Tudor Ambarus | 8c41977 | 2016-07-04 13:12:08 +0300 | [diff] [blame] | 1 | /* |
| 2 | * caam - Freescale FSL CAAM support for Public Key Cryptography |
| 3 | * |
| 4 | * Copyright 2016 Freescale Semiconductor, Inc. |
| 5 | * |
| 6 | * There is no Shared Descriptor for PKC so that the Job Descriptor must carry |
| 7 | * all the desired key parameters, input and output pointers. |
| 8 | */ |
| 9 | #include "compat.h" |
| 10 | #include "regs.h" |
| 11 | #include "intern.h" |
| 12 | #include "jr.h" |
| 13 | #include "error.h" |
| 14 | #include "desc_constr.h" |
| 15 | #include "sg_sw_sec4.h" |
| 16 | #include "caampkc.h" |
| 17 | |
| 18 | #define DESC_RSA_PUB_LEN (2 * CAAM_CMD_SZ + sizeof(struct rsa_pub_pdb)) |
| 19 | #define DESC_RSA_PRIV_F1_LEN (2 * CAAM_CMD_SZ + \ |
| 20 | sizeof(struct rsa_priv_f1_pdb)) |
| 21 | |
| 22 | static void rsa_io_unmap(struct device *dev, struct rsa_edesc *edesc, |
| 23 | struct akcipher_request *req) |
| 24 | { |
| 25 | dma_unmap_sg(dev, req->dst, edesc->dst_nents, DMA_FROM_DEVICE); |
| 26 | dma_unmap_sg(dev, req->src, edesc->src_nents, DMA_TO_DEVICE); |
| 27 | |
| 28 | if (edesc->sec4_sg_bytes) |
| 29 | dma_unmap_single(dev, edesc->sec4_sg_dma, edesc->sec4_sg_bytes, |
| 30 | DMA_TO_DEVICE); |
| 31 | } |
| 32 | |
| 33 | static void rsa_pub_unmap(struct device *dev, struct rsa_edesc *edesc, |
| 34 | struct akcipher_request *req) |
| 35 | { |
| 36 | struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); |
| 37 | struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); |
| 38 | struct caam_rsa_key *key = &ctx->key; |
| 39 | struct rsa_pub_pdb *pdb = &edesc->pdb.pub; |
| 40 | |
| 41 | dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE); |
| 42 | dma_unmap_single(dev, pdb->e_dma, key->e_sz, DMA_TO_DEVICE); |
| 43 | } |
| 44 | |
| 45 | static void rsa_priv_f1_unmap(struct device *dev, struct rsa_edesc *edesc, |
| 46 | struct akcipher_request *req) |
| 47 | { |
| 48 | struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); |
| 49 | struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); |
| 50 | struct caam_rsa_key *key = &ctx->key; |
| 51 | struct rsa_priv_f1_pdb *pdb = &edesc->pdb.priv_f1; |
| 52 | |
| 53 | dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE); |
| 54 | dma_unmap_single(dev, pdb->d_dma, key->d_sz, DMA_TO_DEVICE); |
| 55 | } |
| 56 | |
| 57 | /* RSA Job Completion handler */ |
| 58 | static void rsa_pub_done(struct device *dev, u32 *desc, u32 err, void *context) |
| 59 | { |
| 60 | struct akcipher_request *req = context; |
| 61 | struct rsa_edesc *edesc; |
| 62 | |
| 63 | if (err) |
| 64 | caam_jr_strstatus(dev, err); |
| 65 | |
| 66 | edesc = container_of(desc, struct rsa_edesc, hw_desc[0]); |
| 67 | |
| 68 | rsa_pub_unmap(dev, edesc, req); |
| 69 | rsa_io_unmap(dev, edesc, req); |
| 70 | kfree(edesc); |
| 71 | |
| 72 | akcipher_request_complete(req, err); |
| 73 | } |
| 74 | |
| 75 | static void rsa_priv_f1_done(struct device *dev, u32 *desc, u32 err, |
| 76 | void *context) |
| 77 | { |
| 78 | struct akcipher_request *req = context; |
| 79 | struct rsa_edesc *edesc; |
| 80 | |
| 81 | if (err) |
| 82 | caam_jr_strstatus(dev, err); |
| 83 | |
| 84 | edesc = container_of(desc, struct rsa_edesc, hw_desc[0]); |
| 85 | |
| 86 | rsa_priv_f1_unmap(dev, edesc, req); |
| 87 | rsa_io_unmap(dev, edesc, req); |
| 88 | kfree(edesc); |
| 89 | |
| 90 | akcipher_request_complete(req, err); |
| 91 | } |
| 92 | |
| 93 | static struct rsa_edesc *rsa_edesc_alloc(struct akcipher_request *req, |
| 94 | size_t desclen) |
| 95 | { |
| 96 | struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); |
| 97 | struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); |
| 98 | struct device *dev = ctx->dev; |
| 99 | struct rsa_edesc *edesc; |
| 100 | gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | |
| 101 | CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; |
| 102 | int sgc; |
| 103 | int sec4_sg_index, sec4_sg_len = 0, sec4_sg_bytes; |
| 104 | int src_nents, dst_nents; |
| 105 | |
| 106 | src_nents = sg_nents_for_len(req->src, req->src_len); |
| 107 | dst_nents = sg_nents_for_len(req->dst, req->dst_len); |
| 108 | |
| 109 | if (src_nents > 1) |
| 110 | sec4_sg_len = src_nents; |
| 111 | if (dst_nents > 1) |
| 112 | sec4_sg_len += dst_nents; |
| 113 | |
| 114 | sec4_sg_bytes = sec4_sg_len * sizeof(struct sec4_sg_entry); |
| 115 | |
| 116 | /* allocate space for base edesc, hw desc commands and link tables */ |
| 117 | edesc = kzalloc(sizeof(*edesc) + desclen + sec4_sg_bytes, |
| 118 | GFP_DMA | flags); |
| 119 | if (!edesc) |
| 120 | return ERR_PTR(-ENOMEM); |
| 121 | |
| 122 | sgc = dma_map_sg(dev, req->src, src_nents, DMA_TO_DEVICE); |
| 123 | if (unlikely(!sgc)) { |
| 124 | dev_err(dev, "unable to map source\n"); |
| 125 | goto src_fail; |
| 126 | } |
| 127 | |
| 128 | sgc = dma_map_sg(dev, req->dst, dst_nents, DMA_FROM_DEVICE); |
| 129 | if (unlikely(!sgc)) { |
| 130 | dev_err(dev, "unable to map destination\n"); |
| 131 | goto dst_fail; |
| 132 | } |
| 133 | |
| 134 | edesc->sec4_sg = (void *)edesc + sizeof(*edesc) + desclen; |
| 135 | |
| 136 | sec4_sg_index = 0; |
| 137 | if (src_nents > 1) { |
| 138 | sg_to_sec4_sg_last(req->src, src_nents, edesc->sec4_sg, 0); |
| 139 | sec4_sg_index += src_nents; |
| 140 | } |
| 141 | if (dst_nents > 1) |
| 142 | sg_to_sec4_sg_last(req->dst, dst_nents, |
| 143 | edesc->sec4_sg + sec4_sg_index, 0); |
| 144 | |
| 145 | /* Save nents for later use in Job Descriptor */ |
| 146 | edesc->src_nents = src_nents; |
| 147 | edesc->dst_nents = dst_nents; |
| 148 | |
| 149 | if (!sec4_sg_bytes) |
| 150 | return edesc; |
| 151 | |
| 152 | edesc->sec4_sg_dma = dma_map_single(dev, edesc->sec4_sg, |
| 153 | sec4_sg_bytes, DMA_TO_DEVICE); |
| 154 | if (dma_mapping_error(dev, edesc->sec4_sg_dma)) { |
| 155 | dev_err(dev, "unable to map S/G table\n"); |
| 156 | goto sec4_sg_fail; |
| 157 | } |
| 158 | |
| 159 | edesc->sec4_sg_bytes = sec4_sg_bytes; |
| 160 | |
| 161 | return edesc; |
| 162 | |
| 163 | sec4_sg_fail: |
| 164 | dma_unmap_sg(dev, req->dst, dst_nents, DMA_FROM_DEVICE); |
| 165 | dst_fail: |
| 166 | dma_unmap_sg(dev, req->src, src_nents, DMA_TO_DEVICE); |
| 167 | src_fail: |
| 168 | kfree(edesc); |
| 169 | return ERR_PTR(-ENOMEM); |
| 170 | } |
| 171 | |
| 172 | static int set_rsa_pub_pdb(struct akcipher_request *req, |
| 173 | struct rsa_edesc *edesc) |
| 174 | { |
| 175 | struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); |
| 176 | struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); |
| 177 | struct caam_rsa_key *key = &ctx->key; |
| 178 | struct device *dev = ctx->dev; |
| 179 | struct rsa_pub_pdb *pdb = &edesc->pdb.pub; |
| 180 | int sec4_sg_index = 0; |
| 181 | |
| 182 | pdb->n_dma = dma_map_single(dev, key->n, key->n_sz, DMA_TO_DEVICE); |
| 183 | if (dma_mapping_error(dev, pdb->n_dma)) { |
| 184 | dev_err(dev, "Unable to map RSA modulus memory\n"); |
| 185 | return -ENOMEM; |
| 186 | } |
| 187 | |
| 188 | pdb->e_dma = dma_map_single(dev, key->e, key->e_sz, DMA_TO_DEVICE); |
| 189 | if (dma_mapping_error(dev, pdb->e_dma)) { |
| 190 | dev_err(dev, "Unable to map RSA public exponent memory\n"); |
| 191 | dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE); |
| 192 | return -ENOMEM; |
| 193 | } |
| 194 | |
| 195 | if (edesc->src_nents > 1) { |
| 196 | pdb->sgf |= RSA_PDB_SGF_F; |
| 197 | pdb->f_dma = edesc->sec4_sg_dma; |
| 198 | sec4_sg_index += edesc->src_nents; |
| 199 | } else { |
| 200 | pdb->f_dma = sg_dma_address(req->src); |
| 201 | } |
| 202 | |
| 203 | if (edesc->dst_nents > 1) { |
| 204 | pdb->sgf |= RSA_PDB_SGF_G; |
| 205 | pdb->g_dma = edesc->sec4_sg_dma + |
| 206 | sec4_sg_index * sizeof(struct sec4_sg_entry); |
| 207 | } else { |
| 208 | pdb->g_dma = sg_dma_address(req->dst); |
| 209 | } |
| 210 | |
| 211 | pdb->sgf |= (key->e_sz << RSA_PDB_E_SHIFT) | key->n_sz; |
| 212 | pdb->f_len = req->src_len; |
| 213 | |
| 214 | return 0; |
| 215 | } |
| 216 | |
| 217 | static int set_rsa_priv_f1_pdb(struct akcipher_request *req, |
| 218 | struct rsa_edesc *edesc) |
| 219 | { |
| 220 | struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); |
| 221 | struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); |
| 222 | struct caam_rsa_key *key = &ctx->key; |
| 223 | struct device *dev = ctx->dev; |
| 224 | struct rsa_priv_f1_pdb *pdb = &edesc->pdb.priv_f1; |
| 225 | int sec4_sg_index = 0; |
| 226 | |
| 227 | pdb->n_dma = dma_map_single(dev, key->n, key->n_sz, DMA_TO_DEVICE); |
| 228 | if (dma_mapping_error(dev, pdb->n_dma)) { |
| 229 | dev_err(dev, "Unable to map modulus memory\n"); |
| 230 | return -ENOMEM; |
| 231 | } |
| 232 | |
| 233 | pdb->d_dma = dma_map_single(dev, key->d, key->d_sz, DMA_TO_DEVICE); |
| 234 | if (dma_mapping_error(dev, pdb->d_dma)) { |
| 235 | dev_err(dev, "Unable to map RSA private exponent memory\n"); |
| 236 | dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE); |
| 237 | return -ENOMEM; |
| 238 | } |
| 239 | |
| 240 | if (edesc->src_nents > 1) { |
| 241 | pdb->sgf |= RSA_PRIV_PDB_SGF_G; |
| 242 | pdb->g_dma = edesc->sec4_sg_dma; |
| 243 | sec4_sg_index += edesc->src_nents; |
| 244 | } else { |
| 245 | pdb->g_dma = sg_dma_address(req->src); |
| 246 | } |
| 247 | |
| 248 | if (edesc->dst_nents > 1) { |
| 249 | pdb->sgf |= RSA_PRIV_PDB_SGF_F; |
| 250 | pdb->f_dma = edesc->sec4_sg_dma + |
| 251 | sec4_sg_index * sizeof(struct sec4_sg_entry); |
| 252 | } else { |
| 253 | pdb->f_dma = sg_dma_address(req->dst); |
| 254 | } |
| 255 | |
| 256 | pdb->sgf |= (key->d_sz << RSA_PDB_D_SHIFT) | key->n_sz; |
| 257 | |
| 258 | return 0; |
| 259 | } |
| 260 | |
| 261 | static int caam_rsa_enc(struct akcipher_request *req) |
| 262 | { |
| 263 | struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); |
| 264 | struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); |
| 265 | struct caam_rsa_key *key = &ctx->key; |
| 266 | struct device *jrdev = ctx->dev; |
| 267 | struct rsa_edesc *edesc; |
| 268 | int ret; |
| 269 | |
| 270 | if (unlikely(!key->n || !key->e)) |
| 271 | return -EINVAL; |
| 272 | |
| 273 | if (req->dst_len < key->n_sz) { |
| 274 | req->dst_len = key->n_sz; |
| 275 | dev_err(jrdev, "Output buffer length less than parameter n\n"); |
| 276 | return -EOVERFLOW; |
| 277 | } |
| 278 | |
| 279 | /* Allocate extended descriptor */ |
| 280 | edesc = rsa_edesc_alloc(req, DESC_RSA_PUB_LEN); |
| 281 | if (IS_ERR(edesc)) |
| 282 | return PTR_ERR(edesc); |
| 283 | |
| 284 | /* Set RSA Encrypt Protocol Data Block */ |
| 285 | ret = set_rsa_pub_pdb(req, edesc); |
| 286 | if (ret) |
| 287 | goto init_fail; |
| 288 | |
| 289 | /* Initialize Job Descriptor */ |
| 290 | init_rsa_pub_desc(edesc->hw_desc, &edesc->pdb.pub); |
| 291 | |
| 292 | ret = caam_jr_enqueue(jrdev, edesc->hw_desc, rsa_pub_done, req); |
| 293 | if (!ret) |
| 294 | return -EINPROGRESS; |
| 295 | |
| 296 | rsa_pub_unmap(jrdev, edesc, req); |
| 297 | |
| 298 | init_fail: |
| 299 | rsa_io_unmap(jrdev, edesc, req); |
| 300 | kfree(edesc); |
| 301 | return ret; |
| 302 | } |
| 303 | |
| 304 | static int caam_rsa_dec(struct akcipher_request *req) |
| 305 | { |
| 306 | struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); |
| 307 | struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); |
| 308 | struct caam_rsa_key *key = &ctx->key; |
| 309 | struct device *jrdev = ctx->dev; |
| 310 | struct rsa_edesc *edesc; |
| 311 | int ret; |
| 312 | |
| 313 | if (unlikely(!key->n || !key->d)) |
| 314 | return -EINVAL; |
| 315 | |
| 316 | if (req->dst_len < key->n_sz) { |
| 317 | req->dst_len = key->n_sz; |
| 318 | dev_err(jrdev, "Output buffer length less than parameter n\n"); |
| 319 | return -EOVERFLOW; |
| 320 | } |
| 321 | |
| 322 | /* Allocate extended descriptor */ |
| 323 | edesc = rsa_edesc_alloc(req, DESC_RSA_PRIV_F1_LEN); |
| 324 | if (IS_ERR(edesc)) |
| 325 | return PTR_ERR(edesc); |
| 326 | |
| 327 | /* Set RSA Decrypt Protocol Data Block - Private Key Form #1 */ |
| 328 | ret = set_rsa_priv_f1_pdb(req, edesc); |
| 329 | if (ret) |
| 330 | goto init_fail; |
| 331 | |
| 332 | /* Initialize Job Descriptor */ |
| 333 | init_rsa_priv_f1_desc(edesc->hw_desc, &edesc->pdb.priv_f1); |
| 334 | |
| 335 | ret = caam_jr_enqueue(jrdev, edesc->hw_desc, rsa_priv_f1_done, req); |
| 336 | if (!ret) |
| 337 | return -EINPROGRESS; |
| 338 | |
| 339 | rsa_priv_f1_unmap(jrdev, edesc, req); |
| 340 | |
| 341 | init_fail: |
| 342 | rsa_io_unmap(jrdev, edesc, req); |
| 343 | kfree(edesc); |
| 344 | return ret; |
| 345 | } |
| 346 | |
| 347 | static void caam_rsa_free_key(struct caam_rsa_key *key) |
| 348 | { |
| 349 | kzfree(key->d); |
| 350 | kfree(key->e); |
| 351 | kfree(key->n); |
| 352 | key->d = NULL; |
| 353 | key->e = NULL; |
| 354 | key->n = NULL; |
| 355 | key->d_sz = 0; |
| 356 | key->e_sz = 0; |
| 357 | key->n_sz = 0; |
| 358 | } |
| 359 | |
| 360 | /** |
| 361 | * caam_read_raw_data - Read a raw byte stream as a positive integer. |
| 362 | * The function skips buffer's leading zeros, copies the remained data |
| 363 | * to a buffer allocated in the GFP_DMA | GFP_KERNEL zone and returns |
| 364 | * the address of the new buffer. |
| 365 | * |
| 366 | * @buf : The data to read |
| 367 | * @nbytes: The amount of data to read |
| 368 | */ |
| 369 | static inline u8 *caam_read_raw_data(const u8 *buf, size_t *nbytes) |
| 370 | { |
| 371 | u8 *val; |
| 372 | |
| 373 | while (!*buf && *nbytes) { |
| 374 | buf++; |
| 375 | (*nbytes)--; |
| 376 | } |
| 377 | |
| 378 | val = kzalloc(*nbytes, GFP_DMA | GFP_KERNEL); |
| 379 | if (!val) |
| 380 | return NULL; |
| 381 | |
| 382 | memcpy(val, buf, *nbytes); |
| 383 | |
| 384 | return val; |
| 385 | } |
| 386 | |
| 387 | static int caam_rsa_check_key_length(unsigned int len) |
| 388 | { |
| 389 | if (len > 4096) |
| 390 | return -EINVAL; |
| 391 | return 0; |
| 392 | } |
| 393 | |
| 394 | static int caam_rsa_set_pub_key(struct crypto_akcipher *tfm, const void *key, |
| 395 | unsigned int keylen) |
| 396 | { |
| 397 | struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); |
Horia Geantă | 8439e94 | 2016-11-09 10:46:14 +0200 | [diff] [blame^] | 398 | struct rsa_key raw_key = {NULL}; |
Tudor Ambarus | 8c41977 | 2016-07-04 13:12:08 +0300 | [diff] [blame] | 399 | struct caam_rsa_key *rsa_key = &ctx->key; |
| 400 | int ret; |
| 401 | |
| 402 | /* Free the old RSA key if any */ |
| 403 | caam_rsa_free_key(rsa_key); |
| 404 | |
| 405 | ret = rsa_parse_pub_key(&raw_key, key, keylen); |
| 406 | if (ret) |
| 407 | return ret; |
| 408 | |
| 409 | /* Copy key in DMA zone */ |
| 410 | rsa_key->e = kzalloc(raw_key.e_sz, GFP_DMA | GFP_KERNEL); |
| 411 | if (!rsa_key->e) |
| 412 | goto err; |
| 413 | |
| 414 | /* |
| 415 | * Skip leading zeros and copy the positive integer to a buffer |
| 416 | * allocated in the GFP_DMA | GFP_KERNEL zone. The decryption descriptor |
| 417 | * expects a positive integer for the RSA modulus and uses its length as |
| 418 | * decryption output length. |
| 419 | */ |
| 420 | rsa_key->n = caam_read_raw_data(raw_key.n, &raw_key.n_sz); |
| 421 | if (!rsa_key->n) |
| 422 | goto err; |
| 423 | |
| 424 | if (caam_rsa_check_key_length(raw_key.n_sz << 3)) { |
| 425 | caam_rsa_free_key(rsa_key); |
| 426 | return -EINVAL; |
| 427 | } |
| 428 | |
| 429 | rsa_key->e_sz = raw_key.e_sz; |
| 430 | rsa_key->n_sz = raw_key.n_sz; |
| 431 | |
| 432 | memcpy(rsa_key->e, raw_key.e, raw_key.e_sz); |
| 433 | |
| 434 | return 0; |
| 435 | err: |
| 436 | caam_rsa_free_key(rsa_key); |
| 437 | return -ENOMEM; |
| 438 | } |
| 439 | |
| 440 | static int caam_rsa_set_priv_key(struct crypto_akcipher *tfm, const void *key, |
| 441 | unsigned int keylen) |
| 442 | { |
| 443 | struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); |
Horia Geantă | 8439e94 | 2016-11-09 10:46:14 +0200 | [diff] [blame^] | 444 | struct rsa_key raw_key = {NULL}; |
Tudor Ambarus | 8c41977 | 2016-07-04 13:12:08 +0300 | [diff] [blame] | 445 | struct caam_rsa_key *rsa_key = &ctx->key; |
| 446 | int ret; |
| 447 | |
| 448 | /* Free the old RSA key if any */ |
| 449 | caam_rsa_free_key(rsa_key); |
| 450 | |
| 451 | ret = rsa_parse_priv_key(&raw_key, key, keylen); |
| 452 | if (ret) |
| 453 | return ret; |
| 454 | |
| 455 | /* Copy key in DMA zone */ |
| 456 | rsa_key->d = kzalloc(raw_key.d_sz, GFP_DMA | GFP_KERNEL); |
| 457 | if (!rsa_key->d) |
| 458 | goto err; |
| 459 | |
| 460 | rsa_key->e = kzalloc(raw_key.e_sz, GFP_DMA | GFP_KERNEL); |
| 461 | if (!rsa_key->e) |
| 462 | goto err; |
| 463 | |
| 464 | /* |
| 465 | * Skip leading zeros and copy the positive integer to a buffer |
| 466 | * allocated in the GFP_DMA | GFP_KERNEL zone. The decryption descriptor |
| 467 | * expects a positive integer for the RSA modulus and uses its length as |
| 468 | * decryption output length. |
| 469 | */ |
| 470 | rsa_key->n = caam_read_raw_data(raw_key.n, &raw_key.n_sz); |
| 471 | if (!rsa_key->n) |
| 472 | goto err; |
| 473 | |
| 474 | if (caam_rsa_check_key_length(raw_key.n_sz << 3)) { |
| 475 | caam_rsa_free_key(rsa_key); |
| 476 | return -EINVAL; |
| 477 | } |
| 478 | |
| 479 | rsa_key->d_sz = raw_key.d_sz; |
| 480 | rsa_key->e_sz = raw_key.e_sz; |
| 481 | rsa_key->n_sz = raw_key.n_sz; |
| 482 | |
| 483 | memcpy(rsa_key->d, raw_key.d, raw_key.d_sz); |
| 484 | memcpy(rsa_key->e, raw_key.e, raw_key.e_sz); |
| 485 | |
| 486 | return 0; |
| 487 | |
| 488 | err: |
| 489 | caam_rsa_free_key(rsa_key); |
| 490 | return -ENOMEM; |
| 491 | } |
| 492 | |
| 493 | static int caam_rsa_max_size(struct crypto_akcipher *tfm) |
| 494 | { |
| 495 | struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); |
| 496 | struct caam_rsa_key *key = &ctx->key; |
| 497 | |
| 498 | return (key->n) ? key->n_sz : -EINVAL; |
| 499 | } |
| 500 | |
| 501 | /* Per session pkc's driver context creation function */ |
| 502 | static int caam_rsa_init_tfm(struct crypto_akcipher *tfm) |
| 503 | { |
| 504 | struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); |
| 505 | |
| 506 | ctx->dev = caam_jr_alloc(); |
| 507 | |
| 508 | if (IS_ERR(ctx->dev)) { |
| 509 | dev_err(ctx->dev, "Job Ring Device allocation for transform failed\n"); |
| 510 | return PTR_ERR(ctx->dev); |
| 511 | } |
| 512 | |
| 513 | return 0; |
| 514 | } |
| 515 | |
| 516 | /* Per session pkc's driver context cleanup function */ |
| 517 | static void caam_rsa_exit_tfm(struct crypto_akcipher *tfm) |
| 518 | { |
| 519 | struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); |
| 520 | struct caam_rsa_key *key = &ctx->key; |
| 521 | |
| 522 | caam_rsa_free_key(key); |
| 523 | caam_jr_free(ctx->dev); |
| 524 | } |
| 525 | |
| 526 | static struct akcipher_alg caam_rsa = { |
| 527 | .encrypt = caam_rsa_enc, |
| 528 | .decrypt = caam_rsa_dec, |
| 529 | .sign = caam_rsa_dec, |
| 530 | .verify = caam_rsa_enc, |
| 531 | .set_pub_key = caam_rsa_set_pub_key, |
| 532 | .set_priv_key = caam_rsa_set_priv_key, |
| 533 | .max_size = caam_rsa_max_size, |
| 534 | .init = caam_rsa_init_tfm, |
| 535 | .exit = caam_rsa_exit_tfm, |
| 536 | .base = { |
| 537 | .cra_name = "rsa", |
| 538 | .cra_driver_name = "rsa-caam", |
| 539 | .cra_priority = 3000, |
| 540 | .cra_module = THIS_MODULE, |
| 541 | .cra_ctxsize = sizeof(struct caam_rsa_ctx), |
| 542 | }, |
| 543 | }; |
| 544 | |
| 545 | /* Public Key Cryptography module initialization handler */ |
| 546 | static int __init caam_pkc_init(void) |
| 547 | { |
| 548 | struct device_node *dev_node; |
| 549 | struct platform_device *pdev; |
| 550 | struct device *ctrldev; |
| 551 | struct caam_drv_private *priv; |
| 552 | u32 cha_inst, pk_inst; |
| 553 | int err; |
| 554 | |
| 555 | dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0"); |
| 556 | if (!dev_node) { |
| 557 | dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec4.0"); |
| 558 | if (!dev_node) |
| 559 | return -ENODEV; |
| 560 | } |
| 561 | |
| 562 | pdev = of_find_device_by_node(dev_node); |
| 563 | if (!pdev) { |
| 564 | of_node_put(dev_node); |
| 565 | return -ENODEV; |
| 566 | } |
| 567 | |
| 568 | ctrldev = &pdev->dev; |
| 569 | priv = dev_get_drvdata(ctrldev); |
| 570 | of_node_put(dev_node); |
| 571 | |
| 572 | /* |
| 573 | * If priv is NULL, it's probably because the caam driver wasn't |
| 574 | * properly initialized (e.g. RNG4 init failed). Thus, bail out here. |
| 575 | */ |
| 576 | if (!priv) |
| 577 | return -ENODEV; |
| 578 | |
| 579 | /* Determine public key hardware accelerator presence. */ |
| 580 | cha_inst = rd_reg32(&priv->ctrl->perfmon.cha_num_ls); |
| 581 | pk_inst = (cha_inst & CHA_ID_LS_PK_MASK) >> CHA_ID_LS_PK_SHIFT; |
| 582 | |
| 583 | /* Do not register algorithms if PKHA is not present. */ |
| 584 | if (!pk_inst) |
| 585 | return -ENODEV; |
| 586 | |
| 587 | err = crypto_register_akcipher(&caam_rsa); |
| 588 | if (err) |
| 589 | dev_warn(ctrldev, "%s alg registration failed\n", |
| 590 | caam_rsa.base.cra_driver_name); |
| 591 | else |
| 592 | dev_info(ctrldev, "caam pkc algorithms registered in /proc/crypto\n"); |
| 593 | |
| 594 | return err; |
| 595 | } |
| 596 | |
| 597 | static void __exit caam_pkc_exit(void) |
| 598 | { |
| 599 | crypto_unregister_akcipher(&caam_rsa); |
| 600 | } |
| 601 | |
| 602 | module_init(caam_pkc_init); |
| 603 | module_exit(caam_pkc_exit); |
| 604 | |
| 605 | MODULE_LICENSE("Dual BSD/GPL"); |
| 606 | MODULE_DESCRIPTION("FSL CAAM support for PKC functions of crypto API"); |
| 607 | MODULE_AUTHOR("Freescale Semiconductor"); |