Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 1 | /* |
| 2 | * This file is part of UBIFS. |
| 3 | * |
| 4 | * Copyright (C) 2006-2008 Nokia Corporation. |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify it |
| 7 | * under the terms of the GNU General Public License version 2 as published by |
| 8 | * the Free Software Foundation. |
| 9 | * |
| 10 | * This program is distributed in the hope that it will be useful, but WITHOUT |
| 11 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 12 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| 13 | * more details. |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License along with |
| 16 | * this program; if not, write to the Free Software Foundation, Inc., 51 |
| 17 | * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| 18 | * |
| 19 | * Authors: Adrian Hunter |
| 20 | * Artem Bityutskiy (Битюцкий Артём) |
| 21 | */ |
| 22 | |
| 23 | /* |
| 24 | * This file implements the LEB properties tree (LPT) area. The LPT area |
| 25 | * contains the LEB properties tree, a table of LPT area eraseblocks (ltab), and |
| 26 | * (for the "big" model) a table of saved LEB numbers (lsave). The LPT area sits |
| 27 | * between the log and the orphan area. |
| 28 | * |
| 29 | * The LPT area is like a miniature self-contained file system. It is required |
| 30 | * that it never runs out of space, is fast to access and update, and scales |
| 31 | * logarithmically. The LEB properties tree is implemented as a wandering tree |
| 32 | * much like the TNC, and the LPT area has its own garbage collection. |
| 33 | * |
| 34 | * The LPT has two slightly different forms called the "small model" and the |
| 35 | * "big model". The small model is used when the entire LEB properties table |
| 36 | * can be written into a single eraseblock. In that case, garbage collection |
| 37 | * consists of just writing the whole table, which therefore makes all other |
| 38 | * eraseblocks reusable. In the case of the big model, dirty eraseblocks are |
| 39 | * selected for garbage collection, which consists are marking the nodes in |
| 40 | * that LEB as dirty, and then only the dirty nodes are written out. Also, in |
| 41 | * the case of the big model, a table of LEB numbers is saved so that the entire |
| 42 | * LPT does not to be scanned looking for empty eraseblocks when UBIFS is first |
| 43 | * mounted. |
| 44 | */ |
| 45 | |
| 46 | #include <linux/crc16.h> |
| 47 | #include "ubifs.h" |
| 48 | |
| 49 | /** |
| 50 | * do_calc_lpt_geom - calculate sizes for the LPT area. |
| 51 | * @c: the UBIFS file-system description object |
| 52 | * |
| 53 | * Calculate the sizes of LPT bit fields, nodes, and tree, based on the |
| 54 | * properties of the flash and whether LPT is "big" (c->big_lpt). |
| 55 | */ |
| 56 | static void do_calc_lpt_geom(struct ubifs_info *c) |
| 57 | { |
| 58 | int i, n, bits, per_leb_wastage, max_pnode_cnt; |
| 59 | long long sz, tot_wastage; |
| 60 | |
| 61 | n = c->main_lebs + c->max_leb_cnt - c->leb_cnt; |
| 62 | max_pnode_cnt = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT); |
| 63 | |
| 64 | c->lpt_hght = 1; |
| 65 | n = UBIFS_LPT_FANOUT; |
| 66 | while (n < max_pnode_cnt) { |
| 67 | c->lpt_hght += 1; |
| 68 | n <<= UBIFS_LPT_FANOUT_SHIFT; |
| 69 | } |
| 70 | |
| 71 | c->pnode_cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT); |
| 72 | |
| 73 | n = DIV_ROUND_UP(c->pnode_cnt, UBIFS_LPT_FANOUT); |
| 74 | c->nnode_cnt = n; |
| 75 | for (i = 1; i < c->lpt_hght; i++) { |
| 76 | n = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT); |
| 77 | c->nnode_cnt += n; |
| 78 | } |
| 79 | |
| 80 | c->space_bits = fls(c->leb_size) - 3; |
| 81 | c->lpt_lnum_bits = fls(c->lpt_lebs); |
| 82 | c->lpt_offs_bits = fls(c->leb_size - 1); |
| 83 | c->lpt_spc_bits = fls(c->leb_size); |
| 84 | |
| 85 | n = DIV_ROUND_UP(c->max_leb_cnt, UBIFS_LPT_FANOUT); |
| 86 | c->pcnt_bits = fls(n - 1); |
| 87 | |
| 88 | c->lnum_bits = fls(c->max_leb_cnt - 1); |
| 89 | |
| 90 | bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS + |
| 91 | (c->big_lpt ? c->pcnt_bits : 0) + |
| 92 | (c->space_bits * 2 + 1) * UBIFS_LPT_FANOUT; |
| 93 | c->pnode_sz = (bits + 7) / 8; |
| 94 | |
| 95 | bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS + |
| 96 | (c->big_lpt ? c->pcnt_bits : 0) + |
| 97 | (c->lpt_lnum_bits + c->lpt_offs_bits) * UBIFS_LPT_FANOUT; |
| 98 | c->nnode_sz = (bits + 7) / 8; |
| 99 | |
| 100 | bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS + |
| 101 | c->lpt_lebs * c->lpt_spc_bits * 2; |
| 102 | c->ltab_sz = (bits + 7) / 8; |
| 103 | |
| 104 | bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS + |
| 105 | c->lnum_bits * c->lsave_cnt; |
| 106 | c->lsave_sz = (bits + 7) / 8; |
| 107 | |
| 108 | /* Calculate the minimum LPT size */ |
| 109 | c->lpt_sz = (long long)c->pnode_cnt * c->pnode_sz; |
| 110 | c->lpt_sz += (long long)c->nnode_cnt * c->nnode_sz; |
| 111 | c->lpt_sz += c->ltab_sz; |
| 112 | c->lpt_sz += c->lsave_sz; |
| 113 | |
| 114 | /* Add wastage */ |
| 115 | sz = c->lpt_sz; |
| 116 | per_leb_wastage = max_t(int, c->pnode_sz, c->nnode_sz); |
| 117 | sz += per_leb_wastage; |
| 118 | tot_wastage = per_leb_wastage; |
| 119 | while (sz > c->leb_size) { |
| 120 | sz += per_leb_wastage; |
| 121 | sz -= c->leb_size; |
| 122 | tot_wastage += per_leb_wastage; |
| 123 | } |
| 124 | tot_wastage += ALIGN(sz, c->min_io_size) - sz; |
| 125 | c->lpt_sz += tot_wastage; |
| 126 | } |
| 127 | |
| 128 | /** |
| 129 | * ubifs_calc_lpt_geom - calculate and check sizes for the LPT area. |
| 130 | * @c: the UBIFS file-system description object |
| 131 | * |
| 132 | * This function returns %0 on success and a negative error code on failure. |
| 133 | */ |
| 134 | int ubifs_calc_lpt_geom(struct ubifs_info *c) |
| 135 | { |
| 136 | int lebs_needed; |
| 137 | uint64_t sz; |
| 138 | |
| 139 | do_calc_lpt_geom(c); |
| 140 | |
| 141 | /* Verify that lpt_lebs is big enough */ |
| 142 | sz = c->lpt_sz * 2; /* Must have at least 2 times the size */ |
| 143 | sz += c->leb_size - 1; |
| 144 | do_div(sz, c->leb_size); |
| 145 | lebs_needed = sz; |
| 146 | if (lebs_needed > c->lpt_lebs) { |
| 147 | ubifs_err("too few LPT LEBs"); |
| 148 | return -EINVAL; |
| 149 | } |
| 150 | |
| 151 | /* Verify that ltab fits in a single LEB (since ltab is a single node */ |
| 152 | if (c->ltab_sz > c->leb_size) { |
| 153 | ubifs_err("LPT ltab too big"); |
| 154 | return -EINVAL; |
| 155 | } |
| 156 | |
| 157 | c->check_lpt_free = c->big_lpt; |
| 158 | |
| 159 | return 0; |
| 160 | } |
| 161 | |
| 162 | /** |
| 163 | * calc_dflt_lpt_geom - calculate default LPT geometry. |
| 164 | * @c: the UBIFS file-system description object |
| 165 | * @main_lebs: number of main area LEBs is passed and returned here |
| 166 | * @big_lpt: whether the LPT area is "big" is returned here |
| 167 | * |
| 168 | * The size of the LPT area depends on parameters that themselves are dependent |
| 169 | * on the size of the LPT area. This function, successively recalculates the LPT |
| 170 | * area geometry until the parameters and resultant geometry are consistent. |
| 171 | * |
| 172 | * This function returns %0 on success and a negative error code on failure. |
| 173 | */ |
| 174 | static int calc_dflt_lpt_geom(struct ubifs_info *c, int *main_lebs, |
| 175 | int *big_lpt) |
| 176 | { |
| 177 | int i, lebs_needed; |
| 178 | uint64_t sz; |
| 179 | |
| 180 | /* Start by assuming the minimum number of LPT LEBs */ |
| 181 | c->lpt_lebs = UBIFS_MIN_LPT_LEBS; |
| 182 | c->main_lebs = *main_lebs - c->lpt_lebs; |
| 183 | if (c->main_lebs <= 0) |
| 184 | return -EINVAL; |
| 185 | |
| 186 | /* And assume we will use the small LPT model */ |
| 187 | c->big_lpt = 0; |
| 188 | |
| 189 | /* |
| 190 | * Calculate the geometry based on assumptions above and then see if it |
| 191 | * makes sense |
| 192 | */ |
| 193 | do_calc_lpt_geom(c); |
| 194 | |
| 195 | /* Small LPT model must have lpt_sz < leb_size */ |
| 196 | if (c->lpt_sz > c->leb_size) { |
| 197 | /* Nope, so try again using big LPT model */ |
| 198 | c->big_lpt = 1; |
| 199 | do_calc_lpt_geom(c); |
| 200 | } |
| 201 | |
| 202 | /* Now check there are enough LPT LEBs */ |
| 203 | for (i = 0; i < 64 ; i++) { |
| 204 | sz = c->lpt_sz * 4; /* Allow 4 times the size */ |
| 205 | sz += c->leb_size - 1; |
| 206 | do_div(sz, c->leb_size); |
| 207 | lebs_needed = sz; |
| 208 | if (lebs_needed > c->lpt_lebs) { |
| 209 | /* Not enough LPT LEBs so try again with more */ |
| 210 | c->lpt_lebs = lebs_needed; |
| 211 | c->main_lebs = *main_lebs - c->lpt_lebs; |
| 212 | if (c->main_lebs <= 0) |
| 213 | return -EINVAL; |
| 214 | do_calc_lpt_geom(c); |
| 215 | continue; |
| 216 | } |
| 217 | if (c->ltab_sz > c->leb_size) { |
| 218 | ubifs_err("LPT ltab too big"); |
| 219 | return -EINVAL; |
| 220 | } |
| 221 | *main_lebs = c->main_lebs; |
| 222 | *big_lpt = c->big_lpt; |
| 223 | return 0; |
| 224 | } |
| 225 | return -EINVAL; |
| 226 | } |
| 227 | |
| 228 | /** |
| 229 | * pack_bits - pack bit fields end-to-end. |
| 230 | * @addr: address at which to pack (passed and next address returned) |
| 231 | * @pos: bit position at which to pack (passed and next position returned) |
| 232 | * @val: value to pack |
| 233 | * @nrbits: number of bits of value to pack (1-32) |
| 234 | */ |
| 235 | static void pack_bits(uint8_t **addr, int *pos, uint32_t val, int nrbits) |
| 236 | { |
| 237 | uint8_t *p = *addr; |
| 238 | int b = *pos; |
| 239 | |
| 240 | ubifs_assert(nrbits > 0); |
| 241 | ubifs_assert(nrbits <= 32); |
| 242 | ubifs_assert(*pos >= 0); |
| 243 | ubifs_assert(*pos < 8); |
| 244 | ubifs_assert((val >> nrbits) == 0 || nrbits == 32); |
| 245 | if (b) { |
| 246 | *p |= ((uint8_t)val) << b; |
| 247 | nrbits += b; |
| 248 | if (nrbits > 8) { |
| 249 | *++p = (uint8_t)(val >>= (8 - b)); |
| 250 | if (nrbits > 16) { |
| 251 | *++p = (uint8_t)(val >>= 8); |
| 252 | if (nrbits > 24) { |
| 253 | *++p = (uint8_t)(val >>= 8); |
| 254 | if (nrbits > 32) |
| 255 | *++p = (uint8_t)(val >>= 8); |
| 256 | } |
| 257 | } |
| 258 | } |
| 259 | } else { |
| 260 | *p = (uint8_t)val; |
| 261 | if (nrbits > 8) { |
| 262 | *++p = (uint8_t)(val >>= 8); |
| 263 | if (nrbits > 16) { |
| 264 | *++p = (uint8_t)(val >>= 8); |
| 265 | if (nrbits > 24) |
| 266 | *++p = (uint8_t)(val >>= 8); |
| 267 | } |
| 268 | } |
| 269 | } |
| 270 | b = nrbits & 7; |
| 271 | if (b == 0) |
| 272 | p++; |
| 273 | *addr = p; |
| 274 | *pos = b; |
| 275 | } |
| 276 | |
| 277 | /** |
| 278 | * ubifs_unpack_bits - unpack bit fields. |
| 279 | * @addr: address at which to unpack (passed and next address returned) |
| 280 | * @pos: bit position at which to unpack (passed and next position returned) |
| 281 | * @nrbits: number of bits of value to unpack (1-32) |
| 282 | * |
| 283 | * This functions returns the value unpacked. |
| 284 | */ |
| 285 | uint32_t ubifs_unpack_bits(uint8_t **addr, int *pos, int nrbits) |
| 286 | { |
| 287 | const int k = 32 - nrbits; |
| 288 | uint8_t *p = *addr; |
| 289 | int b = *pos; |
| 290 | uint32_t val; |
| 291 | |
| 292 | ubifs_assert(nrbits > 0); |
| 293 | ubifs_assert(nrbits <= 32); |
| 294 | ubifs_assert(*pos >= 0); |
| 295 | ubifs_assert(*pos < 8); |
| 296 | if (b) { |
| 297 | val = p[1] | ((uint32_t)p[2] << 8) | ((uint32_t)p[3] << 16) | |
| 298 | ((uint32_t)p[4] << 24); |
| 299 | val <<= (8 - b); |
| 300 | val |= *p >> b; |
| 301 | nrbits += b; |
| 302 | } else |
| 303 | val = p[0] | ((uint32_t)p[1] << 8) | ((uint32_t)p[2] << 16) | |
| 304 | ((uint32_t)p[3] << 24); |
| 305 | val <<= k; |
| 306 | val >>= k; |
| 307 | b = nrbits & 7; |
| 308 | p += nrbits / 8; |
| 309 | *addr = p; |
| 310 | *pos = b; |
| 311 | ubifs_assert((val >> nrbits) == 0 || nrbits - b == 32); |
| 312 | return val; |
| 313 | } |
| 314 | |
| 315 | /** |
| 316 | * ubifs_pack_pnode - pack all the bit fields of a pnode. |
| 317 | * @c: UBIFS file-system description object |
| 318 | * @buf: buffer into which to pack |
| 319 | * @pnode: pnode to pack |
| 320 | */ |
| 321 | void ubifs_pack_pnode(struct ubifs_info *c, void *buf, |
| 322 | struct ubifs_pnode *pnode) |
| 323 | { |
| 324 | uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; |
| 325 | int i, pos = 0; |
| 326 | uint16_t crc; |
| 327 | |
| 328 | pack_bits(&addr, &pos, UBIFS_LPT_PNODE, UBIFS_LPT_TYPE_BITS); |
| 329 | if (c->big_lpt) |
| 330 | pack_bits(&addr, &pos, pnode->num, c->pcnt_bits); |
| 331 | for (i = 0; i < UBIFS_LPT_FANOUT; i++) { |
| 332 | pack_bits(&addr, &pos, pnode->lprops[i].free >> 3, |
| 333 | c->space_bits); |
| 334 | pack_bits(&addr, &pos, pnode->lprops[i].dirty >> 3, |
| 335 | c->space_bits); |
| 336 | if (pnode->lprops[i].flags & LPROPS_INDEX) |
| 337 | pack_bits(&addr, &pos, 1, 1); |
| 338 | else |
| 339 | pack_bits(&addr, &pos, 0, 1); |
| 340 | } |
| 341 | crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES, |
| 342 | c->pnode_sz - UBIFS_LPT_CRC_BYTES); |
| 343 | addr = buf; |
| 344 | pos = 0; |
| 345 | pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS); |
| 346 | } |
| 347 | |
| 348 | /** |
| 349 | * ubifs_pack_nnode - pack all the bit fields of a nnode. |
| 350 | * @c: UBIFS file-system description object |
| 351 | * @buf: buffer into which to pack |
| 352 | * @nnode: nnode to pack |
| 353 | */ |
| 354 | void ubifs_pack_nnode(struct ubifs_info *c, void *buf, |
| 355 | struct ubifs_nnode *nnode) |
| 356 | { |
| 357 | uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; |
| 358 | int i, pos = 0; |
| 359 | uint16_t crc; |
| 360 | |
| 361 | pack_bits(&addr, &pos, UBIFS_LPT_NNODE, UBIFS_LPT_TYPE_BITS); |
| 362 | if (c->big_lpt) |
| 363 | pack_bits(&addr, &pos, nnode->num, c->pcnt_bits); |
| 364 | for (i = 0; i < UBIFS_LPT_FANOUT; i++) { |
| 365 | int lnum = nnode->nbranch[i].lnum; |
| 366 | |
| 367 | if (lnum == 0) |
| 368 | lnum = c->lpt_last + 1; |
| 369 | pack_bits(&addr, &pos, lnum - c->lpt_first, c->lpt_lnum_bits); |
| 370 | pack_bits(&addr, &pos, nnode->nbranch[i].offs, |
| 371 | c->lpt_offs_bits); |
| 372 | } |
| 373 | crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES, |
| 374 | c->nnode_sz - UBIFS_LPT_CRC_BYTES); |
| 375 | addr = buf; |
| 376 | pos = 0; |
| 377 | pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS); |
| 378 | } |
| 379 | |
| 380 | /** |
| 381 | * ubifs_pack_ltab - pack the LPT's own lprops table. |
| 382 | * @c: UBIFS file-system description object |
| 383 | * @buf: buffer into which to pack |
| 384 | * @ltab: LPT's own lprops table to pack |
| 385 | */ |
| 386 | void ubifs_pack_ltab(struct ubifs_info *c, void *buf, |
| 387 | struct ubifs_lpt_lprops *ltab) |
| 388 | { |
| 389 | uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; |
| 390 | int i, pos = 0; |
| 391 | uint16_t crc; |
| 392 | |
| 393 | pack_bits(&addr, &pos, UBIFS_LPT_LTAB, UBIFS_LPT_TYPE_BITS); |
| 394 | for (i = 0; i < c->lpt_lebs; i++) { |
| 395 | pack_bits(&addr, &pos, ltab[i].free, c->lpt_spc_bits); |
| 396 | pack_bits(&addr, &pos, ltab[i].dirty, c->lpt_spc_bits); |
| 397 | } |
| 398 | crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES, |
| 399 | c->ltab_sz - UBIFS_LPT_CRC_BYTES); |
| 400 | addr = buf; |
| 401 | pos = 0; |
| 402 | pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS); |
| 403 | } |
| 404 | |
| 405 | /** |
| 406 | * ubifs_pack_lsave - pack the LPT's save table. |
| 407 | * @c: UBIFS file-system description object |
| 408 | * @buf: buffer into which to pack |
| 409 | * @lsave: LPT's save table to pack |
| 410 | */ |
| 411 | void ubifs_pack_lsave(struct ubifs_info *c, void *buf, int *lsave) |
| 412 | { |
| 413 | uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; |
| 414 | int i, pos = 0; |
| 415 | uint16_t crc; |
| 416 | |
| 417 | pack_bits(&addr, &pos, UBIFS_LPT_LSAVE, UBIFS_LPT_TYPE_BITS); |
| 418 | for (i = 0; i < c->lsave_cnt; i++) |
| 419 | pack_bits(&addr, &pos, lsave[i], c->lnum_bits); |
| 420 | crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES, |
| 421 | c->lsave_sz - UBIFS_LPT_CRC_BYTES); |
| 422 | addr = buf; |
| 423 | pos = 0; |
| 424 | pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS); |
| 425 | } |
| 426 | |
| 427 | /** |
| 428 | * ubifs_add_lpt_dirt - add dirty space to LPT LEB properties. |
| 429 | * @c: UBIFS file-system description object |
| 430 | * @lnum: LEB number to which to add dirty space |
| 431 | * @dirty: amount of dirty space to add |
| 432 | */ |
| 433 | void ubifs_add_lpt_dirt(struct ubifs_info *c, int lnum, int dirty) |
| 434 | { |
| 435 | if (!dirty || !lnum) |
| 436 | return; |
| 437 | dbg_lp("LEB %d add %d to %d", |
| 438 | lnum, dirty, c->ltab[lnum - c->lpt_first].dirty); |
| 439 | ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last); |
| 440 | c->ltab[lnum - c->lpt_first].dirty += dirty; |
| 441 | } |
| 442 | |
| 443 | /** |
| 444 | * set_ltab - set LPT LEB properties. |
| 445 | * @c: UBIFS file-system description object |
| 446 | * @lnum: LEB number |
| 447 | * @free: amount of free space |
| 448 | * @dirty: amount of dirty space |
| 449 | */ |
| 450 | static void set_ltab(struct ubifs_info *c, int lnum, int free, int dirty) |
| 451 | { |
| 452 | dbg_lp("LEB %d free %d dirty %d to %d %d", |
| 453 | lnum, c->ltab[lnum - c->lpt_first].free, |
| 454 | c->ltab[lnum - c->lpt_first].dirty, free, dirty); |
| 455 | ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last); |
| 456 | c->ltab[lnum - c->lpt_first].free = free; |
| 457 | c->ltab[lnum - c->lpt_first].dirty = dirty; |
| 458 | } |
| 459 | |
| 460 | /** |
| 461 | * ubifs_add_nnode_dirt - add dirty space to LPT LEB properties. |
| 462 | * @c: UBIFS file-system description object |
| 463 | * @nnode: nnode for which to add dirt |
| 464 | */ |
| 465 | void ubifs_add_nnode_dirt(struct ubifs_info *c, struct ubifs_nnode *nnode) |
| 466 | { |
| 467 | struct ubifs_nnode *np = nnode->parent; |
| 468 | |
| 469 | if (np) |
| 470 | ubifs_add_lpt_dirt(c, np->nbranch[nnode->iip].lnum, |
| 471 | c->nnode_sz); |
| 472 | else { |
| 473 | ubifs_add_lpt_dirt(c, c->lpt_lnum, c->nnode_sz); |
| 474 | if (!(c->lpt_drty_flgs & LTAB_DIRTY)) { |
| 475 | c->lpt_drty_flgs |= LTAB_DIRTY; |
| 476 | ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz); |
| 477 | } |
| 478 | } |
| 479 | } |
| 480 | |
| 481 | /** |
| 482 | * add_pnode_dirt - add dirty space to LPT LEB properties. |
| 483 | * @c: UBIFS file-system description object |
| 484 | * @pnode: pnode for which to add dirt |
| 485 | */ |
| 486 | static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode) |
| 487 | { |
| 488 | ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum, |
| 489 | c->pnode_sz); |
| 490 | } |
| 491 | |
| 492 | /** |
| 493 | * calc_nnode_num - calculate nnode number. |
| 494 | * @row: the row in the tree (root is zero) |
| 495 | * @col: the column in the row (leftmost is zero) |
| 496 | * |
| 497 | * The nnode number is a number that uniquely identifies a nnode and can be used |
| 498 | * easily to traverse the tree from the root to that nnode. |
| 499 | * |
| 500 | * This function calculates and returns the nnode number for the nnode at @row |
| 501 | * and @col. |
| 502 | */ |
| 503 | static int calc_nnode_num(int row, int col) |
| 504 | { |
| 505 | int num, bits; |
| 506 | |
| 507 | num = 1; |
| 508 | while (row--) { |
| 509 | bits = (col & (UBIFS_LPT_FANOUT - 1)); |
| 510 | col >>= UBIFS_LPT_FANOUT_SHIFT; |
| 511 | num <<= UBIFS_LPT_FANOUT_SHIFT; |
| 512 | num |= bits; |
| 513 | } |
| 514 | return num; |
| 515 | } |
| 516 | |
| 517 | /** |
| 518 | * calc_nnode_num_from_parent - calculate nnode number. |
| 519 | * @c: UBIFS file-system description object |
| 520 | * @parent: parent nnode |
| 521 | * @iip: index in parent |
| 522 | * |
| 523 | * The nnode number is a number that uniquely identifies a nnode and can be used |
| 524 | * easily to traverse the tree from the root to that nnode. |
| 525 | * |
| 526 | * This function calculates and returns the nnode number based on the parent's |
| 527 | * nnode number and the index in parent. |
| 528 | */ |
| 529 | static int calc_nnode_num_from_parent(struct ubifs_info *c, |
| 530 | struct ubifs_nnode *parent, int iip) |
| 531 | { |
| 532 | int num, shft; |
| 533 | |
| 534 | if (!parent) |
| 535 | return 1; |
| 536 | shft = (c->lpt_hght - parent->level) * UBIFS_LPT_FANOUT_SHIFT; |
| 537 | num = parent->num ^ (1 << shft); |
| 538 | num |= (UBIFS_LPT_FANOUT + iip) << shft; |
| 539 | return num; |
| 540 | } |
| 541 | |
| 542 | /** |
| 543 | * calc_pnode_num_from_parent - calculate pnode number. |
| 544 | * @c: UBIFS file-system description object |
| 545 | * @parent: parent nnode |
| 546 | * @iip: index in parent |
| 547 | * |
| 548 | * The pnode number is a number that uniquely identifies a pnode and can be used |
| 549 | * easily to traverse the tree from the root to that pnode. |
| 550 | * |
| 551 | * This function calculates and returns the pnode number based on the parent's |
| 552 | * nnode number and the index in parent. |
| 553 | */ |
| 554 | static int calc_pnode_num_from_parent(struct ubifs_info *c, |
| 555 | struct ubifs_nnode *parent, int iip) |
| 556 | { |
| 557 | int i, n = c->lpt_hght - 1, pnum = parent->num, num = 0; |
| 558 | |
| 559 | for (i = 0; i < n; i++) { |
| 560 | num <<= UBIFS_LPT_FANOUT_SHIFT; |
| 561 | num |= pnum & (UBIFS_LPT_FANOUT - 1); |
| 562 | pnum >>= UBIFS_LPT_FANOUT_SHIFT; |
| 563 | } |
| 564 | num <<= UBIFS_LPT_FANOUT_SHIFT; |
| 565 | num |= iip; |
| 566 | return num; |
| 567 | } |
| 568 | |
| 569 | /** |
| 570 | * ubifs_create_dflt_lpt - create default LPT. |
| 571 | * @c: UBIFS file-system description object |
| 572 | * @main_lebs: number of main area LEBs is passed and returned here |
| 573 | * @lpt_first: LEB number of first LPT LEB |
| 574 | * @lpt_lebs: number of LEBs for LPT is passed and returned here |
| 575 | * @big_lpt: use big LPT model is passed and returned here |
| 576 | * |
| 577 | * This function returns %0 on success and a negative error code on failure. |
| 578 | */ |
| 579 | int ubifs_create_dflt_lpt(struct ubifs_info *c, int *main_lebs, int lpt_first, |
| 580 | int *lpt_lebs, int *big_lpt) |
| 581 | { |
| 582 | int lnum, err = 0, node_sz, iopos, i, j, cnt, len, alen, row; |
| 583 | int blnum, boffs, bsz, bcnt; |
| 584 | struct ubifs_pnode *pnode = NULL; |
| 585 | struct ubifs_nnode *nnode = NULL; |
| 586 | void *buf = NULL, *p; |
| 587 | struct ubifs_lpt_lprops *ltab = NULL; |
| 588 | int *lsave = NULL; |
| 589 | |
| 590 | err = calc_dflt_lpt_geom(c, main_lebs, big_lpt); |
| 591 | if (err) |
| 592 | return err; |
| 593 | *lpt_lebs = c->lpt_lebs; |
| 594 | |
| 595 | /* Needed by 'ubifs_pack_nnode()' and 'set_ltab()' */ |
| 596 | c->lpt_first = lpt_first; |
| 597 | /* Needed by 'set_ltab()' */ |
| 598 | c->lpt_last = lpt_first + c->lpt_lebs - 1; |
| 599 | /* Needed by 'ubifs_pack_lsave()' */ |
| 600 | c->main_first = c->leb_cnt - *main_lebs; |
| 601 | |
| 602 | lsave = kmalloc(sizeof(int) * c->lsave_cnt, GFP_KERNEL); |
| 603 | pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_KERNEL); |
| 604 | nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_KERNEL); |
| 605 | buf = vmalloc(c->leb_size); |
| 606 | ltab = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs); |
| 607 | if (!pnode || !nnode || !buf || !ltab || !lsave) { |
| 608 | err = -ENOMEM; |
| 609 | goto out; |
| 610 | } |
| 611 | |
| 612 | ubifs_assert(!c->ltab); |
| 613 | c->ltab = ltab; /* Needed by set_ltab */ |
| 614 | |
| 615 | /* Initialize LPT's own lprops */ |
| 616 | for (i = 0; i < c->lpt_lebs; i++) { |
| 617 | ltab[i].free = c->leb_size; |
| 618 | ltab[i].dirty = 0; |
| 619 | ltab[i].tgc = 0; |
| 620 | ltab[i].cmt = 0; |
| 621 | } |
| 622 | |
| 623 | lnum = lpt_first; |
| 624 | p = buf; |
| 625 | /* Number of leaf nodes (pnodes) */ |
| 626 | cnt = c->pnode_cnt; |
| 627 | |
| 628 | /* |
| 629 | * The first pnode contains the LEB properties for the LEBs that contain |
| 630 | * the root inode node and the root index node of the index tree. |
| 631 | */ |
| 632 | node_sz = ALIGN(ubifs_idx_node_sz(c, 1), 8); |
| 633 | iopos = ALIGN(node_sz, c->min_io_size); |
| 634 | pnode->lprops[0].free = c->leb_size - iopos; |
| 635 | pnode->lprops[0].dirty = iopos - node_sz; |
| 636 | pnode->lprops[0].flags = LPROPS_INDEX; |
| 637 | |
| 638 | node_sz = UBIFS_INO_NODE_SZ; |
| 639 | iopos = ALIGN(node_sz, c->min_io_size); |
| 640 | pnode->lprops[1].free = c->leb_size - iopos; |
| 641 | pnode->lprops[1].dirty = iopos - node_sz; |
| 642 | |
| 643 | for (i = 2; i < UBIFS_LPT_FANOUT; i++) |
| 644 | pnode->lprops[i].free = c->leb_size; |
| 645 | |
| 646 | /* Add first pnode */ |
| 647 | ubifs_pack_pnode(c, p, pnode); |
| 648 | p += c->pnode_sz; |
| 649 | len = c->pnode_sz; |
| 650 | pnode->num += 1; |
| 651 | |
| 652 | /* Reset pnode values for remaining pnodes */ |
| 653 | pnode->lprops[0].free = c->leb_size; |
| 654 | pnode->lprops[0].dirty = 0; |
| 655 | pnode->lprops[0].flags = 0; |
| 656 | |
| 657 | pnode->lprops[1].free = c->leb_size; |
| 658 | pnode->lprops[1].dirty = 0; |
| 659 | |
| 660 | /* |
| 661 | * To calculate the internal node branches, we keep information about |
| 662 | * the level below. |
| 663 | */ |
| 664 | blnum = lnum; /* LEB number of level below */ |
| 665 | boffs = 0; /* Offset of level below */ |
| 666 | bcnt = cnt; /* Number of nodes in level below */ |
| 667 | bsz = c->pnode_sz; /* Size of nodes in level below */ |
| 668 | |
| 669 | /* Add all remaining pnodes */ |
| 670 | for (i = 1; i < cnt; i++) { |
| 671 | if (len + c->pnode_sz > c->leb_size) { |
| 672 | alen = ALIGN(len, c->min_io_size); |
| 673 | set_ltab(c, lnum, c->leb_size - alen, alen - len); |
| 674 | memset(p, 0xff, alen - len); |
| 675 | err = ubi_leb_change(c->ubi, lnum++, buf, alen, |
| 676 | UBI_SHORTTERM); |
| 677 | if (err) |
| 678 | goto out; |
| 679 | p = buf; |
| 680 | len = 0; |
| 681 | } |
| 682 | ubifs_pack_pnode(c, p, pnode); |
| 683 | p += c->pnode_sz; |
| 684 | len += c->pnode_sz; |
| 685 | /* |
| 686 | * pnodes are simply numbered left to right starting at zero, |
| 687 | * which means the pnode number can be used easily to traverse |
| 688 | * down the tree to the corresponding pnode. |
| 689 | */ |
| 690 | pnode->num += 1; |
| 691 | } |
| 692 | |
| 693 | row = 0; |
| 694 | for (i = UBIFS_LPT_FANOUT; cnt > i; i <<= UBIFS_LPT_FANOUT_SHIFT) |
| 695 | row += 1; |
| 696 | /* Add all nnodes, one level at a time */ |
| 697 | while (1) { |
| 698 | /* Number of internal nodes (nnodes) at next level */ |
| 699 | cnt = DIV_ROUND_UP(cnt, UBIFS_LPT_FANOUT); |
| 700 | for (i = 0; i < cnt; i++) { |
| 701 | if (len + c->nnode_sz > c->leb_size) { |
| 702 | alen = ALIGN(len, c->min_io_size); |
| 703 | set_ltab(c, lnum, c->leb_size - alen, |
| 704 | alen - len); |
| 705 | memset(p, 0xff, alen - len); |
| 706 | err = ubi_leb_change(c->ubi, lnum++, buf, alen, |
| 707 | UBI_SHORTTERM); |
| 708 | if (err) |
| 709 | goto out; |
| 710 | p = buf; |
| 711 | len = 0; |
| 712 | } |
| 713 | /* Only 1 nnode at this level, so it is the root */ |
| 714 | if (cnt == 1) { |
| 715 | c->lpt_lnum = lnum; |
| 716 | c->lpt_offs = len; |
| 717 | } |
| 718 | /* Set branches to the level below */ |
| 719 | for (j = 0; j < UBIFS_LPT_FANOUT; j++) { |
| 720 | if (bcnt) { |
| 721 | if (boffs + bsz > c->leb_size) { |
| 722 | blnum += 1; |
| 723 | boffs = 0; |
| 724 | } |
| 725 | nnode->nbranch[j].lnum = blnum; |
| 726 | nnode->nbranch[j].offs = boffs; |
| 727 | boffs += bsz; |
| 728 | bcnt--; |
| 729 | } else { |
| 730 | nnode->nbranch[j].lnum = 0; |
| 731 | nnode->nbranch[j].offs = 0; |
| 732 | } |
| 733 | } |
| 734 | nnode->num = calc_nnode_num(row, i); |
| 735 | ubifs_pack_nnode(c, p, nnode); |
| 736 | p += c->nnode_sz; |
| 737 | len += c->nnode_sz; |
| 738 | } |
| 739 | /* Only 1 nnode at this level, so it is the root */ |
| 740 | if (cnt == 1) |
| 741 | break; |
| 742 | /* Update the information about the level below */ |
| 743 | bcnt = cnt; |
| 744 | bsz = c->nnode_sz; |
| 745 | row -= 1; |
| 746 | } |
| 747 | |
| 748 | if (*big_lpt) { |
| 749 | /* Need to add LPT's save table */ |
| 750 | if (len + c->lsave_sz > c->leb_size) { |
| 751 | alen = ALIGN(len, c->min_io_size); |
| 752 | set_ltab(c, lnum, c->leb_size - alen, alen - len); |
| 753 | memset(p, 0xff, alen - len); |
| 754 | err = ubi_leb_change(c->ubi, lnum++, buf, alen, |
| 755 | UBI_SHORTTERM); |
| 756 | if (err) |
| 757 | goto out; |
| 758 | p = buf; |
| 759 | len = 0; |
| 760 | } |
| 761 | |
| 762 | c->lsave_lnum = lnum; |
| 763 | c->lsave_offs = len; |
| 764 | |
| 765 | for (i = 0; i < c->lsave_cnt && i < *main_lebs; i++) |
| 766 | lsave[i] = c->main_first + i; |
| 767 | for (; i < c->lsave_cnt; i++) |
| 768 | lsave[i] = c->main_first; |
| 769 | |
| 770 | ubifs_pack_lsave(c, p, lsave); |
| 771 | p += c->lsave_sz; |
| 772 | len += c->lsave_sz; |
| 773 | } |
| 774 | |
| 775 | /* Need to add LPT's own LEB properties table */ |
| 776 | if (len + c->ltab_sz > c->leb_size) { |
| 777 | alen = ALIGN(len, c->min_io_size); |
| 778 | set_ltab(c, lnum, c->leb_size - alen, alen - len); |
| 779 | memset(p, 0xff, alen - len); |
| 780 | err = ubi_leb_change(c->ubi, lnum++, buf, alen, UBI_SHORTTERM); |
| 781 | if (err) |
| 782 | goto out; |
| 783 | p = buf; |
| 784 | len = 0; |
| 785 | } |
| 786 | |
| 787 | c->ltab_lnum = lnum; |
| 788 | c->ltab_offs = len; |
| 789 | |
| 790 | /* Update ltab before packing it */ |
| 791 | len += c->ltab_sz; |
| 792 | alen = ALIGN(len, c->min_io_size); |
| 793 | set_ltab(c, lnum, c->leb_size - alen, alen - len); |
| 794 | |
| 795 | ubifs_pack_ltab(c, p, ltab); |
| 796 | p += c->ltab_sz; |
| 797 | |
| 798 | /* Write remaining buffer */ |
| 799 | memset(p, 0xff, alen - len); |
| 800 | err = ubi_leb_change(c->ubi, lnum, buf, alen, UBI_SHORTTERM); |
| 801 | if (err) |
| 802 | goto out; |
| 803 | |
| 804 | c->nhead_lnum = lnum; |
| 805 | c->nhead_offs = ALIGN(len, c->min_io_size); |
| 806 | |
| 807 | dbg_lp("space_bits %d", c->space_bits); |
| 808 | dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits); |
| 809 | dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits); |
| 810 | dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits); |
| 811 | dbg_lp("pcnt_bits %d", c->pcnt_bits); |
| 812 | dbg_lp("lnum_bits %d", c->lnum_bits); |
| 813 | dbg_lp("pnode_sz %d", c->pnode_sz); |
| 814 | dbg_lp("nnode_sz %d", c->nnode_sz); |
| 815 | dbg_lp("ltab_sz %d", c->ltab_sz); |
| 816 | dbg_lp("lsave_sz %d", c->lsave_sz); |
| 817 | dbg_lp("lsave_cnt %d", c->lsave_cnt); |
| 818 | dbg_lp("lpt_hght %d", c->lpt_hght); |
| 819 | dbg_lp("big_lpt %d", c->big_lpt); |
| 820 | dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs); |
| 821 | dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs); |
| 822 | dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs); |
| 823 | if (c->big_lpt) |
| 824 | dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs); |
| 825 | out: |
| 826 | c->ltab = NULL; |
| 827 | kfree(lsave); |
| 828 | vfree(ltab); |
| 829 | vfree(buf); |
| 830 | kfree(nnode); |
| 831 | kfree(pnode); |
| 832 | return err; |
| 833 | } |
| 834 | |
| 835 | /** |
| 836 | * update_cats - add LEB properties of a pnode to LEB category lists and heaps. |
| 837 | * @c: UBIFS file-system description object |
| 838 | * @pnode: pnode |
| 839 | * |
| 840 | * When a pnode is loaded into memory, the LEB properties it contains are added, |
| 841 | * by this function, to the LEB category lists and heaps. |
| 842 | */ |
| 843 | static void update_cats(struct ubifs_info *c, struct ubifs_pnode *pnode) |
| 844 | { |
| 845 | int i; |
| 846 | |
| 847 | for (i = 0; i < UBIFS_LPT_FANOUT; i++) { |
| 848 | int cat = pnode->lprops[i].flags & LPROPS_CAT_MASK; |
| 849 | int lnum = pnode->lprops[i].lnum; |
| 850 | |
| 851 | if (!lnum) |
| 852 | return; |
| 853 | ubifs_add_to_cat(c, &pnode->lprops[i], cat); |
| 854 | } |
| 855 | } |
| 856 | |
| 857 | /** |
| 858 | * replace_cats - add LEB properties of a pnode to LEB category lists and heaps. |
| 859 | * @c: UBIFS file-system description object |
| 860 | * @old_pnode: pnode copied |
| 861 | * @new_pnode: pnode copy |
| 862 | * |
| 863 | * During commit it is sometimes necessary to copy a pnode |
| 864 | * (see dirty_cow_pnode). When that happens, references in |
| 865 | * category lists and heaps must be replaced. This function does that. |
| 866 | */ |
| 867 | static void replace_cats(struct ubifs_info *c, struct ubifs_pnode *old_pnode, |
| 868 | struct ubifs_pnode *new_pnode) |
| 869 | { |
| 870 | int i; |
| 871 | |
| 872 | for (i = 0; i < UBIFS_LPT_FANOUT; i++) { |
| 873 | if (!new_pnode->lprops[i].lnum) |
| 874 | return; |
| 875 | ubifs_replace_cat(c, &old_pnode->lprops[i], |
| 876 | &new_pnode->lprops[i]); |
| 877 | } |
| 878 | } |
| 879 | |
| 880 | /** |
| 881 | * check_lpt_crc - check LPT node crc is correct. |
| 882 | * @c: UBIFS file-system description object |
| 883 | * @buf: buffer containing node |
| 884 | * @len: length of node |
| 885 | * |
| 886 | * This function returns %0 on success and a negative error code on failure. |
| 887 | */ |
| 888 | static int check_lpt_crc(void *buf, int len) |
| 889 | { |
| 890 | int pos = 0; |
| 891 | uint8_t *addr = buf; |
| 892 | uint16_t crc, calc_crc; |
| 893 | |
| 894 | crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS); |
| 895 | calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES, |
| 896 | len - UBIFS_LPT_CRC_BYTES); |
| 897 | if (crc != calc_crc) { |
| 898 | ubifs_err("invalid crc in LPT node: crc %hx calc %hx", crc, |
| 899 | calc_crc); |
| 900 | dbg_dump_stack(); |
| 901 | return -EINVAL; |
| 902 | } |
| 903 | return 0; |
| 904 | } |
| 905 | |
| 906 | /** |
| 907 | * check_lpt_type - check LPT node type is correct. |
| 908 | * @c: UBIFS file-system description object |
| 909 | * @addr: address of type bit field is passed and returned updated here |
| 910 | * @pos: position of type bit field is passed and returned updated here |
| 911 | * @type: expected type |
| 912 | * |
| 913 | * This function returns %0 on success and a negative error code on failure. |
| 914 | */ |
| 915 | static int check_lpt_type(uint8_t **addr, int *pos, int type) |
| 916 | { |
| 917 | int node_type; |
| 918 | |
| 919 | node_type = ubifs_unpack_bits(addr, pos, UBIFS_LPT_TYPE_BITS); |
| 920 | if (node_type != type) { |
| 921 | ubifs_err("invalid type (%d) in LPT node type %d", node_type, |
| 922 | type); |
| 923 | dbg_dump_stack(); |
| 924 | return -EINVAL; |
| 925 | } |
| 926 | return 0; |
| 927 | } |
| 928 | |
| 929 | /** |
| 930 | * unpack_pnode - unpack a pnode. |
| 931 | * @c: UBIFS file-system description object |
| 932 | * @buf: buffer containing packed pnode to unpack |
| 933 | * @pnode: pnode structure to fill |
| 934 | * |
| 935 | * This function returns %0 on success and a negative error code on failure. |
| 936 | */ |
| 937 | static int unpack_pnode(struct ubifs_info *c, void *buf, |
| 938 | struct ubifs_pnode *pnode) |
| 939 | { |
| 940 | uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; |
| 941 | int i, pos = 0, err; |
| 942 | |
| 943 | err = check_lpt_type(&addr, &pos, UBIFS_LPT_PNODE); |
| 944 | if (err) |
| 945 | return err; |
| 946 | if (c->big_lpt) |
| 947 | pnode->num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits); |
| 948 | for (i = 0; i < UBIFS_LPT_FANOUT; i++) { |
| 949 | struct ubifs_lprops * const lprops = &pnode->lprops[i]; |
| 950 | |
| 951 | lprops->free = ubifs_unpack_bits(&addr, &pos, c->space_bits); |
| 952 | lprops->free <<= 3; |
| 953 | lprops->dirty = ubifs_unpack_bits(&addr, &pos, c->space_bits); |
| 954 | lprops->dirty <<= 3; |
| 955 | |
| 956 | if (ubifs_unpack_bits(&addr, &pos, 1)) |
| 957 | lprops->flags = LPROPS_INDEX; |
| 958 | else |
| 959 | lprops->flags = 0; |
| 960 | lprops->flags |= ubifs_categorize_lprops(c, lprops); |
| 961 | } |
| 962 | err = check_lpt_crc(buf, c->pnode_sz); |
| 963 | return err; |
| 964 | } |
| 965 | |
| 966 | /** |
| 967 | * unpack_nnode - unpack a nnode. |
| 968 | * @c: UBIFS file-system description object |
| 969 | * @buf: buffer containing packed nnode to unpack |
| 970 | * @nnode: nnode structure to fill |
| 971 | * |
| 972 | * This function returns %0 on success and a negative error code on failure. |
| 973 | */ |
| 974 | static int unpack_nnode(struct ubifs_info *c, void *buf, |
| 975 | struct ubifs_nnode *nnode) |
| 976 | { |
| 977 | uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; |
| 978 | int i, pos = 0, err; |
| 979 | |
| 980 | err = check_lpt_type(&addr, &pos, UBIFS_LPT_NNODE); |
| 981 | if (err) |
| 982 | return err; |
| 983 | if (c->big_lpt) |
| 984 | nnode->num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits); |
| 985 | for (i = 0; i < UBIFS_LPT_FANOUT; i++) { |
| 986 | int lnum; |
| 987 | |
| 988 | lnum = ubifs_unpack_bits(&addr, &pos, c->lpt_lnum_bits) + |
| 989 | c->lpt_first; |
| 990 | if (lnum == c->lpt_last + 1) |
| 991 | lnum = 0; |
| 992 | nnode->nbranch[i].lnum = lnum; |
| 993 | nnode->nbranch[i].offs = ubifs_unpack_bits(&addr, &pos, |
| 994 | c->lpt_offs_bits); |
| 995 | } |
| 996 | err = check_lpt_crc(buf, c->nnode_sz); |
| 997 | return err; |
| 998 | } |
| 999 | |
| 1000 | /** |
| 1001 | * unpack_ltab - unpack the LPT's own lprops table. |
| 1002 | * @c: UBIFS file-system description object |
| 1003 | * @buf: buffer from which to unpack |
| 1004 | * |
| 1005 | * This function returns %0 on success and a negative error code on failure. |
| 1006 | */ |
| 1007 | static int unpack_ltab(struct ubifs_info *c, void *buf) |
| 1008 | { |
| 1009 | uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; |
| 1010 | int i, pos = 0, err; |
| 1011 | |
| 1012 | err = check_lpt_type(&addr, &pos, UBIFS_LPT_LTAB); |
| 1013 | if (err) |
| 1014 | return err; |
| 1015 | for (i = 0; i < c->lpt_lebs; i++) { |
| 1016 | int free = ubifs_unpack_bits(&addr, &pos, c->lpt_spc_bits); |
| 1017 | int dirty = ubifs_unpack_bits(&addr, &pos, c->lpt_spc_bits); |
| 1018 | |
| 1019 | if (free < 0 || free > c->leb_size || dirty < 0 || |
| 1020 | dirty > c->leb_size || free + dirty > c->leb_size) |
| 1021 | return -EINVAL; |
| 1022 | |
| 1023 | c->ltab[i].free = free; |
| 1024 | c->ltab[i].dirty = dirty; |
| 1025 | c->ltab[i].tgc = 0; |
| 1026 | c->ltab[i].cmt = 0; |
| 1027 | } |
| 1028 | err = check_lpt_crc(buf, c->ltab_sz); |
| 1029 | return err; |
| 1030 | } |
| 1031 | |
| 1032 | /** |
| 1033 | * unpack_lsave - unpack the LPT's save table. |
| 1034 | * @c: UBIFS file-system description object |
| 1035 | * @buf: buffer from which to unpack |
| 1036 | * |
| 1037 | * This function returns %0 on success and a negative error code on failure. |
| 1038 | */ |
| 1039 | static int unpack_lsave(struct ubifs_info *c, void *buf) |
| 1040 | { |
| 1041 | uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; |
| 1042 | int i, pos = 0, err; |
| 1043 | |
| 1044 | err = check_lpt_type(&addr, &pos, UBIFS_LPT_LSAVE); |
| 1045 | if (err) |
| 1046 | return err; |
| 1047 | for (i = 0; i < c->lsave_cnt; i++) { |
| 1048 | int lnum = ubifs_unpack_bits(&addr, &pos, c->lnum_bits); |
| 1049 | |
| 1050 | if (lnum < c->main_first || lnum >= c->leb_cnt) |
| 1051 | return -EINVAL; |
| 1052 | c->lsave[i] = lnum; |
| 1053 | } |
| 1054 | err = check_lpt_crc(buf, c->lsave_sz); |
| 1055 | return err; |
| 1056 | } |
| 1057 | |
| 1058 | /** |
| 1059 | * validate_nnode - validate a nnode. |
| 1060 | * @c: UBIFS file-system description object |
| 1061 | * @nnode: nnode to validate |
| 1062 | * @parent: parent nnode (or NULL for the root nnode) |
| 1063 | * @iip: index in parent |
| 1064 | * |
| 1065 | * This function returns %0 on success and a negative error code on failure. |
| 1066 | */ |
| 1067 | static int validate_nnode(struct ubifs_info *c, struct ubifs_nnode *nnode, |
| 1068 | struct ubifs_nnode *parent, int iip) |
| 1069 | { |
| 1070 | int i, lvl, max_offs; |
| 1071 | |
| 1072 | if (c->big_lpt) { |
| 1073 | int num = calc_nnode_num_from_parent(c, parent, iip); |
| 1074 | |
| 1075 | if (nnode->num != num) |
| 1076 | return -EINVAL; |
| 1077 | } |
| 1078 | lvl = parent ? parent->level - 1 : c->lpt_hght; |
| 1079 | if (lvl < 1) |
| 1080 | return -EINVAL; |
| 1081 | if (lvl == 1) |
| 1082 | max_offs = c->leb_size - c->pnode_sz; |
| 1083 | else |
| 1084 | max_offs = c->leb_size - c->nnode_sz; |
| 1085 | for (i = 0; i < UBIFS_LPT_FANOUT; i++) { |
| 1086 | int lnum = nnode->nbranch[i].lnum; |
| 1087 | int offs = nnode->nbranch[i].offs; |
| 1088 | |
| 1089 | if (lnum == 0) { |
| 1090 | if (offs != 0) |
| 1091 | return -EINVAL; |
| 1092 | continue; |
| 1093 | } |
| 1094 | if (lnum < c->lpt_first || lnum > c->lpt_last) |
| 1095 | return -EINVAL; |
| 1096 | if (offs < 0 || offs > max_offs) |
| 1097 | return -EINVAL; |
| 1098 | } |
| 1099 | return 0; |
| 1100 | } |
| 1101 | |
| 1102 | /** |
| 1103 | * validate_pnode - validate a pnode. |
| 1104 | * @c: UBIFS file-system description object |
| 1105 | * @pnode: pnode to validate |
| 1106 | * @parent: parent nnode |
| 1107 | * @iip: index in parent |
| 1108 | * |
| 1109 | * This function returns %0 on success and a negative error code on failure. |
| 1110 | */ |
| 1111 | static int validate_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode, |
| 1112 | struct ubifs_nnode *parent, int iip) |
| 1113 | { |
| 1114 | int i; |
| 1115 | |
| 1116 | if (c->big_lpt) { |
| 1117 | int num = calc_pnode_num_from_parent(c, parent, iip); |
| 1118 | |
| 1119 | if (pnode->num != num) |
| 1120 | return -EINVAL; |
| 1121 | } |
| 1122 | for (i = 0; i < UBIFS_LPT_FANOUT; i++) { |
| 1123 | int free = pnode->lprops[i].free; |
| 1124 | int dirty = pnode->lprops[i].dirty; |
| 1125 | |
| 1126 | if (free < 0 || free > c->leb_size || free % c->min_io_size || |
| 1127 | (free & 7)) |
| 1128 | return -EINVAL; |
| 1129 | if (dirty < 0 || dirty > c->leb_size || (dirty & 7)) |
| 1130 | return -EINVAL; |
| 1131 | if (dirty + free > c->leb_size) |
| 1132 | return -EINVAL; |
| 1133 | } |
| 1134 | return 0; |
| 1135 | } |
| 1136 | |
| 1137 | /** |
| 1138 | * set_pnode_lnum - set LEB numbers on a pnode. |
| 1139 | * @c: UBIFS file-system description object |
| 1140 | * @pnode: pnode to update |
| 1141 | * |
| 1142 | * This function calculates the LEB numbers for the LEB properties it contains |
| 1143 | * based on the pnode number. |
| 1144 | */ |
| 1145 | static void set_pnode_lnum(struct ubifs_info *c, struct ubifs_pnode *pnode) |
| 1146 | { |
| 1147 | int i, lnum; |
| 1148 | |
| 1149 | lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + c->main_first; |
| 1150 | for (i = 0; i < UBIFS_LPT_FANOUT; i++) { |
| 1151 | if (lnum >= c->leb_cnt) |
| 1152 | return; |
| 1153 | pnode->lprops[i].lnum = lnum++; |
| 1154 | } |
| 1155 | } |
| 1156 | |
| 1157 | /** |
| 1158 | * ubifs_read_nnode - read a nnode from flash and link it to the tree in memory. |
| 1159 | * @c: UBIFS file-system description object |
| 1160 | * @parent: parent nnode (or NULL for the root) |
| 1161 | * @iip: index in parent |
| 1162 | * |
| 1163 | * This function returns %0 on success and a negative error code on failure. |
| 1164 | */ |
| 1165 | int ubifs_read_nnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip) |
| 1166 | { |
| 1167 | struct ubifs_nbranch *branch = NULL; |
| 1168 | struct ubifs_nnode *nnode = NULL; |
| 1169 | void *buf = c->lpt_nod_buf; |
| 1170 | int err, lnum, offs; |
| 1171 | |
| 1172 | if (parent) { |
| 1173 | branch = &parent->nbranch[iip]; |
| 1174 | lnum = branch->lnum; |
| 1175 | offs = branch->offs; |
| 1176 | } else { |
| 1177 | lnum = c->lpt_lnum; |
| 1178 | offs = c->lpt_offs; |
| 1179 | } |
| 1180 | nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_NOFS); |
| 1181 | if (!nnode) { |
| 1182 | err = -ENOMEM; |
| 1183 | goto out; |
| 1184 | } |
| 1185 | if (lnum == 0) { |
| 1186 | /* |
| 1187 | * This nnode was not written which just means that the LEB |
| 1188 | * properties in the subtree below it describe empty LEBs. We |
| 1189 | * make the nnode as though we had read it, which in fact means |
| 1190 | * doing almost nothing. |
| 1191 | */ |
| 1192 | if (c->big_lpt) |
| 1193 | nnode->num = calc_nnode_num_from_parent(c, parent, iip); |
| 1194 | } else { |
| 1195 | err = ubi_read(c->ubi, lnum, buf, offs, c->nnode_sz); |
| 1196 | if (err) |
| 1197 | goto out; |
| 1198 | err = unpack_nnode(c, buf, nnode); |
| 1199 | if (err) |
| 1200 | goto out; |
| 1201 | } |
| 1202 | err = validate_nnode(c, nnode, parent, iip); |
| 1203 | if (err) |
| 1204 | goto out; |
| 1205 | if (!c->big_lpt) |
| 1206 | nnode->num = calc_nnode_num_from_parent(c, parent, iip); |
| 1207 | if (parent) { |
| 1208 | branch->nnode = nnode; |
| 1209 | nnode->level = parent->level - 1; |
| 1210 | } else { |
| 1211 | c->nroot = nnode; |
| 1212 | nnode->level = c->lpt_hght; |
| 1213 | } |
| 1214 | nnode->parent = parent; |
| 1215 | nnode->iip = iip; |
| 1216 | return 0; |
| 1217 | |
| 1218 | out: |
| 1219 | ubifs_err("error %d reading nnode at %d:%d", err, lnum, offs); |
| 1220 | kfree(nnode); |
| 1221 | return err; |
| 1222 | } |
| 1223 | |
| 1224 | /** |
| 1225 | * read_pnode - read a pnode from flash and link it to the tree in memory. |
| 1226 | * @c: UBIFS file-system description object |
| 1227 | * @parent: parent nnode |
| 1228 | * @iip: index in parent |
| 1229 | * |
| 1230 | * This function returns %0 on success and a negative error code on failure. |
| 1231 | */ |
| 1232 | static int read_pnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip) |
| 1233 | { |
| 1234 | struct ubifs_nbranch *branch; |
| 1235 | struct ubifs_pnode *pnode = NULL; |
| 1236 | void *buf = c->lpt_nod_buf; |
| 1237 | int err, lnum, offs; |
| 1238 | |
| 1239 | branch = &parent->nbranch[iip]; |
| 1240 | lnum = branch->lnum; |
| 1241 | offs = branch->offs; |
| 1242 | pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_NOFS); |
| 1243 | if (!pnode) { |
| 1244 | err = -ENOMEM; |
| 1245 | goto out; |
| 1246 | } |
| 1247 | if (lnum == 0) { |
| 1248 | /* |
| 1249 | * This pnode was not written which just means that the LEB |
| 1250 | * properties in it describe empty LEBs. We make the pnode as |
| 1251 | * though we had read it. |
| 1252 | */ |
| 1253 | int i; |
| 1254 | |
| 1255 | if (c->big_lpt) |
| 1256 | pnode->num = calc_pnode_num_from_parent(c, parent, iip); |
| 1257 | for (i = 0; i < UBIFS_LPT_FANOUT; i++) { |
| 1258 | struct ubifs_lprops * const lprops = &pnode->lprops[i]; |
| 1259 | |
| 1260 | lprops->free = c->leb_size; |
| 1261 | lprops->flags = ubifs_categorize_lprops(c, lprops); |
| 1262 | } |
| 1263 | } else { |
| 1264 | err = ubi_read(c->ubi, lnum, buf, offs, c->pnode_sz); |
| 1265 | if (err) |
| 1266 | goto out; |
| 1267 | err = unpack_pnode(c, buf, pnode); |
| 1268 | if (err) |
| 1269 | goto out; |
| 1270 | } |
| 1271 | err = validate_pnode(c, pnode, parent, iip); |
| 1272 | if (err) |
| 1273 | goto out; |
| 1274 | if (!c->big_lpt) |
| 1275 | pnode->num = calc_pnode_num_from_parent(c, parent, iip); |
| 1276 | branch->pnode = pnode; |
| 1277 | pnode->parent = parent; |
| 1278 | pnode->iip = iip; |
| 1279 | set_pnode_lnum(c, pnode); |
| 1280 | c->pnodes_have += 1; |
| 1281 | return 0; |
| 1282 | |
| 1283 | out: |
| 1284 | ubifs_err("error %d reading pnode at %d:%d", err, lnum, offs); |
| 1285 | dbg_dump_pnode(c, pnode, parent, iip); |
| 1286 | dbg_msg("calc num: %d", calc_pnode_num_from_parent(c, parent, iip)); |
| 1287 | kfree(pnode); |
| 1288 | return err; |
| 1289 | } |
| 1290 | |
| 1291 | /** |
| 1292 | * read_ltab - read LPT's own lprops table. |
| 1293 | * @c: UBIFS file-system description object |
| 1294 | * |
| 1295 | * This function returns %0 on success and a negative error code on failure. |
| 1296 | */ |
| 1297 | static int read_ltab(struct ubifs_info *c) |
| 1298 | { |
| 1299 | int err; |
| 1300 | void *buf; |
| 1301 | |
| 1302 | buf = vmalloc(c->ltab_sz); |
| 1303 | if (!buf) |
| 1304 | return -ENOMEM; |
| 1305 | err = ubi_read(c->ubi, c->ltab_lnum, buf, c->ltab_offs, c->ltab_sz); |
| 1306 | if (err) |
| 1307 | goto out; |
| 1308 | err = unpack_ltab(c, buf); |
| 1309 | out: |
| 1310 | vfree(buf); |
| 1311 | return err; |
| 1312 | } |
| 1313 | |
| 1314 | /** |
| 1315 | * read_lsave - read LPT's save table. |
| 1316 | * @c: UBIFS file-system description object |
| 1317 | * |
| 1318 | * This function returns %0 on success and a negative error code on failure. |
| 1319 | */ |
| 1320 | static int read_lsave(struct ubifs_info *c) |
| 1321 | { |
| 1322 | int err, i; |
| 1323 | void *buf; |
| 1324 | |
| 1325 | buf = vmalloc(c->lsave_sz); |
| 1326 | if (!buf) |
| 1327 | return -ENOMEM; |
| 1328 | err = ubi_read(c->ubi, c->lsave_lnum, buf, c->lsave_offs, c->lsave_sz); |
| 1329 | if (err) |
| 1330 | goto out; |
| 1331 | err = unpack_lsave(c, buf); |
| 1332 | if (err) |
| 1333 | goto out; |
| 1334 | for (i = 0; i < c->lsave_cnt; i++) { |
| 1335 | int lnum = c->lsave[i]; |
| 1336 | |
| 1337 | /* |
| 1338 | * Due to automatic resizing, the values in the lsave table |
| 1339 | * could be beyond the volume size - just ignore them. |
| 1340 | */ |
| 1341 | if (lnum >= c->leb_cnt) |
| 1342 | continue; |
| 1343 | ubifs_lpt_lookup(c, lnum); |
| 1344 | } |
| 1345 | out: |
| 1346 | vfree(buf); |
| 1347 | return err; |
| 1348 | } |
| 1349 | |
| 1350 | /** |
| 1351 | * ubifs_get_nnode - get a nnode. |
| 1352 | * @c: UBIFS file-system description object |
| 1353 | * @parent: parent nnode (or NULL for the root) |
| 1354 | * @iip: index in parent |
| 1355 | * |
| 1356 | * This function returns a pointer to the nnode on success or a negative error |
| 1357 | * code on failure. |
| 1358 | */ |
| 1359 | struct ubifs_nnode *ubifs_get_nnode(struct ubifs_info *c, |
| 1360 | struct ubifs_nnode *parent, int iip) |
| 1361 | { |
| 1362 | struct ubifs_nbranch *branch; |
| 1363 | struct ubifs_nnode *nnode; |
| 1364 | int err; |
| 1365 | |
| 1366 | branch = &parent->nbranch[iip]; |
| 1367 | nnode = branch->nnode; |
| 1368 | if (nnode) |
| 1369 | return nnode; |
| 1370 | err = ubifs_read_nnode(c, parent, iip); |
| 1371 | if (err) |
| 1372 | return ERR_PTR(err); |
| 1373 | return branch->nnode; |
| 1374 | } |
| 1375 | |
| 1376 | /** |
| 1377 | * ubifs_get_pnode - get a pnode. |
| 1378 | * @c: UBIFS file-system description object |
| 1379 | * @parent: parent nnode |
| 1380 | * @iip: index in parent |
| 1381 | * |
| 1382 | * This function returns a pointer to the pnode on success or a negative error |
| 1383 | * code on failure. |
| 1384 | */ |
| 1385 | struct ubifs_pnode *ubifs_get_pnode(struct ubifs_info *c, |
| 1386 | struct ubifs_nnode *parent, int iip) |
| 1387 | { |
| 1388 | struct ubifs_nbranch *branch; |
| 1389 | struct ubifs_pnode *pnode; |
| 1390 | int err; |
| 1391 | |
| 1392 | branch = &parent->nbranch[iip]; |
| 1393 | pnode = branch->pnode; |
| 1394 | if (pnode) |
| 1395 | return pnode; |
| 1396 | err = read_pnode(c, parent, iip); |
| 1397 | if (err) |
| 1398 | return ERR_PTR(err); |
| 1399 | update_cats(c, branch->pnode); |
| 1400 | return branch->pnode; |
| 1401 | } |
| 1402 | |
| 1403 | /** |
| 1404 | * ubifs_lpt_lookup - lookup LEB properties in the LPT. |
| 1405 | * @c: UBIFS file-system description object |
| 1406 | * @lnum: LEB number to lookup |
| 1407 | * |
| 1408 | * This function returns a pointer to the LEB properties on success or a |
| 1409 | * negative error code on failure. |
| 1410 | */ |
| 1411 | struct ubifs_lprops *ubifs_lpt_lookup(struct ubifs_info *c, int lnum) |
| 1412 | { |
| 1413 | int err, i, h, iip, shft; |
| 1414 | struct ubifs_nnode *nnode; |
| 1415 | struct ubifs_pnode *pnode; |
| 1416 | |
| 1417 | if (!c->nroot) { |
| 1418 | err = ubifs_read_nnode(c, NULL, 0); |
| 1419 | if (err) |
| 1420 | return ERR_PTR(err); |
| 1421 | } |
| 1422 | nnode = c->nroot; |
| 1423 | i = lnum - c->main_first; |
| 1424 | shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT; |
| 1425 | for (h = 1; h < c->lpt_hght; h++) { |
| 1426 | iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1)); |
| 1427 | shft -= UBIFS_LPT_FANOUT_SHIFT; |
| 1428 | nnode = ubifs_get_nnode(c, nnode, iip); |
| 1429 | if (IS_ERR(nnode)) |
| 1430 | return ERR_PTR(PTR_ERR(nnode)); |
| 1431 | } |
| 1432 | iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1)); |
| 1433 | shft -= UBIFS_LPT_FANOUT_SHIFT; |
| 1434 | pnode = ubifs_get_pnode(c, nnode, iip); |
| 1435 | if (IS_ERR(pnode)) |
| 1436 | return ERR_PTR(PTR_ERR(pnode)); |
| 1437 | iip = (i & (UBIFS_LPT_FANOUT - 1)); |
| 1438 | dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum, |
| 1439 | pnode->lprops[iip].free, pnode->lprops[iip].dirty, |
| 1440 | pnode->lprops[iip].flags); |
| 1441 | return &pnode->lprops[iip]; |
| 1442 | } |
| 1443 | |
| 1444 | /** |
| 1445 | * dirty_cow_nnode - ensure a nnode is not being committed. |
| 1446 | * @c: UBIFS file-system description object |
| 1447 | * @nnode: nnode to check |
| 1448 | * |
| 1449 | * Returns dirtied nnode on success or negative error code on failure. |
| 1450 | */ |
| 1451 | static struct ubifs_nnode *dirty_cow_nnode(struct ubifs_info *c, |
| 1452 | struct ubifs_nnode *nnode) |
| 1453 | { |
| 1454 | struct ubifs_nnode *n; |
| 1455 | int i; |
| 1456 | |
| 1457 | if (!test_bit(COW_CNODE, &nnode->flags)) { |
| 1458 | /* nnode is not being committed */ |
| 1459 | if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) { |
| 1460 | c->dirty_nn_cnt += 1; |
| 1461 | ubifs_add_nnode_dirt(c, nnode); |
| 1462 | } |
| 1463 | return nnode; |
| 1464 | } |
| 1465 | |
| 1466 | /* nnode is being committed, so copy it */ |
| 1467 | n = kmalloc(sizeof(struct ubifs_nnode), GFP_NOFS); |
| 1468 | if (unlikely(!n)) |
| 1469 | return ERR_PTR(-ENOMEM); |
| 1470 | |
| 1471 | memcpy(n, nnode, sizeof(struct ubifs_nnode)); |
| 1472 | n->cnext = NULL; |
| 1473 | __set_bit(DIRTY_CNODE, &n->flags); |
| 1474 | __clear_bit(COW_CNODE, &n->flags); |
| 1475 | |
| 1476 | /* The children now have new parent */ |
| 1477 | for (i = 0; i < UBIFS_LPT_FANOUT; i++) { |
| 1478 | struct ubifs_nbranch *branch = &n->nbranch[i]; |
| 1479 | |
| 1480 | if (branch->cnode) |
| 1481 | branch->cnode->parent = n; |
| 1482 | } |
| 1483 | |
| 1484 | ubifs_assert(!test_bit(OBSOLETE_CNODE, &nnode->flags)); |
| 1485 | __set_bit(OBSOLETE_CNODE, &nnode->flags); |
| 1486 | |
| 1487 | c->dirty_nn_cnt += 1; |
| 1488 | ubifs_add_nnode_dirt(c, nnode); |
| 1489 | if (nnode->parent) |
| 1490 | nnode->parent->nbranch[n->iip].nnode = n; |
| 1491 | else |
| 1492 | c->nroot = n; |
| 1493 | return n; |
| 1494 | } |
| 1495 | |
| 1496 | /** |
| 1497 | * dirty_cow_pnode - ensure a pnode is not being committed. |
| 1498 | * @c: UBIFS file-system description object |
| 1499 | * @pnode: pnode to check |
| 1500 | * |
| 1501 | * Returns dirtied pnode on success or negative error code on failure. |
| 1502 | */ |
| 1503 | static struct ubifs_pnode *dirty_cow_pnode(struct ubifs_info *c, |
| 1504 | struct ubifs_pnode *pnode) |
| 1505 | { |
| 1506 | struct ubifs_pnode *p; |
| 1507 | |
| 1508 | if (!test_bit(COW_CNODE, &pnode->flags)) { |
| 1509 | /* pnode is not being committed */ |
| 1510 | if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) { |
| 1511 | c->dirty_pn_cnt += 1; |
| 1512 | add_pnode_dirt(c, pnode); |
| 1513 | } |
| 1514 | return pnode; |
| 1515 | } |
| 1516 | |
| 1517 | /* pnode is being committed, so copy it */ |
| 1518 | p = kmalloc(sizeof(struct ubifs_pnode), GFP_NOFS); |
| 1519 | if (unlikely(!p)) |
| 1520 | return ERR_PTR(-ENOMEM); |
| 1521 | |
| 1522 | memcpy(p, pnode, sizeof(struct ubifs_pnode)); |
| 1523 | p->cnext = NULL; |
| 1524 | __set_bit(DIRTY_CNODE, &p->flags); |
| 1525 | __clear_bit(COW_CNODE, &p->flags); |
| 1526 | replace_cats(c, pnode, p); |
| 1527 | |
| 1528 | ubifs_assert(!test_bit(OBSOLETE_CNODE, &pnode->flags)); |
| 1529 | __set_bit(OBSOLETE_CNODE, &pnode->flags); |
| 1530 | |
| 1531 | c->dirty_pn_cnt += 1; |
| 1532 | add_pnode_dirt(c, pnode); |
| 1533 | pnode->parent->nbranch[p->iip].pnode = p; |
| 1534 | return p; |
| 1535 | } |
| 1536 | |
| 1537 | /** |
| 1538 | * ubifs_lpt_lookup_dirty - lookup LEB properties in the LPT. |
| 1539 | * @c: UBIFS file-system description object |
| 1540 | * @lnum: LEB number to lookup |
| 1541 | * |
| 1542 | * This function returns a pointer to the LEB properties on success or a |
| 1543 | * negative error code on failure. |
| 1544 | */ |
| 1545 | struct ubifs_lprops *ubifs_lpt_lookup_dirty(struct ubifs_info *c, int lnum) |
| 1546 | { |
| 1547 | int err, i, h, iip, shft; |
| 1548 | struct ubifs_nnode *nnode; |
| 1549 | struct ubifs_pnode *pnode; |
| 1550 | |
| 1551 | if (!c->nroot) { |
| 1552 | err = ubifs_read_nnode(c, NULL, 0); |
| 1553 | if (err) |
| 1554 | return ERR_PTR(err); |
| 1555 | } |
| 1556 | nnode = c->nroot; |
| 1557 | nnode = dirty_cow_nnode(c, nnode); |
| 1558 | if (IS_ERR(nnode)) |
| 1559 | return ERR_PTR(PTR_ERR(nnode)); |
| 1560 | i = lnum - c->main_first; |
| 1561 | shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT; |
| 1562 | for (h = 1; h < c->lpt_hght; h++) { |
| 1563 | iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1)); |
| 1564 | shft -= UBIFS_LPT_FANOUT_SHIFT; |
| 1565 | nnode = ubifs_get_nnode(c, nnode, iip); |
| 1566 | if (IS_ERR(nnode)) |
| 1567 | return ERR_PTR(PTR_ERR(nnode)); |
| 1568 | nnode = dirty_cow_nnode(c, nnode); |
| 1569 | if (IS_ERR(nnode)) |
| 1570 | return ERR_PTR(PTR_ERR(nnode)); |
| 1571 | } |
| 1572 | iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1)); |
| 1573 | shft -= UBIFS_LPT_FANOUT_SHIFT; |
| 1574 | pnode = ubifs_get_pnode(c, nnode, iip); |
| 1575 | if (IS_ERR(pnode)) |
| 1576 | return ERR_PTR(PTR_ERR(pnode)); |
| 1577 | pnode = dirty_cow_pnode(c, pnode); |
| 1578 | if (IS_ERR(pnode)) |
| 1579 | return ERR_PTR(PTR_ERR(pnode)); |
| 1580 | iip = (i & (UBIFS_LPT_FANOUT - 1)); |
| 1581 | dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum, |
| 1582 | pnode->lprops[iip].free, pnode->lprops[iip].dirty, |
| 1583 | pnode->lprops[iip].flags); |
| 1584 | ubifs_assert(test_bit(DIRTY_CNODE, &pnode->flags)); |
| 1585 | return &pnode->lprops[iip]; |
| 1586 | } |
| 1587 | |
| 1588 | /** |
| 1589 | * lpt_init_rd - initialize the LPT for reading. |
| 1590 | * @c: UBIFS file-system description object |
| 1591 | * |
| 1592 | * This function returns %0 on success and a negative error code on failure. |
| 1593 | */ |
| 1594 | static int lpt_init_rd(struct ubifs_info *c) |
| 1595 | { |
| 1596 | int err, i; |
| 1597 | |
| 1598 | c->ltab = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs); |
| 1599 | if (!c->ltab) |
| 1600 | return -ENOMEM; |
| 1601 | |
| 1602 | i = max_t(int, c->nnode_sz, c->pnode_sz); |
| 1603 | c->lpt_nod_buf = kmalloc(i, GFP_KERNEL); |
| 1604 | if (!c->lpt_nod_buf) |
| 1605 | return -ENOMEM; |
| 1606 | |
| 1607 | for (i = 0; i < LPROPS_HEAP_CNT; i++) { |
| 1608 | c->lpt_heap[i].arr = kmalloc(sizeof(void *) * LPT_HEAP_SZ, |
| 1609 | GFP_KERNEL); |
| 1610 | if (!c->lpt_heap[i].arr) |
| 1611 | return -ENOMEM; |
| 1612 | c->lpt_heap[i].cnt = 0; |
| 1613 | c->lpt_heap[i].max_cnt = LPT_HEAP_SZ; |
| 1614 | } |
| 1615 | |
| 1616 | c->dirty_idx.arr = kmalloc(sizeof(void *) * LPT_HEAP_SZ, GFP_KERNEL); |
| 1617 | if (!c->dirty_idx.arr) |
| 1618 | return -ENOMEM; |
| 1619 | c->dirty_idx.cnt = 0; |
| 1620 | c->dirty_idx.max_cnt = LPT_HEAP_SZ; |
| 1621 | |
| 1622 | err = read_ltab(c); |
| 1623 | if (err) |
| 1624 | return err; |
| 1625 | |
| 1626 | dbg_lp("space_bits %d", c->space_bits); |
| 1627 | dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits); |
| 1628 | dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits); |
| 1629 | dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits); |
| 1630 | dbg_lp("pcnt_bits %d", c->pcnt_bits); |
| 1631 | dbg_lp("lnum_bits %d", c->lnum_bits); |
| 1632 | dbg_lp("pnode_sz %d", c->pnode_sz); |
| 1633 | dbg_lp("nnode_sz %d", c->nnode_sz); |
| 1634 | dbg_lp("ltab_sz %d", c->ltab_sz); |
| 1635 | dbg_lp("lsave_sz %d", c->lsave_sz); |
| 1636 | dbg_lp("lsave_cnt %d", c->lsave_cnt); |
| 1637 | dbg_lp("lpt_hght %d", c->lpt_hght); |
| 1638 | dbg_lp("big_lpt %d", c->big_lpt); |
| 1639 | dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs); |
| 1640 | dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs); |
| 1641 | dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs); |
| 1642 | if (c->big_lpt) |
| 1643 | dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs); |
| 1644 | |
| 1645 | return 0; |
| 1646 | } |
| 1647 | |
| 1648 | /** |
| 1649 | * lpt_init_wr - initialize the LPT for writing. |
| 1650 | * @c: UBIFS file-system description object |
| 1651 | * |
| 1652 | * 'lpt_init_rd()' must have been called already. |
| 1653 | * |
| 1654 | * This function returns %0 on success and a negative error code on failure. |
| 1655 | */ |
| 1656 | static int lpt_init_wr(struct ubifs_info *c) |
| 1657 | { |
| 1658 | int err, i; |
| 1659 | |
| 1660 | c->ltab_cmt = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs); |
| 1661 | if (!c->ltab_cmt) |
| 1662 | return -ENOMEM; |
| 1663 | |
| 1664 | c->lpt_buf = vmalloc(c->leb_size); |
| 1665 | if (!c->lpt_buf) |
| 1666 | return -ENOMEM; |
| 1667 | |
| 1668 | if (c->big_lpt) { |
| 1669 | c->lsave = kmalloc(sizeof(int) * c->lsave_cnt, GFP_NOFS); |
| 1670 | if (!c->lsave) |
| 1671 | return -ENOMEM; |
| 1672 | err = read_lsave(c); |
| 1673 | if (err) |
| 1674 | return err; |
| 1675 | } |
| 1676 | |
| 1677 | for (i = 0; i < c->lpt_lebs; i++) |
| 1678 | if (c->ltab[i].free == c->leb_size) { |
| 1679 | err = ubifs_leb_unmap(c, i + c->lpt_first); |
| 1680 | if (err) |
| 1681 | return err; |
| 1682 | } |
| 1683 | |
| 1684 | return 0; |
| 1685 | } |
| 1686 | |
| 1687 | /** |
| 1688 | * ubifs_lpt_init - initialize the LPT. |
| 1689 | * @c: UBIFS file-system description object |
| 1690 | * @rd: whether to initialize lpt for reading |
| 1691 | * @wr: whether to initialize lpt for writing |
| 1692 | * |
| 1693 | * For mounting 'rw', @rd and @wr are both true. For mounting 'ro', @rd is true |
| 1694 | * and @wr is false. For mounting from 'ro' to 'rw', @rd is false and @wr is |
| 1695 | * true. |
| 1696 | * |
| 1697 | * This function returns %0 on success and a negative error code on failure. |
| 1698 | */ |
| 1699 | int ubifs_lpt_init(struct ubifs_info *c, int rd, int wr) |
| 1700 | { |
| 1701 | int err; |
| 1702 | |
| 1703 | if (rd) { |
| 1704 | err = lpt_init_rd(c); |
| 1705 | if (err) |
| 1706 | return err; |
| 1707 | } |
| 1708 | |
| 1709 | if (wr) { |
| 1710 | err = lpt_init_wr(c); |
| 1711 | if (err) |
| 1712 | return err; |
| 1713 | } |
| 1714 | |
| 1715 | return 0; |
| 1716 | } |
| 1717 | |
| 1718 | /** |
| 1719 | * struct lpt_scan_node - somewhere to put nodes while we scan LPT. |
| 1720 | * @nnode: where to keep a nnode |
| 1721 | * @pnode: where to keep a pnode |
| 1722 | * @cnode: where to keep a cnode |
| 1723 | * @in_tree: is the node in the tree in memory |
| 1724 | * @ptr.nnode: pointer to the nnode (if it is an nnode) which may be here or in |
| 1725 | * the tree |
| 1726 | * @ptr.pnode: ditto for pnode |
| 1727 | * @ptr.cnode: ditto for cnode |
| 1728 | */ |
| 1729 | struct lpt_scan_node { |
| 1730 | union { |
| 1731 | struct ubifs_nnode nnode; |
| 1732 | struct ubifs_pnode pnode; |
| 1733 | struct ubifs_cnode cnode; |
| 1734 | }; |
| 1735 | int in_tree; |
| 1736 | union { |
| 1737 | struct ubifs_nnode *nnode; |
| 1738 | struct ubifs_pnode *pnode; |
| 1739 | struct ubifs_cnode *cnode; |
| 1740 | } ptr; |
| 1741 | }; |
| 1742 | |
| 1743 | /** |
| 1744 | * scan_get_nnode - for the scan, get a nnode from either the tree or flash. |
| 1745 | * @c: the UBIFS file-system description object |
| 1746 | * @path: where to put the nnode |
| 1747 | * @parent: parent of the nnode |
| 1748 | * @iip: index in parent of the nnode |
| 1749 | * |
| 1750 | * This function returns a pointer to the nnode on success or a negative error |
| 1751 | * code on failure. |
| 1752 | */ |
| 1753 | static struct ubifs_nnode *scan_get_nnode(struct ubifs_info *c, |
| 1754 | struct lpt_scan_node *path, |
| 1755 | struct ubifs_nnode *parent, int iip) |
| 1756 | { |
| 1757 | struct ubifs_nbranch *branch; |
| 1758 | struct ubifs_nnode *nnode; |
| 1759 | void *buf = c->lpt_nod_buf; |
| 1760 | int err; |
| 1761 | |
| 1762 | branch = &parent->nbranch[iip]; |
| 1763 | nnode = branch->nnode; |
| 1764 | if (nnode) { |
| 1765 | path->in_tree = 1; |
| 1766 | path->ptr.nnode = nnode; |
| 1767 | return nnode; |
| 1768 | } |
| 1769 | nnode = &path->nnode; |
| 1770 | path->in_tree = 0; |
| 1771 | path->ptr.nnode = nnode; |
| 1772 | memset(nnode, 0, sizeof(struct ubifs_nnode)); |
| 1773 | if (branch->lnum == 0) { |
| 1774 | /* |
| 1775 | * This nnode was not written which just means that the LEB |
| 1776 | * properties in the subtree below it describe empty LEBs. We |
| 1777 | * make the nnode as though we had read it, which in fact means |
| 1778 | * doing almost nothing. |
| 1779 | */ |
| 1780 | if (c->big_lpt) |
| 1781 | nnode->num = calc_nnode_num_from_parent(c, parent, iip); |
| 1782 | } else { |
| 1783 | err = ubi_read(c->ubi, branch->lnum, buf, branch->offs, |
| 1784 | c->nnode_sz); |
| 1785 | if (err) |
| 1786 | return ERR_PTR(err); |
| 1787 | err = unpack_nnode(c, buf, nnode); |
| 1788 | if (err) |
| 1789 | return ERR_PTR(err); |
| 1790 | } |
| 1791 | err = validate_nnode(c, nnode, parent, iip); |
| 1792 | if (err) |
| 1793 | return ERR_PTR(err); |
| 1794 | if (!c->big_lpt) |
| 1795 | nnode->num = calc_nnode_num_from_parent(c, parent, iip); |
| 1796 | nnode->level = parent->level - 1; |
| 1797 | nnode->parent = parent; |
| 1798 | nnode->iip = iip; |
| 1799 | return nnode; |
| 1800 | } |
| 1801 | |
| 1802 | /** |
| 1803 | * scan_get_pnode - for the scan, get a pnode from either the tree or flash. |
| 1804 | * @c: the UBIFS file-system description object |
| 1805 | * @path: where to put the pnode |
| 1806 | * @parent: parent of the pnode |
| 1807 | * @iip: index in parent of the pnode |
| 1808 | * |
| 1809 | * This function returns a pointer to the pnode on success or a negative error |
| 1810 | * code on failure. |
| 1811 | */ |
| 1812 | static struct ubifs_pnode *scan_get_pnode(struct ubifs_info *c, |
| 1813 | struct lpt_scan_node *path, |
| 1814 | struct ubifs_nnode *parent, int iip) |
| 1815 | { |
| 1816 | struct ubifs_nbranch *branch; |
| 1817 | struct ubifs_pnode *pnode; |
| 1818 | void *buf = c->lpt_nod_buf; |
| 1819 | int err; |
| 1820 | |
| 1821 | branch = &parent->nbranch[iip]; |
| 1822 | pnode = branch->pnode; |
| 1823 | if (pnode) { |
| 1824 | path->in_tree = 1; |
| 1825 | path->ptr.pnode = pnode; |
| 1826 | return pnode; |
| 1827 | } |
| 1828 | pnode = &path->pnode; |
| 1829 | path->in_tree = 0; |
| 1830 | path->ptr.pnode = pnode; |
| 1831 | memset(pnode, 0, sizeof(struct ubifs_pnode)); |
| 1832 | if (branch->lnum == 0) { |
| 1833 | /* |
| 1834 | * This pnode was not written which just means that the LEB |
| 1835 | * properties in it describe empty LEBs. We make the pnode as |
| 1836 | * though we had read it. |
| 1837 | */ |
| 1838 | int i; |
| 1839 | |
| 1840 | if (c->big_lpt) |
| 1841 | pnode->num = calc_pnode_num_from_parent(c, parent, iip); |
| 1842 | for (i = 0; i < UBIFS_LPT_FANOUT; i++) { |
| 1843 | struct ubifs_lprops * const lprops = &pnode->lprops[i]; |
| 1844 | |
| 1845 | lprops->free = c->leb_size; |
| 1846 | lprops->flags = ubifs_categorize_lprops(c, lprops); |
| 1847 | } |
| 1848 | } else { |
| 1849 | ubifs_assert(branch->lnum >= c->lpt_first && |
| 1850 | branch->lnum <= c->lpt_last); |
| 1851 | ubifs_assert(branch->offs >= 0 && branch->offs < c->leb_size); |
| 1852 | err = ubi_read(c->ubi, branch->lnum, buf, branch->offs, |
| 1853 | c->pnode_sz); |
| 1854 | if (err) |
| 1855 | return ERR_PTR(err); |
| 1856 | err = unpack_pnode(c, buf, pnode); |
| 1857 | if (err) |
| 1858 | return ERR_PTR(err); |
| 1859 | } |
| 1860 | err = validate_pnode(c, pnode, parent, iip); |
| 1861 | if (err) |
| 1862 | return ERR_PTR(err); |
| 1863 | if (!c->big_lpt) |
| 1864 | pnode->num = calc_pnode_num_from_parent(c, parent, iip); |
| 1865 | pnode->parent = parent; |
| 1866 | pnode->iip = iip; |
| 1867 | set_pnode_lnum(c, pnode); |
| 1868 | return pnode; |
| 1869 | } |
| 1870 | |
| 1871 | /** |
| 1872 | * ubifs_lpt_scan_nolock - scan the LPT. |
| 1873 | * @c: the UBIFS file-system description object |
| 1874 | * @start_lnum: LEB number from which to start scanning |
| 1875 | * @end_lnum: LEB number at which to stop scanning |
| 1876 | * @scan_cb: callback function called for each lprops |
| 1877 | * @data: data to be passed to the callback function |
| 1878 | * |
| 1879 | * This function returns %0 on success and a negative error code on failure. |
| 1880 | */ |
| 1881 | int ubifs_lpt_scan_nolock(struct ubifs_info *c, int start_lnum, int end_lnum, |
| 1882 | ubifs_lpt_scan_callback scan_cb, void *data) |
| 1883 | { |
| 1884 | int err = 0, i, h, iip, shft; |
| 1885 | struct ubifs_nnode *nnode; |
| 1886 | struct ubifs_pnode *pnode; |
| 1887 | struct lpt_scan_node *path; |
| 1888 | |
| 1889 | if (start_lnum == -1) { |
| 1890 | start_lnum = end_lnum + 1; |
| 1891 | if (start_lnum >= c->leb_cnt) |
| 1892 | start_lnum = c->main_first; |
| 1893 | } |
| 1894 | |
| 1895 | ubifs_assert(start_lnum >= c->main_first && start_lnum < c->leb_cnt); |
| 1896 | ubifs_assert(end_lnum >= c->main_first && end_lnum < c->leb_cnt); |
| 1897 | |
| 1898 | if (!c->nroot) { |
| 1899 | err = ubifs_read_nnode(c, NULL, 0); |
| 1900 | if (err) |
| 1901 | return err; |
| 1902 | } |
| 1903 | |
| 1904 | path = kmalloc(sizeof(struct lpt_scan_node) * (c->lpt_hght + 1), |
| 1905 | GFP_NOFS); |
| 1906 | if (!path) |
| 1907 | return -ENOMEM; |
| 1908 | |
| 1909 | path[0].ptr.nnode = c->nroot; |
| 1910 | path[0].in_tree = 1; |
| 1911 | again: |
| 1912 | /* Descend to the pnode containing start_lnum */ |
| 1913 | nnode = c->nroot; |
| 1914 | i = start_lnum - c->main_first; |
| 1915 | shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT; |
| 1916 | for (h = 1; h < c->lpt_hght; h++) { |
| 1917 | iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1)); |
| 1918 | shft -= UBIFS_LPT_FANOUT_SHIFT; |
| 1919 | nnode = scan_get_nnode(c, path + h, nnode, iip); |
| 1920 | if (IS_ERR(nnode)) { |
| 1921 | err = PTR_ERR(nnode); |
| 1922 | goto out; |
| 1923 | } |
| 1924 | } |
| 1925 | iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1)); |
| 1926 | shft -= UBIFS_LPT_FANOUT_SHIFT; |
| 1927 | pnode = scan_get_pnode(c, path + h, nnode, iip); |
| 1928 | if (IS_ERR(pnode)) { |
| 1929 | err = PTR_ERR(pnode); |
| 1930 | goto out; |
| 1931 | } |
| 1932 | iip = (i & (UBIFS_LPT_FANOUT - 1)); |
| 1933 | |
| 1934 | /* Loop for each lprops */ |
| 1935 | while (1) { |
| 1936 | struct ubifs_lprops *lprops = &pnode->lprops[iip]; |
| 1937 | int ret, lnum = lprops->lnum; |
| 1938 | |
| 1939 | ret = scan_cb(c, lprops, path[h].in_tree, data); |
| 1940 | if (ret < 0) { |
| 1941 | err = ret; |
| 1942 | goto out; |
| 1943 | } |
| 1944 | if (ret & LPT_SCAN_ADD) { |
| 1945 | /* Add all the nodes in path to the tree in memory */ |
| 1946 | for (h = 1; h < c->lpt_hght; h++) { |
| 1947 | const size_t sz = sizeof(struct ubifs_nnode); |
| 1948 | struct ubifs_nnode *parent; |
| 1949 | |
| 1950 | if (path[h].in_tree) |
| 1951 | continue; |
| 1952 | nnode = kmalloc(sz, GFP_NOFS); |
| 1953 | if (!nnode) { |
| 1954 | err = -ENOMEM; |
| 1955 | goto out; |
| 1956 | } |
| 1957 | memcpy(nnode, &path[h].nnode, sz); |
| 1958 | parent = nnode->parent; |
| 1959 | parent->nbranch[nnode->iip].nnode = nnode; |
| 1960 | path[h].ptr.nnode = nnode; |
| 1961 | path[h].in_tree = 1; |
| 1962 | path[h + 1].cnode.parent = nnode; |
| 1963 | } |
| 1964 | if (path[h].in_tree) |
| 1965 | ubifs_ensure_cat(c, lprops); |
| 1966 | else { |
| 1967 | const size_t sz = sizeof(struct ubifs_pnode); |
| 1968 | struct ubifs_nnode *parent; |
| 1969 | |
| 1970 | pnode = kmalloc(sz, GFP_NOFS); |
| 1971 | if (!pnode) { |
| 1972 | err = -ENOMEM; |
| 1973 | goto out; |
| 1974 | } |
| 1975 | memcpy(pnode, &path[h].pnode, sz); |
| 1976 | parent = pnode->parent; |
| 1977 | parent->nbranch[pnode->iip].pnode = pnode; |
| 1978 | path[h].ptr.pnode = pnode; |
| 1979 | path[h].in_tree = 1; |
| 1980 | update_cats(c, pnode); |
| 1981 | c->pnodes_have += 1; |
| 1982 | } |
| 1983 | err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *) |
| 1984 | c->nroot, 0, 0); |
| 1985 | if (err) |
| 1986 | goto out; |
| 1987 | err = dbg_check_cats(c); |
| 1988 | if (err) |
| 1989 | goto out; |
| 1990 | } |
| 1991 | if (ret & LPT_SCAN_STOP) { |
| 1992 | err = 0; |
| 1993 | break; |
| 1994 | } |
| 1995 | /* Get the next lprops */ |
| 1996 | if (lnum == end_lnum) { |
| 1997 | /* |
| 1998 | * We got to the end without finding what we were |
| 1999 | * looking for |
| 2000 | */ |
| 2001 | err = -ENOSPC; |
| 2002 | goto out; |
| 2003 | } |
| 2004 | if (lnum + 1 >= c->leb_cnt) { |
| 2005 | /* Wrap-around to the beginning */ |
| 2006 | start_lnum = c->main_first; |
| 2007 | goto again; |
| 2008 | } |
| 2009 | if (iip + 1 < UBIFS_LPT_FANOUT) { |
| 2010 | /* Next lprops is in the same pnode */ |
| 2011 | iip += 1; |
| 2012 | continue; |
| 2013 | } |
| 2014 | /* We need to get the next pnode. Go up until we can go right */ |
| 2015 | iip = pnode->iip; |
| 2016 | while (1) { |
| 2017 | h -= 1; |
| 2018 | ubifs_assert(h >= 0); |
| 2019 | nnode = path[h].ptr.nnode; |
| 2020 | if (iip + 1 < UBIFS_LPT_FANOUT) |
| 2021 | break; |
| 2022 | iip = nnode->iip; |
| 2023 | } |
| 2024 | /* Go right */ |
| 2025 | iip += 1; |
| 2026 | /* Descend to the pnode */ |
| 2027 | h += 1; |
| 2028 | for (; h < c->lpt_hght; h++) { |
| 2029 | nnode = scan_get_nnode(c, path + h, nnode, iip); |
| 2030 | if (IS_ERR(nnode)) { |
| 2031 | err = PTR_ERR(nnode); |
| 2032 | goto out; |
| 2033 | } |
| 2034 | iip = 0; |
| 2035 | } |
| 2036 | pnode = scan_get_pnode(c, path + h, nnode, iip); |
| 2037 | if (IS_ERR(pnode)) { |
| 2038 | err = PTR_ERR(pnode); |
| 2039 | goto out; |
| 2040 | } |
| 2041 | iip = 0; |
| 2042 | } |
| 2043 | out: |
| 2044 | kfree(path); |
| 2045 | return err; |
| 2046 | } |
| 2047 | |
| 2048 | #ifdef CONFIG_UBIFS_FS_DEBUG |
| 2049 | |
| 2050 | /** |
| 2051 | * dbg_chk_pnode - check a pnode. |
| 2052 | * @c: the UBIFS file-system description object |
| 2053 | * @pnode: pnode to check |
| 2054 | * @col: pnode column |
| 2055 | * |
| 2056 | * This function returns %0 on success and a negative error code on failure. |
| 2057 | */ |
| 2058 | static int dbg_chk_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode, |
| 2059 | int col) |
| 2060 | { |
| 2061 | int i; |
| 2062 | |
| 2063 | if (pnode->num != col) { |
| 2064 | dbg_err("pnode num %d expected %d parent num %d iip %d", |
| 2065 | pnode->num, col, pnode->parent->num, pnode->iip); |
| 2066 | return -EINVAL; |
| 2067 | } |
| 2068 | for (i = 0; i < UBIFS_LPT_FANOUT; i++) { |
| 2069 | struct ubifs_lprops *lp, *lprops = &pnode->lprops[i]; |
| 2070 | int lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + i + |
| 2071 | c->main_first; |
| 2072 | int found, cat = lprops->flags & LPROPS_CAT_MASK; |
| 2073 | struct ubifs_lpt_heap *heap; |
| 2074 | struct list_head *list = NULL; |
| 2075 | |
| 2076 | if (lnum >= c->leb_cnt) |
| 2077 | continue; |
| 2078 | if (lprops->lnum != lnum) { |
| 2079 | dbg_err("bad LEB number %d expected %d", |
| 2080 | lprops->lnum, lnum); |
| 2081 | return -EINVAL; |
| 2082 | } |
| 2083 | if (lprops->flags & LPROPS_TAKEN) { |
| 2084 | if (cat != LPROPS_UNCAT) { |
| 2085 | dbg_err("LEB %d taken but not uncat %d", |
| 2086 | lprops->lnum, cat); |
| 2087 | return -EINVAL; |
| 2088 | } |
| 2089 | continue; |
| 2090 | } |
| 2091 | if (lprops->flags & LPROPS_INDEX) { |
| 2092 | switch (cat) { |
| 2093 | case LPROPS_UNCAT: |
| 2094 | case LPROPS_DIRTY_IDX: |
| 2095 | case LPROPS_FRDI_IDX: |
| 2096 | break; |
| 2097 | default: |
| 2098 | dbg_err("LEB %d index but cat %d", |
| 2099 | lprops->lnum, cat); |
| 2100 | return -EINVAL; |
| 2101 | } |
| 2102 | } else { |
| 2103 | switch (cat) { |
| 2104 | case LPROPS_UNCAT: |
| 2105 | case LPROPS_DIRTY: |
| 2106 | case LPROPS_FREE: |
| 2107 | case LPROPS_EMPTY: |
| 2108 | case LPROPS_FREEABLE: |
| 2109 | break; |
| 2110 | default: |
| 2111 | dbg_err("LEB %d not index but cat %d", |
| 2112 | lprops->lnum, cat); |
| 2113 | return -EINVAL; |
| 2114 | } |
| 2115 | } |
| 2116 | switch (cat) { |
| 2117 | case LPROPS_UNCAT: |
| 2118 | list = &c->uncat_list; |
| 2119 | break; |
| 2120 | case LPROPS_EMPTY: |
| 2121 | list = &c->empty_list; |
| 2122 | break; |
| 2123 | case LPROPS_FREEABLE: |
| 2124 | list = &c->freeable_list; |
| 2125 | break; |
| 2126 | case LPROPS_FRDI_IDX: |
| 2127 | list = &c->frdi_idx_list; |
| 2128 | break; |
| 2129 | } |
| 2130 | found = 0; |
| 2131 | switch (cat) { |
| 2132 | case LPROPS_DIRTY: |
| 2133 | case LPROPS_DIRTY_IDX: |
| 2134 | case LPROPS_FREE: |
| 2135 | heap = &c->lpt_heap[cat - 1]; |
| 2136 | if (lprops->hpos < heap->cnt && |
| 2137 | heap->arr[lprops->hpos] == lprops) |
| 2138 | found = 1; |
| 2139 | break; |
| 2140 | case LPROPS_UNCAT: |
| 2141 | case LPROPS_EMPTY: |
| 2142 | case LPROPS_FREEABLE: |
| 2143 | case LPROPS_FRDI_IDX: |
| 2144 | list_for_each_entry(lp, list, list) |
| 2145 | if (lprops == lp) { |
| 2146 | found = 1; |
| 2147 | break; |
| 2148 | } |
| 2149 | break; |
| 2150 | } |
| 2151 | if (!found) { |
| 2152 | dbg_err("LEB %d cat %d not found in cat heap/list", |
| 2153 | lprops->lnum, cat); |
| 2154 | return -EINVAL; |
| 2155 | } |
| 2156 | switch (cat) { |
| 2157 | case LPROPS_EMPTY: |
| 2158 | if (lprops->free != c->leb_size) { |
| 2159 | dbg_err("LEB %d cat %d free %d dirty %d", |
| 2160 | lprops->lnum, cat, lprops->free, |
| 2161 | lprops->dirty); |
| 2162 | return -EINVAL; |
| 2163 | } |
| 2164 | case LPROPS_FREEABLE: |
| 2165 | case LPROPS_FRDI_IDX: |
| 2166 | if (lprops->free + lprops->dirty != c->leb_size) { |
| 2167 | dbg_err("LEB %d cat %d free %d dirty %d", |
| 2168 | lprops->lnum, cat, lprops->free, |
| 2169 | lprops->dirty); |
| 2170 | return -EINVAL; |
| 2171 | } |
| 2172 | } |
| 2173 | } |
| 2174 | return 0; |
| 2175 | } |
| 2176 | |
| 2177 | /** |
| 2178 | * dbg_check_lpt_nodes - check nnodes and pnodes. |
| 2179 | * @c: the UBIFS file-system description object |
| 2180 | * @cnode: next cnode (nnode or pnode) to check |
| 2181 | * @row: row of cnode (root is zero) |
| 2182 | * @col: column of cnode (leftmost is zero) |
| 2183 | * |
| 2184 | * This function returns %0 on success and a negative error code on failure. |
| 2185 | */ |
| 2186 | int dbg_check_lpt_nodes(struct ubifs_info *c, struct ubifs_cnode *cnode, |
| 2187 | int row, int col) |
| 2188 | { |
| 2189 | struct ubifs_nnode *nnode, *nn; |
| 2190 | struct ubifs_cnode *cn; |
| 2191 | int num, iip = 0, err; |
| 2192 | |
| 2193 | if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS)) |
| 2194 | return 0; |
| 2195 | |
| 2196 | while (cnode) { |
| 2197 | ubifs_assert(row >= 0); |
| 2198 | nnode = cnode->parent; |
| 2199 | if (cnode->level) { |
| 2200 | /* cnode is a nnode */ |
| 2201 | num = calc_nnode_num(row, col); |
| 2202 | if (cnode->num != num) { |
| 2203 | dbg_err("nnode num %d expected %d " |
| 2204 | "parent num %d iip %d", cnode->num, num, |
| 2205 | (nnode ? nnode->num : 0), cnode->iip); |
| 2206 | return -EINVAL; |
| 2207 | } |
| 2208 | nn = (struct ubifs_nnode *)cnode; |
| 2209 | while (iip < UBIFS_LPT_FANOUT) { |
| 2210 | cn = nn->nbranch[iip].cnode; |
| 2211 | if (cn) { |
| 2212 | /* Go down */ |
| 2213 | row += 1; |
| 2214 | col <<= UBIFS_LPT_FANOUT_SHIFT; |
| 2215 | col += iip; |
| 2216 | iip = 0; |
| 2217 | cnode = cn; |
| 2218 | break; |
| 2219 | } |
| 2220 | /* Go right */ |
| 2221 | iip += 1; |
| 2222 | } |
| 2223 | if (iip < UBIFS_LPT_FANOUT) |
| 2224 | continue; |
| 2225 | } else { |
| 2226 | struct ubifs_pnode *pnode; |
| 2227 | |
| 2228 | /* cnode is a pnode */ |
| 2229 | pnode = (struct ubifs_pnode *)cnode; |
| 2230 | err = dbg_chk_pnode(c, pnode, col); |
| 2231 | if (err) |
| 2232 | return err; |
| 2233 | } |
| 2234 | /* Go up and to the right */ |
| 2235 | row -= 1; |
| 2236 | col >>= UBIFS_LPT_FANOUT_SHIFT; |
| 2237 | iip = cnode->iip + 1; |
| 2238 | cnode = (struct ubifs_cnode *)nnode; |
| 2239 | } |
| 2240 | return 0; |
| 2241 | } |
| 2242 | |
| 2243 | #endif /* CONFIG_UBIFS_FS_DEBUG */ |