Mark Rutland | 8a4da6e | 2012-11-12 14:33:44 +0000 | [diff] [blame] | 1 | /* |
| 2 | * linux/drivers/clocksource/arm_arch_timer.c |
| 3 | * |
| 4 | * Copyright (C) 2011 ARM Ltd. |
| 5 | * All Rights Reserved |
| 6 | * |
| 7 | * This program is free software; you can redistribute it and/or modify |
| 8 | * it under the terms of the GNU General Public License version 2 as |
| 9 | * published by the Free Software Foundation. |
| 10 | */ |
| 11 | #include <linux/init.h> |
| 12 | #include <linux/kernel.h> |
| 13 | #include <linux/device.h> |
| 14 | #include <linux/smp.h> |
| 15 | #include <linux/cpu.h> |
| 16 | #include <linux/clockchips.h> |
| 17 | #include <linux/interrupt.h> |
| 18 | #include <linux/of_irq.h> |
| 19 | #include <linux/io.h> |
| 20 | |
| 21 | #include <asm/arch_timer.h> |
Marc Zyngier | 8266891 | 2013-01-10 11:13:07 +0000 | [diff] [blame^] | 22 | #include <asm/virt.h> |
Mark Rutland | 8a4da6e | 2012-11-12 14:33:44 +0000 | [diff] [blame] | 23 | |
| 24 | #include <clocksource/arm_arch_timer.h> |
| 25 | |
| 26 | static u32 arch_timer_rate; |
| 27 | |
| 28 | enum ppi_nr { |
| 29 | PHYS_SECURE_PPI, |
| 30 | PHYS_NONSECURE_PPI, |
| 31 | VIRT_PPI, |
| 32 | HYP_PPI, |
| 33 | MAX_TIMER_PPI |
| 34 | }; |
| 35 | |
| 36 | static int arch_timer_ppi[MAX_TIMER_PPI]; |
| 37 | |
| 38 | static struct clock_event_device __percpu *arch_timer_evt; |
| 39 | |
| 40 | static bool arch_timer_use_virtual = true; |
| 41 | |
| 42 | /* |
| 43 | * Architected system timer support. |
| 44 | */ |
| 45 | |
| 46 | static inline irqreturn_t timer_handler(const int access, |
| 47 | struct clock_event_device *evt) |
| 48 | { |
| 49 | unsigned long ctrl; |
| 50 | ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL); |
| 51 | if (ctrl & ARCH_TIMER_CTRL_IT_STAT) { |
| 52 | ctrl |= ARCH_TIMER_CTRL_IT_MASK; |
| 53 | arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl); |
| 54 | evt->event_handler(evt); |
| 55 | return IRQ_HANDLED; |
| 56 | } |
| 57 | |
| 58 | return IRQ_NONE; |
| 59 | } |
| 60 | |
| 61 | static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id) |
| 62 | { |
| 63 | struct clock_event_device *evt = dev_id; |
| 64 | |
| 65 | return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt); |
| 66 | } |
| 67 | |
| 68 | static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id) |
| 69 | { |
| 70 | struct clock_event_device *evt = dev_id; |
| 71 | |
| 72 | return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt); |
| 73 | } |
| 74 | |
| 75 | static inline void timer_set_mode(const int access, int mode) |
| 76 | { |
| 77 | unsigned long ctrl; |
| 78 | switch (mode) { |
| 79 | case CLOCK_EVT_MODE_UNUSED: |
| 80 | case CLOCK_EVT_MODE_SHUTDOWN: |
| 81 | ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL); |
| 82 | ctrl &= ~ARCH_TIMER_CTRL_ENABLE; |
| 83 | arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl); |
| 84 | break; |
| 85 | default: |
| 86 | break; |
| 87 | } |
| 88 | } |
| 89 | |
| 90 | static void arch_timer_set_mode_virt(enum clock_event_mode mode, |
| 91 | struct clock_event_device *clk) |
| 92 | { |
| 93 | timer_set_mode(ARCH_TIMER_VIRT_ACCESS, mode); |
| 94 | } |
| 95 | |
| 96 | static void arch_timer_set_mode_phys(enum clock_event_mode mode, |
| 97 | struct clock_event_device *clk) |
| 98 | { |
| 99 | timer_set_mode(ARCH_TIMER_PHYS_ACCESS, mode); |
| 100 | } |
| 101 | |
| 102 | static inline void set_next_event(const int access, unsigned long evt) |
| 103 | { |
| 104 | unsigned long ctrl; |
| 105 | ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL); |
| 106 | ctrl |= ARCH_TIMER_CTRL_ENABLE; |
| 107 | ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; |
| 108 | arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt); |
| 109 | arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl); |
| 110 | } |
| 111 | |
| 112 | static int arch_timer_set_next_event_virt(unsigned long evt, |
| 113 | struct clock_event_device *unused) |
| 114 | { |
| 115 | set_next_event(ARCH_TIMER_VIRT_ACCESS, evt); |
| 116 | return 0; |
| 117 | } |
| 118 | |
| 119 | static int arch_timer_set_next_event_phys(unsigned long evt, |
| 120 | struct clock_event_device *unused) |
| 121 | { |
| 122 | set_next_event(ARCH_TIMER_PHYS_ACCESS, evt); |
| 123 | return 0; |
| 124 | } |
| 125 | |
| 126 | static int __cpuinit arch_timer_setup(struct clock_event_device *clk) |
| 127 | { |
| 128 | clk->features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP; |
| 129 | clk->name = "arch_sys_timer"; |
| 130 | clk->rating = 450; |
| 131 | if (arch_timer_use_virtual) { |
| 132 | clk->irq = arch_timer_ppi[VIRT_PPI]; |
| 133 | clk->set_mode = arch_timer_set_mode_virt; |
| 134 | clk->set_next_event = arch_timer_set_next_event_virt; |
| 135 | } else { |
| 136 | clk->irq = arch_timer_ppi[PHYS_SECURE_PPI]; |
| 137 | clk->set_mode = arch_timer_set_mode_phys; |
| 138 | clk->set_next_event = arch_timer_set_next_event_phys; |
| 139 | } |
| 140 | |
| 141 | clk->cpumask = cpumask_of(smp_processor_id()); |
| 142 | |
| 143 | clk->set_mode(CLOCK_EVT_MODE_SHUTDOWN, NULL); |
| 144 | |
| 145 | clockevents_config_and_register(clk, arch_timer_rate, |
| 146 | 0xf, 0x7fffffff); |
| 147 | |
| 148 | if (arch_timer_use_virtual) |
| 149 | enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0); |
| 150 | else { |
| 151 | enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0); |
| 152 | if (arch_timer_ppi[PHYS_NONSECURE_PPI]) |
| 153 | enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0); |
| 154 | } |
| 155 | |
| 156 | arch_counter_set_user_access(); |
| 157 | |
| 158 | return 0; |
| 159 | } |
| 160 | |
| 161 | static int arch_timer_available(void) |
| 162 | { |
| 163 | u32 freq; |
| 164 | |
| 165 | if (arch_timer_rate == 0) { |
| 166 | freq = arch_timer_get_cntfrq(); |
| 167 | |
| 168 | /* Check the timer frequency. */ |
| 169 | if (freq == 0) { |
| 170 | pr_warn("Architected timer frequency not available\n"); |
| 171 | return -EINVAL; |
| 172 | } |
| 173 | |
| 174 | arch_timer_rate = freq; |
| 175 | } |
| 176 | |
| 177 | pr_info_once("Architected local timer running at %lu.%02luMHz (%s).\n", |
| 178 | (unsigned long)arch_timer_rate / 1000000, |
| 179 | (unsigned long)(arch_timer_rate / 10000) % 100, |
| 180 | arch_timer_use_virtual ? "virt" : "phys"); |
| 181 | return 0; |
| 182 | } |
| 183 | |
| 184 | u32 arch_timer_get_rate(void) |
| 185 | { |
| 186 | return arch_timer_rate; |
| 187 | } |
| 188 | |
| 189 | /* |
| 190 | * Some external users of arch_timer_read_counter (e.g. sched_clock) may try to |
| 191 | * call it before it has been initialised. Rather than incur a performance |
| 192 | * penalty checking for initialisation, provide a default implementation that |
| 193 | * won't lead to time appearing to jump backwards. |
| 194 | */ |
| 195 | static u64 arch_timer_read_zero(void) |
| 196 | { |
| 197 | return 0; |
| 198 | } |
| 199 | |
| 200 | u64 (*arch_timer_read_counter)(void) = arch_timer_read_zero; |
| 201 | |
| 202 | static cycle_t arch_counter_read(struct clocksource *cs) |
| 203 | { |
| 204 | return arch_timer_read_counter(); |
| 205 | } |
| 206 | |
| 207 | static cycle_t arch_counter_read_cc(const struct cyclecounter *cc) |
| 208 | { |
| 209 | return arch_timer_read_counter(); |
| 210 | } |
| 211 | |
| 212 | static struct clocksource clocksource_counter = { |
| 213 | .name = "arch_sys_counter", |
| 214 | .rating = 400, |
| 215 | .read = arch_counter_read, |
| 216 | .mask = CLOCKSOURCE_MASK(56), |
| 217 | .flags = CLOCK_SOURCE_IS_CONTINUOUS, |
| 218 | }; |
| 219 | |
| 220 | static struct cyclecounter cyclecounter = { |
| 221 | .read = arch_counter_read_cc, |
| 222 | .mask = CLOCKSOURCE_MASK(56), |
| 223 | }; |
| 224 | |
| 225 | static struct timecounter timecounter; |
| 226 | |
| 227 | struct timecounter *arch_timer_get_timecounter(void) |
| 228 | { |
| 229 | return &timecounter; |
| 230 | } |
| 231 | |
| 232 | static void __cpuinit arch_timer_stop(struct clock_event_device *clk) |
| 233 | { |
| 234 | pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n", |
| 235 | clk->irq, smp_processor_id()); |
| 236 | |
| 237 | if (arch_timer_use_virtual) |
| 238 | disable_percpu_irq(arch_timer_ppi[VIRT_PPI]); |
| 239 | else { |
| 240 | disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]); |
| 241 | if (arch_timer_ppi[PHYS_NONSECURE_PPI]) |
| 242 | disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]); |
| 243 | } |
| 244 | |
| 245 | clk->set_mode(CLOCK_EVT_MODE_UNUSED, clk); |
| 246 | } |
| 247 | |
| 248 | static int __cpuinit arch_timer_cpu_notify(struct notifier_block *self, |
| 249 | unsigned long action, void *hcpu) |
| 250 | { |
| 251 | struct clock_event_device *evt = this_cpu_ptr(arch_timer_evt); |
| 252 | |
| 253 | switch (action & ~CPU_TASKS_FROZEN) { |
| 254 | case CPU_STARTING: |
| 255 | arch_timer_setup(evt); |
| 256 | break; |
| 257 | case CPU_DYING: |
| 258 | arch_timer_stop(evt); |
| 259 | break; |
| 260 | } |
| 261 | |
| 262 | return NOTIFY_OK; |
| 263 | } |
| 264 | |
| 265 | static struct notifier_block arch_timer_cpu_nb __cpuinitdata = { |
| 266 | .notifier_call = arch_timer_cpu_notify, |
| 267 | }; |
| 268 | |
| 269 | static int __init arch_timer_register(void) |
| 270 | { |
| 271 | int err; |
| 272 | int ppi; |
| 273 | |
| 274 | err = arch_timer_available(); |
| 275 | if (err) |
| 276 | goto out; |
| 277 | |
| 278 | arch_timer_evt = alloc_percpu(struct clock_event_device); |
| 279 | if (!arch_timer_evt) { |
| 280 | err = -ENOMEM; |
| 281 | goto out; |
| 282 | } |
| 283 | |
| 284 | clocksource_register_hz(&clocksource_counter, arch_timer_rate); |
| 285 | cyclecounter.mult = clocksource_counter.mult; |
| 286 | cyclecounter.shift = clocksource_counter.shift; |
| 287 | timecounter_init(&timecounter, &cyclecounter, |
| 288 | arch_counter_get_cntpct()); |
| 289 | |
| 290 | if (arch_timer_use_virtual) { |
| 291 | ppi = arch_timer_ppi[VIRT_PPI]; |
| 292 | err = request_percpu_irq(ppi, arch_timer_handler_virt, |
| 293 | "arch_timer", arch_timer_evt); |
| 294 | } else { |
| 295 | ppi = arch_timer_ppi[PHYS_SECURE_PPI]; |
| 296 | err = request_percpu_irq(ppi, arch_timer_handler_phys, |
| 297 | "arch_timer", arch_timer_evt); |
| 298 | if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) { |
| 299 | ppi = arch_timer_ppi[PHYS_NONSECURE_PPI]; |
| 300 | err = request_percpu_irq(ppi, arch_timer_handler_phys, |
| 301 | "arch_timer", arch_timer_evt); |
| 302 | if (err) |
| 303 | free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], |
| 304 | arch_timer_evt); |
| 305 | } |
| 306 | } |
| 307 | |
| 308 | if (err) { |
| 309 | pr_err("arch_timer: can't register interrupt %d (%d)\n", |
| 310 | ppi, err); |
| 311 | goto out_free; |
| 312 | } |
| 313 | |
| 314 | err = register_cpu_notifier(&arch_timer_cpu_nb); |
| 315 | if (err) |
| 316 | goto out_free_irq; |
| 317 | |
| 318 | /* Immediately configure the timer on the boot CPU */ |
| 319 | arch_timer_setup(this_cpu_ptr(arch_timer_evt)); |
| 320 | |
| 321 | return 0; |
| 322 | |
| 323 | out_free_irq: |
| 324 | if (arch_timer_use_virtual) |
| 325 | free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt); |
| 326 | else { |
| 327 | free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], |
| 328 | arch_timer_evt); |
| 329 | if (arch_timer_ppi[PHYS_NONSECURE_PPI]) |
| 330 | free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], |
| 331 | arch_timer_evt); |
| 332 | } |
| 333 | |
| 334 | out_free: |
| 335 | free_percpu(arch_timer_evt); |
| 336 | out: |
| 337 | return err; |
| 338 | } |
| 339 | |
| 340 | static const struct of_device_id arch_timer_of_match[] __initconst = { |
| 341 | { .compatible = "arm,armv7-timer", }, |
Mark Rutland | 1aee5d7 | 2012-11-20 10:06:00 +0000 | [diff] [blame] | 342 | { .compatible = "arm,armv8-timer", }, |
Mark Rutland | 8a4da6e | 2012-11-12 14:33:44 +0000 | [diff] [blame] | 343 | {}, |
| 344 | }; |
| 345 | |
| 346 | int __init arch_timer_init(void) |
| 347 | { |
| 348 | struct device_node *np; |
| 349 | u32 freq; |
| 350 | int i; |
| 351 | |
| 352 | np = of_find_matching_node(NULL, arch_timer_of_match); |
| 353 | if (!np) { |
| 354 | pr_err("arch_timer: can't find DT node\n"); |
| 355 | return -ENODEV; |
| 356 | } |
| 357 | |
| 358 | /* Try to determine the frequency from the device tree or CNTFRQ */ |
| 359 | if (!of_property_read_u32(np, "clock-frequency", &freq)) |
| 360 | arch_timer_rate = freq; |
| 361 | |
| 362 | for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++) |
| 363 | arch_timer_ppi[i] = irq_of_parse_and_map(np, i); |
| 364 | |
| 365 | of_node_put(np); |
| 366 | |
| 367 | /* |
Marc Zyngier | 8266891 | 2013-01-10 11:13:07 +0000 | [diff] [blame^] | 368 | * If HYP mode is available, we know that the physical timer |
| 369 | * has been configured to be accessible from PL1. Use it, so |
| 370 | * that a guest can use the virtual timer instead. |
| 371 | * |
Mark Rutland | 8a4da6e | 2012-11-12 14:33:44 +0000 | [diff] [blame] | 372 | * If no interrupt provided for virtual timer, we'll have to |
| 373 | * stick to the physical timer. It'd better be accessible... |
| 374 | */ |
Marc Zyngier | 8266891 | 2013-01-10 11:13:07 +0000 | [diff] [blame^] | 375 | if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) { |
Mark Rutland | 8a4da6e | 2012-11-12 14:33:44 +0000 | [diff] [blame] | 376 | arch_timer_use_virtual = false; |
| 377 | |
| 378 | if (!arch_timer_ppi[PHYS_SECURE_PPI] || |
| 379 | !arch_timer_ppi[PHYS_NONSECURE_PPI]) { |
| 380 | pr_warn("arch_timer: No interrupt available, giving up\n"); |
| 381 | return -EINVAL; |
| 382 | } |
| 383 | } |
| 384 | |
| 385 | if (arch_timer_use_virtual) |
| 386 | arch_timer_read_counter = arch_counter_get_cntvct; |
| 387 | else |
| 388 | arch_timer_read_counter = arch_counter_get_cntpct; |
| 389 | |
| 390 | return arch_timer_register(); |
| 391 | } |