181void vunmap(const void *addr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001182{
1183 BUG_ON(in_interrupt());
1184 __vunmap(addr, 0);
1185}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001186EXPORT_SYMBOL(vunmap);
1187
1188/**
1189 * vmap - map an array of pages into virtually contiguous space
Linus Torvalds1da177e2005-04-16 15:20:36 -07001190 * @pages: array of page pointers
1191 * @count: number of pages to map
1192 * @flags: vm_area->flags
1193 * @prot: page protection for the mapping
1194 *
1195 * Maps @count pages from @pages into contiguous kernel virtual
1196 * space.
1197 */
1198void *vmap(struct page **pages, unsigned int count,
1199 unsigned long flags, pgprot_t prot)
1200{
1201 struct vm_struct *area;
1202
1203 if (count > num_physpages)
1204 return NULL;
1205
Christoph Lameter23016962008-04-28 02:12:42 -07001206 area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1207 __builtin_return_address(0));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001208 if (!area)
1209 return NULL;
Christoph Lameter23016962008-04-28 02:12:42 -07001210
Linus Torvalds1da177e2005-04-16 15:20:36 -07001211 if (map_vm_area(area, prot, &pages)) {
1212 vunmap(area->addr);
1213 return NULL;
1214 }
1215
1216 return area->addr;
1217}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001218EXPORT_SYMBOL(vmap);
1219
Nick Piggindb64fe02008-10-18 20:27:03 -07001220static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
1221 int node, void *caller);
Adrian Bunke31d9eb2008-02-04 22:29:09 -08001222static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
Christoph Lameter23016962008-04-28 02:12:42 -07001223 pgprot_t prot, int node, void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001224{
1225 struct page **pages;
1226 unsigned int nr_pages, array_size, i;
1227
1228 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1229 array_size = (nr_pages * sizeof(struct page *));
1230
1231 area->nr_pages = nr_pages;
1232 /* Please note that the recursion is strictly bounded. */
Jan Kiszka8757d5f2006-07-14 00:23:56 -07001233 if (array_size > PAGE_SIZE) {
Christoph Lameter94f60302007-07-17 04:03:29 -07001234 pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO,
Christoph Lameter23016962008-04-28 02:12:42 -07001235 PAGE_KERNEL, node, caller);
Jan Kiszka8757d5f2006-07-14 00:23:56 -07001236 area->flags |= VM_VPAGES;
Andrew Morton286e1ea2006-10-17 00:09:57 -07001237 } else {
1238 pages = kmalloc_node(array_size,
Christoph Lameter6cb06222007-10-16 01:25:41 -07001239 (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO,
Andrew Morton286e1ea2006-10-17 00:09:57 -07001240 node);
1241 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001242 area->pages = pages;
Christoph Lameter23016962008-04-28 02:12:42 -07001243 area->caller = caller;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001244 if (!area->pages) {
1245 remove_vm_area(area->addr);
1246 kfree(area);
1247 return NULL;
1248 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001249
1250 for (i = 0; i < area->nr_pages; i++) {
Christoph Lameterbf53d6f2008-02-04 22:28:34 -08001251 struct page *page;
1252
Christoph Lameter930fc452005-10-29 18:15:41 -07001253 if (node < 0)
Christoph Lameterbf53d6f2008-02-04 22:28:34 -08001254 page = alloc_page(gfp_mask);
Christoph Lameter930fc452005-10-29 18:15:41 -07001255 else
Christoph Lameterbf53d6f2008-02-04 22:28:34 -08001256 page = alloc_pages_node(node, gfp_mask, 0);
1257
1258 if (unlikely(!page)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001259 /* Successfully allocated i pages, free them in __vunmap() */
1260 area->nr_pages = i;
1261 goto fail;
1262 }
Christoph Lameterbf53d6f2008-02-04 22:28:34 -08001263 area->pages[i] = page;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001264 }
1265
1266 if (map_vm_area(area, prot, &pages))
1267 goto fail;
1268 return area->addr;
1269
1270fail:
1271 vfree(area->addr);
1272 return NULL;
1273}
1274
Christoph Lameter930fc452005-10-29 18:15:41 -07001275void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
1276{
Christoph Lameter23016962008-04-28 02:12:42 -07001277 return __vmalloc_area_node(area, gfp_mask, prot, -1,
1278 __builtin_return_address(0));
Christoph Lameter930fc452005-10-29 18:15:41 -07001279}
1280
Linus Torvalds1da177e2005-04-16 15:20:36 -07001281/**
Christoph Lameter930fc452005-10-29 18:15:41 -07001282 * __vmalloc_node - allocate virtually contiguous memory
Linus Torvalds1da177e2005-04-16 15:20:36 -07001283 * @size: allocation size
1284 * @gfp_mask: flags for the page level allocator
1285 * @prot: protection mask for the allocated pages
Randy Dunlapd44e0782005-11-07 01:01:10 -08001286 * @node: node to use for allocation or -1
Randy Dunlapc85d1942008-05-01 04:34:48 -07001287 * @caller: caller's return address
Linus Torvalds1da177e2005-04-16 15:20:36 -07001288 *
1289 * Allocate enough pages to cover @size from the page level
1290 * allocator with @gfp_mask flags. Map them into contiguous
1291 * kernel virtual space, using a pagetable protection of @prot.
1292 */
Adrian Bunkb2213852006-09-25 23:31:02 -07001293static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
Christoph Lameter23016962008-04-28 02:12:42 -07001294 int node, void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001295{
1296 struct vm_struct *area;
1297
1298 size = PAGE_ALIGN(size);
1299 if (!size || (size >> PAGE_SHIFT) > num_physpages)
1300 return NULL;
1301
Christoph Lameter23016962008-04-28 02:12:42 -07001302 area = __get_vm_area_node(size, VM_ALLOC, VMALLOC_START, VMALLOC_END,
1303 node, gfp_mask, caller);
1304
Linus Torvalds1da177e2005-04-16 15:20:36 -07001305 if (!area)
1306 return NULL;
1307
Christoph Lameter23016962008-04-28 02:12:42 -07001308 return __vmalloc_area_node(area, gfp_mask, prot, node, caller);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001309}
1310
Christoph Lameter930fc452005-10-29 18:15:41 -07001311void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1312{
Christoph Lameter23016962008-04-28 02:12:42 -07001313 return __vmalloc_node(size, gfp_mask, prot, -1,
1314 __builtin_return_address(0));
Christoph Lameter930fc452005-10-29 18:15:41 -07001315}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001316EXPORT_SYMBOL(__vmalloc);
1317
1318/**
1319 * vmalloc - allocate virtually contiguous memory
Linus Torvalds1da177e2005-04-16 15:20:36 -07001320 * @size: allocation size
Linus Torvalds1da177e2005-04-16 15:20:36 -07001321 * Allocate enough pages to cover @size from the page level
1322 * allocator and map them into contiguous kernel virtual space.
1323 *
Michael Opdenackerc1c88972006-10-03 23:21:02 +02001324 * For tight control over page level allocator and protection flags
Linus Torvalds1da177e2005-04-16 15:20:36 -07001325 * use __vmalloc() instead.
1326 */
1327void *vmalloc(unsigned long size)
1328{
Christoph Lameter23016962008-04-28 02:12:42 -07001329 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1330 -1, __builtin_return_address(0));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001331}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001332EXPORT_SYMBOL(vmalloc);
1333
Christoph Lameter930fc452005-10-29 18:15:41 -07001334/**
Rolf Eike Beeread04082006-09-27 01:50:13 -07001335 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1336 * @size: allocation size
Nick Piggin83342312006-06-23 02:03:20 -07001337 *
Rolf Eike Beeread04082006-09-27 01:50:13 -07001338 * The resulting memory area is zeroed so it can be mapped to userspace
1339 * without leaking data.
Nick Piggin83342312006-06-23 02:03:20 -07001340 */
1341void *vmalloc_user(unsigned long size)
1342{
1343 struct vm_struct *area;
1344 void *ret;
1345
1346 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, PAGE_KERNEL);
Eric Dumazet2b4ac442006-11-10 12:27:48 -08001347 if (ret) {
Nick Piggindb64fe02008-10-18 20:27:03 -07001348 area = find_vm_area(ret);
Eric Dumazet2b4ac442006-11-10 12:27:48 -08001349 area->flags |= VM_USERMAP;
Eric Dumazet2b4ac442006-11-10 12:27:48 -08001350 }
Nick Piggin83342312006-06-23 02:03:20 -07001351 return ret;
1352}
1353EXPORT_SYMBOL(vmalloc_user);
1354
1355/**
Christoph Lameter930fc452005-10-29 18:15:41 -07001356 * vmalloc_node - allocate memory on a specific node
Christoph Lameter930fc452005-10-29 18:15:41 -07001357 * @size: allocation size
Randy Dunlapd44e0782005-11-07 01:01:10 -08001358 * @node: numa node
Christoph Lameter930fc452005-10-29 18:15:41 -07001359 *
1360 * Allocate enough pages to cover @size from the page level
1361 * allocator and map them into contiguous kernel virtual space.
1362 *
Michael Opdenackerc1c88972006-10-03 23:21:02 +02001363 * For tight control over page level allocator and protection flags
Christoph Lameter930fc452005-10-29 18:15:41 -07001364 * use __vmalloc() instead.
1365 */
1366void *vmalloc_node(unsigned long size, int node)
1367{
Christoph Lameter23016962008-04-28 02:12:42 -07001368 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1369 node, __builtin_return_address(0));
Christoph Lameter930fc452005-10-29 18:15:41 -07001370}
1371EXPORT_SYMBOL(vmalloc_node);
1372
Pavel Pisa4dc3b162005-05-01 08:59:25 -07001373#ifndef PAGE_KERNEL_EXEC
1374# define PAGE_KERNEL_EXEC PAGE_KERNEL
1375#endif
1376
Linus Torvalds1da177e2005-04-16 15:20:36 -07001377/**
1378 * vmalloc_exec - allocate virtually contiguous, executable memory
Linus Torvalds1da177e2005-04-16 15:20:36 -07001379 * @size: allocation size
1380 *
1381 * Kernel-internal function to allocate enough pages to cover @size
1382 * the page level allocator and map them into contiguous and
1383 * executable kernel virtual space.
1384 *
Michael Opdenackerc1c88972006-10-03 23:21:02 +02001385 * For tight control over page level allocator and protection flags
Linus Torvalds1da177e2005-04-16 15:20:36 -07001386 * use __vmalloc() instead.
1387 */
1388
Linus Torvalds1da177e2005-04-16 15:20:36 -07001389void *vmalloc_exec(unsigned long size)
1390{
1391 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
1392}
1393
Andi Kleen0d08e0d2007-05-02 19:27:12 +02001394#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
Benjamin Herrenschmidt7ac674f2007-07-19 01:49:10 -07001395#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
Andi Kleen0d08e0d2007-05-02 19:27:12 +02001396#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
Benjamin Herrenschmidt7ac674f2007-07-19 01:49:10 -07001397#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
Andi Kleen0d08e0d2007-05-02 19:27:12 +02001398#else
1399#define GFP_VMALLOC32 GFP_KERNEL
1400#endif
1401
Linus Torvalds1da177e2005-04-16 15:20:36 -07001402/**
1403 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001404 * @size: allocation size
1405 *
1406 * Allocate enough 32bit PA addressable pages to cover @size from the
1407 * page level allocator and map them into contiguous kernel virtual space.
1408 */
1409void *vmalloc_32(unsigned long size)
1410{
Andi Kleen0d08e0d2007-05-02 19:27:12 +02001411 return __vmalloc(size, GFP_VMALLOC32, PAGE_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001412}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001413EXPORT_SYMBOL(vmalloc_32);
1414
Nick Piggin83342312006-06-23 02:03:20 -07001415/**
Rolf Eike Beeread04082006-09-27 01:50:13 -07001416 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
Nick Piggin83342312006-06-23 02:03:20 -07001417 * @size: allocation size
Rolf Eike Beeread04082006-09-27 01:50:13 -07001418 *
1419 * The resulting memory area is 32bit addressable and zeroed so it can be
1420 * mapped to userspace without leaking data.
Nick Piggin83342312006-06-23 02:03:20 -07001421 */
1422void *vmalloc_32_user(unsigned long size)
1423{
1424 struct vm_struct *area;
1425 void *ret;
1426
Andi Kleen0d08e0d2007-05-02 19:27:12 +02001427 ret = __vmalloc(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL);
Eric Dumazet2b4ac442006-11-10 12:27:48 -08001428 if (ret) {
Nick Piggindb64fe02008-10-18 20:27:03 -07001429 area = find_vm_area(ret);
Eric Dumazet2b4ac442006-11-10 12:27:48 -08001430 area->flags |= VM_USERMAP;
Eric Dumazet2b4ac442006-11-10 12:27:48 -08001431 }
Nick Piggin83342312006-06-23 02:03:20 -07001432 return ret;
1433}
1434EXPORT_SYMBOL(vmalloc_32_user);
1435
Linus Torvalds1da177e2005-04-16 15:20:36 -07001436long vread(char *buf, char *addr, unsigned long count)
1437{
1438 struct vm_struct *tmp;
1439 char *vaddr, *buf_start = buf;
1440 unsigned long n;
1441
1442 /* Don't allow overflow */
1443 if ((unsigned long) addr + count < count)
1444 count = -(unsigned long) addr;
1445
1446 read_lock(&vmlist_lock);
1447 for (tmp = vmlist; tmp; tmp = tmp->next) {
1448 vaddr = (char *) tmp->addr;
1449 if (addr >= vaddr + tmp->size - PAGE_SIZE)
1450 continue;
1451 while (addr < vaddr) {
1452 if (count == 0)
1453 goto finished;
1454 *buf = '\0';
1455 buf++;
1456 addr++;
1457 count--;
1458 }
1459 n = vaddr + tmp->size - PAGE_SIZE - addr;
1460 do {
1461 if (count == 0)
1462 goto finished;
1463 *buf = *addr;
1464 buf++;
1465 addr++;
1466 count--;
1467 } while (--n > 0);
1468 }
1469finished:
1470 read_unlock(&vmlist_lock);
1471 return buf - buf_start;
1472}
1473
1474long vwrite(char *buf, char *addr, unsigned long count)
1475{
1476 struct vm_struct *tmp;
1477 char *vaddr, *buf_start = buf;
1478 unsigned long n;
1479
1480 /* Don't allow overflow */
1481 if ((unsigned long) addr + count < count)
1482 count = -(unsigned long) addr;
1483
1484 read_lock(&vmlist_lock);
1485 for (tmp = vmlist; tmp; tmp = tmp->next) {
1486 vaddr = (char *) tmp->addr;
1487 if (addr >= vaddr + tmp->size - PAGE_SIZE)
1488 continue;
1489 while (addr < vaddr) {
1490 if (count == 0)
1491 goto finished;
1492 buf++;
1493 addr++;
1494 count--;
1495 }
1496 n = vaddr + tmp->size - PAGE_SIZE - addr;
1497 do {
1498 if (count == 0)
1499 goto finished;
1500 *addr = *buf;
1501 buf++;
1502 addr++;
1503 count--;
1504 } while (--n > 0);
1505 }
1506finished:
1507 read_unlock(&vmlist_lock);
1508 return buf - buf_start;
1509}
Nick Piggin83342312006-06-23 02:03:20 -07001510
1511/**
1512 * remap_vmalloc_range - map vmalloc pages to userspace
Nick Piggin83342312006-06-23 02:03:20 -07001513 * @vma: vma to cover (map full range of vma)
1514 * @addr: vmalloc memory
1515 * @pgoff: number of pages into addr before first page to map
Randy Dunlap76824862008-03-19 17:00:40 -07001516 *
1517 * Returns: 0 for success, -Exxx on failure
Nick Piggin83342312006-06-23 02:03:20 -07001518 *
1519 * This function checks that addr is a valid vmalloc'ed area, and
1520 * that it is big enough to cover the vma. Will return failure if
1521 * that criteria isn't met.
1522 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08001523 * Similar to remap_pfn_range() (see mm/memory.c)
Nick Piggin83342312006-06-23 02:03:20 -07001524 */
1525int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1526 unsigned long pgoff)
1527{
1528 struct vm_struct *area;
1529 unsigned long uaddr = vma->vm_start;
1530 unsigned long usize = vma->vm_end - vma->vm_start;
Nick Piggin83342312006-06-23 02:03:20 -07001531
1532 if ((PAGE_SIZE-1) & (unsigned long)addr)
1533 return -EINVAL;
1534
Nick Piggindb64fe02008-10-18 20:27:03 -07001535 area = find_vm_area(addr);
Nick Piggin83342312006-06-23 02:03:20 -07001536 if (!area)
Nick Piggindb64fe02008-10-18 20:27:03 -07001537 return -EINVAL;
Nick Piggin83342312006-06-23 02:03:20 -07001538
1539 if (!(area->flags & VM_USERMAP))
Nick Piggindb64fe02008-10-18 20:27:03 -07001540 return -EINVAL;
Nick Piggin83342312006-06-23 02:03:20 -07001541
1542 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
Nick Piggindb64fe02008-10-18 20:27:03 -07001543 return -EINVAL;
Nick Piggin83342312006-06-23 02:03:20 -07001544
1545 addr += pgoff << PAGE_SHIFT;
1546 do {
1547 struct page *page = vmalloc_to_page(addr);
Nick Piggindb64fe02008-10-18 20:27:03 -07001548 int ret;
1549
Nick Piggin83342312006-06-23 02:03:20 -07001550 ret = vm_insert_page(vma, uaddr, page);
1551 if (ret)
1552 return ret;
1553
1554 uaddr += PAGE_SIZE;
1555 addr += PAGE_SIZE;
1556 usize -= PAGE_SIZE;
1557 } while (usize > 0);
1558
1559 /* Prevent "things" like memory migration? VM_flags need a cleanup... */
1560 vma->vm_flags |= VM_RESERVED;
1561
Nick Piggindb64fe02008-10-18 20:27:03 -07001562 return 0;
Nick Piggin83342312006-06-23 02:03:20 -07001563}
1564EXPORT_SYMBOL(remap_vmalloc_range);
1565
Christoph Hellwig1eeb66a2007-05-08 00:27:03 -07001566/*
1567 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
1568 * have one.
1569 */
1570void __attribute__((weak)) vmalloc_sync_all(void)
1571{
1572}
Jeremy Fitzhardinge5f4352f2007-07-17 18:37:04 -07001573
1574
Martin Schwidefsky2f569af2008-02-08 04:22:04 -08001575static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
Jeremy Fitzhardinge5f4352f2007-07-17 18:37:04 -07001576{
1577 /* apply_to_page_range() does all the hard work. */
1578 return 0;
1579}
1580
1581/**
1582 * alloc_vm_area - allocate a range of kernel address space
1583 * @size: size of the area
Randy Dunlap76824862008-03-19 17:00:40 -07001584 *
1585 * Returns: NULL on failure, vm_struct on success
Jeremy Fitzhardinge5f4352f2007-07-17 18:37:04 -07001586 *
1587 * This function reserves a range of kernel address space, and
1588 * allocates pagetables to map that range. No actual mappings
1589 * are created. If the kernel address space is not shared
1590 * between processes, it syncs the pagetable across all
1591 * processes.
1592 */
1593struct vm_struct *alloc_vm_area(size_t size)
1594{
1595 struct vm_struct *area;
1596
Christoph Lameter23016962008-04-28 02:12:42 -07001597 area = get_vm_area_caller(size, VM_IOREMAP,
1598 __builtin_return_address(0));
Jeremy Fitzhardinge5f4352f2007-07-17 18:37:04 -07001599 if (area == NULL)
1600 return NULL;
1601
1602 /*
1603 * This ensures that page tables are constructed for this region
1604 * of kernel virtual address space and mapped into init_mm.
1605 */
1606 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
1607 area->size, f, NULL)) {
1608 free_vm_area(area);
1609 return NULL;
1610 }
1611
1612 /* Make sure the pagetables are constructed in process kernel
1613 mappings */
1614 vmalloc_sync_all();
1615
1616 return area;
1617}
1618EXPORT_SYMBOL_GPL(alloc_vm_area);
1619
1620void free_vm_area(struct vm_struct *area)
1621{
1622 struct vm_struct *ret;
1623 ret = remove_vm_area(area->addr);
1624 BUG_ON(ret != area);
1625 kfree(area);
1626}
1627EXPORT_SYMBOL_GPL(free_vm_area);
Christoph Lametera10aa572008-04-28 02:12:40 -07001628
1629
1630#ifdef CONFIG_PROC_FS
1631static void *s_start(struct seq_file *m, loff_t *pos)
1632{
1633 loff_t n = *pos;
1634 struct vm_struct *v;
1635
1636 read_lock(&vmlist_lock);
1637 v = vmlist;
1638 while (n > 0 && v) {
1639 n--;
1640 v = v->next;
1641 }
1642 if (!n)
1643 return v;
1644
1645 return NULL;
1646
1647}
1648
1649static void *s_next(struct seq_file *m, void *p, loff_t *pos)
1650{
1651 struct vm_struct *v = p;
1652
1653 ++*pos;
1654 return v->next;
1655}
1656
1657static void s_stop(struct seq_file *m, void *p)
1658{
1659 read_unlock(&vmlist_lock);
1660}
1661
Eric Dumazeta47a1262008-07-23 21:27:38 -07001662static void show_numa_info(struct seq_file *m, struct vm_struct *v)
1663{
1664 if (NUMA_BUILD) {
1665 unsigned int nr, *counters = m->private;
1666
1667 if (!counters)
1668 return;
1669
1670 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
1671
1672 for (nr = 0; nr < v->nr_pages; nr++)
1673 counters[page_to_nid(v->pages[nr])]++;
1674
1675 for_each_node_state(nr, N_HIGH_MEMORY)
1676 if (counters[nr])
1677 seq_printf(m, " N%u=%u", nr, counters[nr]);
1678 }
1679}
1680
Christoph Lametera10aa572008-04-28 02:12:40 -07001681static int s_show(struct seq_file *m, void *p)
1682{
1683 struct vm_struct *v = p;
1684
1685 seq_printf(m, "0x%p-0x%p %7ld",
1686 v->addr, v->addr + v->size, v->size);
1687
Christoph Lameter23016962008-04-28 02:12:42 -07001688 if (v->caller) {
1689 char buff[2 * KSYM_NAME_LEN];
1690
1691 seq_putc(m, ' ');
1692 sprint_symbol(buff, (unsigned long)v->caller);
1693 seq_puts(m, buff);
1694 }
1695
Christoph Lametera10aa572008-04-28 02:12:40 -07001696 if (v->nr_pages)
1697 seq_printf(m, " pages=%d", v->nr_pages);
1698
1699 if (v->phys_addr)
1700 seq_printf(m, " phys=%lx", v->phys_addr);
1701
1702 if (v->flags & VM_IOREMAP)
1703 seq_printf(m, " ioremap");
1704
1705 if (v->flags & VM_ALLOC)
1706 seq_printf(m, " vmalloc");
1707
1708 if (v->flags & VM_MAP)
1709 seq_printf(m, " vmap");
1710
1711 if (v->flags & VM_USERMAP)
1712 seq_printf(m, " user");
1713
1714 if (v->flags & VM_VPAGES)
1715 seq_printf(m, " vpages");
1716
Eric Dumazeta47a1262008-07-23 21:27:38 -07001717 show_numa_info(m, v);
Christoph Lametera10aa572008-04-28 02:12:40 -07001718 seq_putc(m, '\n');
1719 return 0;
1720}
1721
Alexey Dobriyan5f6a6a92008-10-06 03:50:47 +04001722static const struct seq_operations vmalloc_op = {
Christoph Lametera10aa572008-04-28 02:12:40 -07001723 .start = s_start,
1724 .next = s_next,
1725 .stop = s_stop,
1726 .show = s_show,
1727};
Alexey Dobriyan5f6a6a92008-10-06 03:50:47 +04001728
1729static int vmalloc_open(struct inode *inode, struct file *file)
1730{
1731 unsigned int *ptr = NULL;
1732 int ret;
1733
1734 if (NUMA_BUILD)
1735 ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
1736 ret = seq_open(file, &vmalloc_op);
1737 if (!ret) {
1738 struct seq_file *m = file->private_data;
1739 m->private = ptr;
1740 } else
1741 kfree(ptr);
1742 return ret;
1743}
1744
1745static const struct file_operations proc_vmalloc_operations = {
1746 .open = vmalloc_open,
1747 .read = seq_read,
1748 .llseek = seq_lseek,
1749 .release = seq_release_private,
1750};
1751
1752static int __init proc_vmalloc_init(void)
1753{
1754 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
1755 return 0;
1756}
1757module_init(proc_vmalloc_init);
Christoph Lametera10aa572008-04-28 02:12:40 -07001758#endif
1759