blob: 5368cedfb5309dbffe7528805c13b180e197cc2a [file] [log] [blame]
Changbin Du1cd7af52019-05-08 23:21:31 +08001.. SPDX-License-Identifier: GPL-2.0
2.. include:: <isonum.txt>
3
4===========================================
Babu Mogera6f771c2018-11-21 20:28:47 +00005User Interface for Resource Control feature
Changbin Du1cd7af52019-05-08 23:21:31 +08006===========================================
7
8:Copyright: |copy| 2016 Intel Corporation
9:Authors: - Fenghua Yu <fenghua.yu@intel.com>
10 - Tony Luck <tony.luck@intel.com>
11 - Vikas Shivappa <vikas.shivappa@intel.com>
12
Babu Mogera6f771c2018-11-21 20:28:47 +000013
14Intel refers to this feature as Intel Resource Director Technology(Intel(R) RDT).
15AMD refers to this feature as AMD Platform Quality of Service(AMD QoS).
Fenghua Yuf20e5782016-10-28 15:04:40 -070016
Johannes Weinere6d42932019-01-29 17:44:36 -050017This feature is enabled by the CONFIG_X86_CPU_RESCTRL and the x86 /proc/cpuinfo
Babu Mogera6f771c2018-11-21 20:28:47 +000018flag bits:
Fenghua Yuf20e5782016-10-28 15:04:40 -070019
Changbin Du1cd7af52019-05-08 23:21:31 +080020============================================= ================================
21RDT (Resource Director Technology) Allocation "rdt_a"
22CAT (Cache Allocation Technology) "cat_l3", "cat_l2"
23CDP (Code and Data Prioritization) "cdp_l3", "cdp_l2"
24CQM (Cache QoS Monitoring) "cqm_llc", "cqm_occup_llc"
25MBM (Memory Bandwidth Monitoring) "cqm_mbm_total", "cqm_mbm_local"
26MBA (Memory Bandwidth Allocation) "mba"
27============================================= ================================
28
29To use the feature mount the file system::
Fenghua Yuf20e5782016-10-28 15:04:40 -070030
Vikas Shivappad6c64a42018-04-20 15:36:16 -070031 # mount -t resctrl resctrl [-o cdp[,cdpl2][,mba_MBps]] /sys/fs/resctrl
Fenghua Yuf20e5782016-10-28 15:04:40 -070032
33mount options are:
34
Changbin Du1cd7af52019-05-08 23:21:31 +080035"cdp":
36 Enable code/data prioritization in L3 cache allocations.
37"cdpl2":
38 Enable code/data prioritization in L2 cache allocations.
39"mba_MBps":
40 Enable the MBA Software Controller(mba_sc) to specify MBA
41 bandwidth in MBps
Fenghua Yuaa55d5a2017-12-20 14:57:20 -080042
James Morse57794aa2019-06-07 16:14:09 +010043L2 and L3 CDP are controlled separately.
Fenghua Yuf20e5782016-10-28 15:04:40 -070044
Vikas Shivappa1640ae92017-07-25 14:14:21 -070045RDT features are orthogonal. A particular system may support only
Reinette Chatree17e7332018-06-22 15:42:07 -070046monitoring, only control, or both monitoring and control. Cache
47pseudo-locking is a unique way of using cache control to "pin" or
48"lock" data in the cache. Details can be found in
49"Cache Pseudo-Locking".
50
Vikas Shivappa1640ae92017-07-25 14:14:21 -070051
52The mount succeeds if either of allocation or monitoring is present, but
53only those files and directories supported by the system will be created.
54For more details on the behavior of the interface during monitoring
55and allocation, see the "Resource alloc and monitor groups" section.
Fenghua Yuf20e5782016-10-28 15:04:40 -070056
Thomas Gleixner458b0d6e2016-11-07 11:58:12 +010057Info directory
Changbin Du1cd7af52019-05-08 23:21:31 +080058==============
Thomas Gleixner458b0d6e2016-11-07 11:58:12 +010059
60The 'info' directory contains information about the enabled
61resources. Each resource has its own subdirectory. The subdirectory
Vikas Shivappaa9cad3d2017-04-07 17:33:50 -070062names reflect the resource names.
Vikas Shivappa1640ae92017-07-25 14:14:21 -070063
64Each subdirectory contains the following files with respect to
65allocation:
66
67Cache resource(L3/L2) subdirectory contains the following files
68related to allocation:
Thomas Gleixner458b0d6e2016-11-07 11:58:12 +010069
Changbin Du1cd7af52019-05-08 23:21:31 +080070"num_closids":
71 The number of CLOSIDs which are valid for this
72 resource. The kernel uses the smallest number of
73 CLOSIDs of all enabled resources as limit.
74"cbm_mask":
75 The bitmask which is valid for this resource.
76 This mask is equivalent to 100%.
77"min_cbm_bits":
78 The minimum number of consecutive bits which
79 must be set when writing a mask.
Thomas Gleixner458b0d6e2016-11-07 11:58:12 +010080
Changbin Du1cd7af52019-05-08 23:21:31 +080081"shareable_bits":
82 Bitmask of shareable resource with other executing
83 entities (e.g. I/O). User can use this when
84 setting up exclusive cache partitions. Note that
85 some platforms support devices that have their
86 own settings for cache use which can over-ride
87 these bits.
88"bit_usage":
89 Annotated capacity bitmasks showing how all
90 instances of the resource are used. The legend is:
Thomas Gleixner458b0d6e2016-11-07 11:58:12 +010091
Changbin Du1cd7af52019-05-08 23:21:31 +080092 "0":
93 Corresponding region is unused. When the system's
Reinette Chatrecba1aab2018-06-22 15:41:53 -070094 resources have been allocated and a "0" is found
95 in "bit_usage" it is a sign that resources are
96 wasted.
Changbin Du1cd7af52019-05-08 23:21:31 +080097
98 "H":
99 Corresponding region is used by hardware only
Reinette Chatrecba1aab2018-06-22 15:41:53 -0700100 but available for software use. If a resource
101 has bits set in "shareable_bits" but not all
102 of these bits appear in the resource groups'
103 schematas then the bits appearing in
104 "shareable_bits" but no resource group will
105 be marked as "H".
Changbin Du1cd7af52019-05-08 23:21:31 +0800106 "X":
107 Corresponding region is available for sharing and
Reinette Chatrecba1aab2018-06-22 15:41:53 -0700108 used by hardware and software. These are the
109 bits that appear in "shareable_bits" as
110 well as a resource group's allocation.
Changbin Du1cd7af52019-05-08 23:21:31 +0800111 "S":
112 Corresponding region is used by software
Reinette Chatrecba1aab2018-06-22 15:41:53 -0700113 and available for sharing.
Changbin Du1cd7af52019-05-08 23:21:31 +0800114 "E":
115 Corresponding region is used exclusively by
Reinette Chatrecba1aab2018-06-22 15:41:53 -0700116 one resource group. No sharing allowed.
Changbin Du1cd7af52019-05-08 23:21:31 +0800117 "P":
118 Corresponding region is pseudo-locked. No
Reinette Chatree17e7332018-06-22 15:42:07 -0700119 sharing allowed.
Fenghua Yu0dd2d742017-07-25 15:39:04 -0700120
James Morse57794aa2019-06-07 16:14:09 +0100121Memory bandwidth(MB) subdirectory contains the following files
Vikas Shivappa1640ae92017-07-25 14:14:21 -0700122with respect to allocation:
Vikas Shivappaa9cad3d2017-04-07 17:33:50 -0700123
Changbin Du1cd7af52019-05-08 23:21:31 +0800124"min_bandwidth":
125 The minimum memory bandwidth percentage which
126 user can request.
Vikas Shivappaa9cad3d2017-04-07 17:33:50 -0700127
Changbin Du1cd7af52019-05-08 23:21:31 +0800128"bandwidth_gran":
129 The granularity in which the memory bandwidth
130 percentage is allocated. The allocated
131 b/w percentage is rounded off to the next
132 control step available on the hardware. The
133 available bandwidth control steps are:
134 min_bandwidth + N * bandwidth_gran.
Vikas Shivappaa9cad3d2017-04-07 17:33:50 -0700135
Changbin Du1cd7af52019-05-08 23:21:31 +0800136"delay_linear":
137 Indicates if the delay scale is linear or
138 non-linear. This field is purely informational
139 only.
Thomas Gleixner458b0d6e2016-11-07 11:58:12 +0100140
Vikas Shivappa1640ae92017-07-25 14:14:21 -0700141If RDT monitoring is available there will be an "L3_MON" directory
142with the following files:
143
Changbin Du1cd7af52019-05-08 23:21:31 +0800144"num_rmids":
145 The number of RMIDs available. This is the
146 upper bound for how many "CTRL_MON" + "MON"
147 groups can be created.
Vikas Shivappa1640ae92017-07-25 14:14:21 -0700148
Changbin Du1cd7af52019-05-08 23:21:31 +0800149"mon_features":
150 Lists the monitoring events if
151 monitoring is enabled for the resource.
Vikas Shivappa1640ae92017-07-25 14:14:21 -0700152
153"max_threshold_occupancy":
Changbin Du1cd7af52019-05-08 23:21:31 +0800154 Read/write file provides the largest value (in
155 bytes) at which a previously used LLC_occupancy
156 counter can be considered for re-use.
Vikas Shivappa1640ae92017-07-25 14:14:21 -0700157
Tony Luck165d3ad2017-09-25 16:39:38 -0700158Finally, in the top level of the "info" directory there is a file
159named "last_cmd_status". This is reset with every "command" issued
160via the file system (making new directories or writing to any of the
161control files). If the command was successful, it will read as "ok".
162If the command failed, it will provide more information that can be
163conveyed in the error returns from file operations. E.g.
Changbin Du1cd7af52019-05-08 23:21:31 +0800164::
Tony Luck165d3ad2017-09-25 16:39:38 -0700165
166 # echo L3:0=f7 > schemata
167 bash: echo: write error: Invalid argument
168 # cat info/last_cmd_status
169 mask f7 has non-consecutive 1-bits
Vikas Shivappa1640ae92017-07-25 14:14:21 -0700170
171Resource alloc and monitor groups
Changbin Du1cd7af52019-05-08 23:21:31 +0800172=================================
Vikas Shivappa1640ae92017-07-25 14:14:21 -0700173
Fenghua Yuf20e5782016-10-28 15:04:40 -0700174Resource groups are represented as directories in the resctrl file
Vikas Shivappa1640ae92017-07-25 14:14:21 -0700175system. The default group is the root directory which, immediately
176after mounting, owns all the tasks and cpus in the system and can make
177full use of all resources.
Fenghua Yuf20e5782016-10-28 15:04:40 -0700178
Vikas Shivappa1640ae92017-07-25 14:14:21 -0700179On a system with RDT control features additional directories can be
180created in the root directory that specify different amounts of each
181resource (see "schemata" below). The root and these additional top level
182directories are referred to as "CTRL_MON" groups below.
Fenghua Yuf20e5782016-10-28 15:04:40 -0700183
Vikas Shivappa1640ae92017-07-25 14:14:21 -0700184On a system with RDT monitoring the root directory and other top level
185directories contain a directory named "mon_groups" in which additional
186directories can be created to monitor subsets of tasks in the CTRL_MON
187group that is their ancestor. These are called "MON" groups in the rest
188of this document.
Fenghua Yuf20e5782016-10-28 15:04:40 -0700189
Vikas Shivappa1640ae92017-07-25 14:14:21 -0700190Removing a directory will move all tasks and cpus owned by the group it
191represents to the parent. Removing one of the created CTRL_MON groups
192will automatically remove all MON groups below it.
Fenghua Yuf20e5782016-10-28 15:04:40 -0700193
Vikas Shivappa1640ae92017-07-25 14:14:21 -0700194All groups contain the following files:
Jiri Olsa4ffa3c92017-04-10 16:52:32 +0200195
Vikas Shivappa1640ae92017-07-25 14:14:21 -0700196"tasks":
197 Reading this file shows the list of all tasks that belong to
198 this group. Writing a task id to the file will add a task to the
199 group. If the group is a CTRL_MON group the task is removed from
200 whichever previous CTRL_MON group owned the task and also from
201 any MON group that owned the task. If the group is a MON group,
202 then the task must already belong to the CTRL_MON parent of this
203 group. The task is removed from any previous MON group.
Fenghua Yuf20e5782016-10-28 15:04:40 -0700204
Vikas Shivappa1640ae92017-07-25 14:14:21 -0700205
206"cpus":
207 Reading this file shows a bitmask of the logical CPUs owned by
208 this group. Writing a mask to this file will add and remove
209 CPUs to/from this group. As with the tasks file a hierarchy is
210 maintained where MON groups may only include CPUs owned by the
211 parent CTRL_MON group.
James Morse57794aa2019-06-07 16:14:09 +0100212 When the resource group is in pseudo-locked mode this file will
Reinette Chatre33dc3e42018-06-30 22:17:33 -0700213 only be readable, reflecting the CPUs associated with the
214 pseudo-locked region.
Vikas Shivappa1640ae92017-07-25 14:14:21 -0700215
216
217"cpus_list":
218 Just like "cpus", only using ranges of CPUs instead of bitmasks.
219
220
221When control is enabled all CTRL_MON groups will also contain:
222
223"schemata":
224 A list of all the resources available to this group.
225 Each resource has its own line and format - see below for details.
226
Reinette Chatrecba1aab2018-06-22 15:41:53 -0700227"size":
228 Mirrors the display of the "schemata" file to display the size in
229 bytes of each allocation instead of the bits representing the
230 allocation.
231
232"mode":
233 The "mode" of the resource group dictates the sharing of its
234 allocations. A "shareable" resource group allows sharing of its
Reinette Chatree17e7332018-06-22 15:42:07 -0700235 allocations while an "exclusive" resource group does not. A
236 cache pseudo-locked region is created by first writing
237 "pseudo-locksetup" to the "mode" file before writing the cache
238 pseudo-locked region's schemata to the resource group's "schemata"
239 file. On successful pseudo-locked region creation the mode will
240 automatically change to "pseudo-locked".
Reinette Chatrecba1aab2018-06-22 15:41:53 -0700241
Vikas Shivappa1640ae92017-07-25 14:14:21 -0700242When monitoring is enabled all MON groups will also contain:
243
244"mon_data":
245 This contains a set of files organized by L3 domain and by
246 RDT event. E.g. on a system with two L3 domains there will
247 be subdirectories "mon_L3_00" and "mon_L3_01". Each of these
248 directories have one file per event (e.g. "llc_occupancy",
249 "mbm_total_bytes", and "mbm_local_bytes"). In a MON group these
250 files provide a read out of the current value of the event for
251 all tasks in the group. In CTRL_MON groups these files provide
252 the sum for all tasks in the CTRL_MON group and all tasks in
253 MON groups. Please see example section for more details on usage.
254
255Resource allocation rules
256-------------------------
Changbin Du1cd7af52019-05-08 23:21:31 +0800257
Vikas Shivappa1640ae92017-07-25 14:14:21 -0700258When a task is running the following rules define which resources are
259available to it:
Fenghua Yuf20e5782016-10-28 15:04:40 -0700260
2611) If the task is a member of a non-default group, then the schemata
Vikas Shivappa1640ae92017-07-25 14:14:21 -0700262 for that group is used.
Fenghua Yuf20e5782016-10-28 15:04:40 -0700263
2642) Else if the task belongs to the default group, but is running on a
Vikas Shivappa1640ae92017-07-25 14:14:21 -0700265 CPU that is assigned to some specific group, then the schemata for the
266 CPU's group is used.
Fenghua Yuf20e5782016-10-28 15:04:40 -0700267
2683) Otherwise the schemata for the default group is used.
269
Vikas Shivappa1640ae92017-07-25 14:14:21 -0700270Resource monitoring rules
271-------------------------
2721) If a task is a member of a MON group, or non-default CTRL_MON group
273 then RDT events for the task will be reported in that group.
274
2752) If a task is a member of the default CTRL_MON group, but is running
276 on a CPU that is assigned to some specific group, then the RDT events
277 for the task will be reported in that group.
278
2793) Otherwise RDT events for the task will be reported in the root level
280 "mon_data" group.
281
282
283Notes on cache occupancy monitoring and control
Changbin Du1cd7af52019-05-08 23:21:31 +0800284===============================================
Vikas Shivappa1640ae92017-07-25 14:14:21 -0700285When moving a task from one group to another you should remember that
286this only affects *new* cache allocations by the task. E.g. you may have
287a task in a monitor group showing 3 MB of cache occupancy. If you move
288to a new group and immediately check the occupancy of the old and new
289groups you will likely see that the old group is still showing 3 MB and
290the new group zero. When the task accesses locations still in cache from
291before the move, the h/w does not update any counters. On a busy system
292you will likely see the occupancy in the old group go down as cache lines
293are evicted and re-used while the occupancy in the new group rises as
294the task accesses memory and loads into the cache are counted based on
295membership in the new group.
296
297The same applies to cache allocation control. Moving a task to a group
298with a smaller cache partition will not evict any cache lines. The
299process may continue to use them from the old partition.
300
301Hardware uses CLOSid(Class of service ID) and an RMID(Resource monitoring ID)
302to identify a control group and a monitoring group respectively. Each of
303the resource groups are mapped to these IDs based on the kind of group. The
304number of CLOSid and RMID are limited by the hardware and hence the creation of
305a "CTRL_MON" directory may fail if we run out of either CLOSID or RMID
306and creation of "MON" group may fail if we run out of RMIDs.
307
308max_threshold_occupancy - generic concepts
309------------------------------------------
310
311Note that an RMID once freed may not be immediately available for use as
312the RMID is still tagged the cache lines of the previous user of RMID.
313Hence such RMIDs are placed on limbo list and checked back if the cache
314occupancy has gone down. If there is a time when system has a lot of
315limbo RMIDs but which are not ready to be used, user may see an -EBUSY
316during mkdir.
317
318max_threshold_occupancy is a user configurable value to determine the
319occupancy at which an RMID can be freed.
Fenghua Yuf20e5782016-10-28 15:04:40 -0700320
321Schemata files - general concepts
322---------------------------------
323Each line in the file describes one resource. The line starts with
324the name of the resource, followed by specific values to be applied
325in each of the instances of that resource on the system.
326
327Cache IDs
328---------
329On current generation systems there is one L3 cache per socket and L2
330caches are generally just shared by the hyperthreads on a core, but this
331isn't an architectural requirement. We could have multiple separate L3
332caches on a socket, multiple cores could share an L2 cache. So instead
333of using "socket" or "core" to define the set of logical cpus sharing
334a resource we use a "Cache ID". At a given cache level this will be a
335unique number across the whole system (but it isn't guaranteed to be a
336contiguous sequence, there may be gaps). To find the ID for each logical
337CPU look in /sys/devices/system/cpu/cpu*/cache/index*/id
338
339Cache Bit Masks (CBM)
340---------------------
341For cache resources we describe the portion of the cache that is available
342for allocation using a bitmask. The maximum value of the mask is defined
343by each cpu model (and may be different for different cache levels). It
344is found using CPUID, but is also provided in the "info" directory of
James Morseeb8ed28f2019-06-07 16:14:06 +0100345the resctrl file system in "info/{resource}/cbm_mask". Intel hardware
Fenghua Yuf20e5782016-10-28 15:04:40 -0700346requires that these masks have all the '1' bits in a contiguous block. So
3470x3, 0x6 and 0xC are legal 4-bit masks with two bits set, but 0x5, 0x9
348and 0xA are not. On a system with a 20-bit mask each bit represents 5%
349of the capacity of the cache. You could partition the cache into four
350equal parts with masks: 0x1f, 0x3e0, 0x7c00, 0xf8000.
351
Vikas Shivappad6c64a42018-04-20 15:36:16 -0700352Memory bandwidth Allocation and monitoring
Changbin Du1cd7af52019-05-08 23:21:31 +0800353==========================================
Vikas Shivappad6c64a42018-04-20 15:36:16 -0700354
355For Memory bandwidth resource, by default the user controls the resource
356by indicating the percentage of total memory bandwidth.
Vikas Shivappaa9cad3d2017-04-07 17:33:50 -0700357
358The minimum bandwidth percentage value for each cpu model is predefined
359and can be looked up through "info/MB/min_bandwidth". The bandwidth
360granularity that is allocated is also dependent on the cpu model and can
361be looked up at "info/MB/bandwidth_gran". The available bandwidth
362control steps are: min_bw + N * bw_gran. Intermediate values are rounded
363to the next control step available on the hardware.
364
365The bandwidth throttling is a core specific mechanism on some of Intel
366SKUs. Using a high bandwidth and a low bandwidth setting on two threads
367sharing a core will result in both threads being throttled to use the
Vikas Shivappad6c64a42018-04-20 15:36:16 -0700368low bandwidth. The fact that Memory bandwidth allocation(MBA) is a core
369specific mechanism where as memory bandwidth monitoring(MBM) is done at
370the package level may lead to confusion when users try to apply control
371via the MBA and then monitor the bandwidth to see if the controls are
372effective. Below are such scenarios:
373
3741. User may *not* see increase in actual bandwidth when percentage
375 values are increased:
376
377This can occur when aggregate L2 external bandwidth is more than L3
378external bandwidth. Consider an SKL SKU with 24 cores on a package and
379where L2 external is 10GBps (hence aggregate L2 external bandwidth is
380240GBps) and L3 external bandwidth is 100GBps. Now a workload with '20
381threads, having 50% bandwidth, each consuming 5GBps' consumes the max L3
382bandwidth of 100GBps although the percentage value specified is only 50%
James Morse57794aa2019-06-07 16:14:09 +0100383<< 100%. Hence increasing the bandwidth percentage will not yield any
Vikas Shivappad6c64a42018-04-20 15:36:16 -0700384more bandwidth. This is because although the L2 external bandwidth still
385has capacity, the L3 external bandwidth is fully used. Also note that
386this would be dependent on number of cores the benchmark is run on.
387
3882. Same bandwidth percentage may mean different actual bandwidth
389 depending on # of threads:
390
391For the same SKU in #1, a 'single thread, with 10% bandwidth' and '4
392thread, with 10% bandwidth' can consume upto 10GBps and 40GBps although
393they have same percentage bandwidth of 10%. This is simply because as
394threads start using more cores in an rdtgroup, the actual bandwidth may
395increase or vary although user specified bandwidth percentage is same.
396
397In order to mitigate this and make the interface more user friendly,
398resctrl added support for specifying the bandwidth in MBps as well. The
399kernel underneath would use a software feedback mechanism or a "Software
400Controller(mba_sc)" which reads the actual bandwidth using MBM counters
James Morse57794aa2019-06-07 16:14:09 +0100401and adjust the memory bandwidth percentages to ensure::
Vikas Shivappad6c64a42018-04-20 15:36:16 -0700402
403 "actual bandwidth < user specified bandwidth".
404
405By default, the schemata would take the bandwidth percentage values
406where as user can switch to the "MBA software controller" mode using
407a mount option 'mba_MBps'. The schemata format is specified in the below
408sections.
Fenghua Yuf20e5782016-10-28 15:04:40 -0700409
Vikas Shivappa1640ae92017-07-25 14:14:21 -0700410L3 schemata file details (code and data prioritization disabled)
411----------------------------------------------------------------
Changbin Du1cd7af52019-05-08 23:21:31 +0800412With CDP disabled the L3 schemata format is::
Fenghua Yuf20e5782016-10-28 15:04:40 -0700413
414 L3:<cache_id0>=<cbm>;<cache_id1>=<cbm>;...
415
Vikas Shivappa1640ae92017-07-25 14:14:21 -0700416L3 schemata file details (CDP enabled via mount option to resctrl)
417------------------------------------------------------------------
Fenghua Yuf20e5782016-10-28 15:04:40 -0700418When CDP is enabled L3 control is split into two separate resources
Changbin Du1cd7af52019-05-08 23:21:31 +0800419so you can specify independent masks for code and data like this::
Fenghua Yuf20e5782016-10-28 15:04:40 -0700420
James Morse7c7a4992019-06-07 16:14:07 +0100421 L3DATA:<cache_id0>=<cbm>;<cache_id1>=<cbm>;...
422 L3CODE:<cache_id0>=<cbm>;<cache_id1>=<cbm>;...
Fenghua Yuf20e5782016-10-28 15:04:40 -0700423
Vikas Shivappa1640ae92017-07-25 14:14:21 -0700424L2 schemata file details
425------------------------
James Morse7c7a4992019-06-07 16:14:07 +0100426CDP is supported at L2 using the 'cdpl2' mount option. The schemata
427format is either::
Fenghua Yuf20e5782016-10-28 15:04:40 -0700428
429 L2:<cache_id0>=<cbm>;<cache_id1>=<cbm>;...
430
James Morse7c7a4992019-06-07 16:14:07 +0100431or
432
433 L2DATA:<cache_id0>=<cbm>;<cache_id1>=<cbm>;...
434 L2CODE:<cache_id0>=<cbm>;<cache_id1>=<cbm>;...
435
436
Vikas Shivappad6c64a42018-04-20 15:36:16 -0700437Memory bandwidth Allocation (default mode)
438------------------------------------------
Vikas Shivappaa9cad3d2017-04-07 17:33:50 -0700439
440Memory b/w domain is L3 cache.
Changbin Du1cd7af52019-05-08 23:21:31 +0800441::
Vikas Shivappaa9cad3d2017-04-07 17:33:50 -0700442
443 MB:<cache_id0>=bandwidth0;<cache_id1>=bandwidth1;...
444
Vikas Shivappad6c64a42018-04-20 15:36:16 -0700445Memory bandwidth Allocation specified in MBps
446---------------------------------------------
447
448Memory bandwidth domain is L3 cache.
Changbin Du1cd7af52019-05-08 23:21:31 +0800449::
Vikas Shivappad6c64a42018-04-20 15:36:16 -0700450
451 MB:<cache_id0>=bw_MBps0;<cache_id1>=bw_MBps1;...
452
Tony Luckc4026b7b2017-04-03 14:44:16 -0700453Reading/writing the schemata file
454---------------------------------
455Reading the schemata file will show the state of all resources
456on all domains. When writing you only need to specify those values
457which you wish to change. E.g.
Changbin Du1cd7af52019-05-08 23:21:31 +0800458::
Tony Luckc4026b7b2017-04-03 14:44:16 -0700459
Changbin Du1cd7af52019-05-08 23:21:31 +0800460 # cat schemata
461 L3DATA:0=fffff;1=fffff;2=fffff;3=fffff
462 L3CODE:0=fffff;1=fffff;2=fffff;3=fffff
463 # echo "L3DATA:2=3c0;" > schemata
464 # cat schemata
465 L3DATA:0=fffff;1=fffff;2=3c0;3=fffff
466 L3CODE:0=fffff;1=fffff;2=fffff;3=fffff
Tony Luckc4026b7b2017-04-03 14:44:16 -0700467
Reinette Chatree17e7332018-06-22 15:42:07 -0700468Cache Pseudo-Locking
Changbin Du1cd7af52019-05-08 23:21:31 +0800469====================
Reinette Chatree17e7332018-06-22 15:42:07 -0700470CAT enables a user to specify the amount of cache space that an
471application can fill. Cache pseudo-locking builds on the fact that a
472CPU can still read and write data pre-allocated outside its current
473allocated area on a cache hit. With cache pseudo-locking, data can be
474preloaded into a reserved portion of cache that no application can
475fill, and from that point on will only serve cache hits. The cache
476pseudo-locked memory is made accessible to user space where an
477application can map it into its virtual address space and thus have
478a region of memory with reduced average read latency.
479
480The creation of a cache pseudo-locked region is triggered by a request
481from the user to do so that is accompanied by a schemata of the region
482to be pseudo-locked. The cache pseudo-locked region is created as follows:
Changbin Du1cd7af52019-05-08 23:21:31 +0800483
Reinette Chatree17e7332018-06-22 15:42:07 -0700484- Create a CAT allocation CLOSNEW with a CBM matching the schemata
485 from the user of the cache region that will contain the pseudo-locked
486 memory. This region must not overlap with any current CAT allocation/CLOS
487 on the system and no future overlap with this cache region is allowed
488 while the pseudo-locked region exists.
489- Create a contiguous region of memory of the same size as the cache
490 region.
491- Flush the cache, disable hardware prefetchers, disable preemption.
492- Make CLOSNEW the active CLOS and touch the allocated memory to load
493 it into the cache.
494- Set the previous CLOS as active.
495- At this point the closid CLOSNEW can be released - the cache
496 pseudo-locked region is protected as long as its CBM does not appear in
497 any CAT allocation. Even though the cache pseudo-locked region will from
498 this point on not appear in any CBM of any CLOS an application running with
499 any CLOS will be able to access the memory in the pseudo-locked region since
500 the region continues to serve cache hits.
501- The contiguous region of memory loaded into the cache is exposed to
502 user-space as a character device.
503
504Cache pseudo-locking increases the probability that data will remain
505in the cache via carefully configuring the CAT feature and controlling
506application behavior. There is no guarantee that data is placed in
507cache. Instructions like INVD, WBINVD, CLFLUSH, etc. can still evict
508“locked” data from cache. Power management C-states may shrink or
Reinette Chatre6fc0de32018-06-22 15:42:30 -0700509power off cache. Deeper C-states will automatically be restricted on
510pseudo-locked region creation.
Reinette Chatree17e7332018-06-22 15:42:07 -0700511
512It is required that an application using a pseudo-locked region runs
513with affinity to the cores (or a subset of the cores) associated
514with the cache on which the pseudo-locked region resides. A sanity check
515within the code will not allow an application to map pseudo-locked memory
516unless it runs with affinity to cores associated with the cache on which the
517pseudo-locked region resides. The sanity check is only done during the
518initial mmap() handling, there is no enforcement afterwards and the
519application self needs to ensure it remains affine to the correct cores.
520
521Pseudo-locking is accomplished in two stages:
Changbin Du1cd7af52019-05-08 23:21:31 +0800522
Reinette Chatree17e7332018-06-22 15:42:07 -07005231) During the first stage the system administrator allocates a portion
524 of cache that should be dedicated to pseudo-locking. At this time an
525 equivalent portion of memory is allocated, loaded into allocated
526 cache portion, and exposed as a character device.
5272) During the second stage a user-space application maps (mmap()) the
528 pseudo-locked memory into its address space.
529
530Cache Pseudo-Locking Interface
531------------------------------
532A pseudo-locked region is created using the resctrl interface as follows:
533
5341) Create a new resource group by creating a new directory in /sys/fs/resctrl.
5352) Change the new resource group's mode to "pseudo-locksetup" by writing
536 "pseudo-locksetup" to the "mode" file.
5373) Write the schemata of the pseudo-locked region to the "schemata" file. All
538 bits within the schemata should be "unused" according to the "bit_usage"
539 file.
540
541On successful pseudo-locked region creation the "mode" file will contain
542"pseudo-locked" and a new character device with the same name as the resource
543group will exist in /dev/pseudo_lock. This character device can be mmap()'ed
544by user space in order to obtain access to the pseudo-locked memory region.
545
546An example of cache pseudo-locked region creation and usage can be found below.
547
548Cache Pseudo-Locking Debugging Interface
Changbin Du1cd7af52019-05-08 23:21:31 +0800549----------------------------------------
Reinette Chatree17e7332018-06-22 15:42:07 -0700550The pseudo-locking debugging interface is enabled by default (if
551CONFIG_DEBUG_FS is enabled) and can be found in /sys/kernel/debug/resctrl.
552
553There is no explicit way for the kernel to test if a provided memory
554location is present in the cache. The pseudo-locking debugging interface uses
555the tracing infrastructure to provide two ways to measure cache residency of
556the pseudo-locked region:
Changbin Du1cd7af52019-05-08 23:21:31 +0800557
Reinette Chatree17e7332018-06-22 15:42:07 -07005581) Memory access latency using the pseudo_lock_mem_latency tracepoint. Data
559 from these measurements are best visualized using a hist trigger (see
560 example below). In this test the pseudo-locked region is traversed at
561 a stride of 32 bytes while hardware prefetchers and preemption
562 are disabled. This also provides a substitute visualization of cache
563 hits and misses.
5642) Cache hit and miss measurements using model specific precision counters if
565 available. Depending on the levels of cache on the system the pseudo_lock_l2
566 and pseudo_lock_l3 tracepoints are available.
Reinette Chatree17e7332018-06-22 15:42:07 -0700567
568When a pseudo-locked region is created a new debugfs directory is created for
569it in debugfs as /sys/kernel/debug/resctrl/<newdir>. A single
570write-only file, pseudo_lock_measure, is present in this directory. The
Reinette Chatredd454072018-09-20 12:02:11 -0700571measurement of the pseudo-locked region depends on the number written to this
572debugfs file:
Changbin Du1cd7af52019-05-08 23:21:31 +0800573
5741:
575 writing "1" to the pseudo_lock_measure file will trigger the latency
Reinette Chatredd454072018-09-20 12:02:11 -0700576 measurement captured in the pseudo_lock_mem_latency tracepoint. See
577 example below.
Changbin Du1cd7af52019-05-08 23:21:31 +08005782:
579 writing "2" to the pseudo_lock_measure file will trigger the L2 cache
Reinette Chatredd454072018-09-20 12:02:11 -0700580 residency (cache hits and misses) measurement captured in the
581 pseudo_lock_l2 tracepoint. See example below.
Changbin Du1cd7af52019-05-08 23:21:31 +08005823:
583 writing "3" to the pseudo_lock_measure file will trigger the L3 cache
Reinette Chatredd454072018-09-20 12:02:11 -0700584 residency (cache hits and misses) measurement captured in the
585 pseudo_lock_l3 tracepoint.
586
587All measurements are recorded with the tracing infrastructure. This requires
588the relevant tracepoints to be enabled before the measurement is triggered.
Reinette Chatree17e7332018-06-22 15:42:07 -0700589
Changbin Du1cd7af52019-05-08 23:21:31 +0800590Example of latency debugging interface
591~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Reinette Chatree17e7332018-06-22 15:42:07 -0700592In this example a pseudo-locked region named "newlock" was created. Here is
593how we can measure the latency in cycles of reading from this region and
594visualize this data with a histogram that is available if CONFIG_HIST_TRIGGERS
Changbin Du1cd7af52019-05-08 23:21:31 +0800595is set::
Reinette Chatree17e7332018-06-22 15:42:07 -0700596
Changbin Du1cd7af52019-05-08 23:21:31 +0800597 # :> /sys/kernel/debug/tracing/trace
598 # echo 'hist:keys=latency' > /sys/kernel/debug/tracing/events/resctrl/pseudo_lock_mem_latency/trigger
599 # echo 1 > /sys/kernel/debug/tracing/events/resctrl/pseudo_lock_mem_latency/enable
600 # echo 1 > /sys/kernel/debug/resctrl/newlock/pseudo_lock_measure
601 # echo 0 > /sys/kernel/debug/tracing/events/resctrl/pseudo_lock_mem_latency/enable
602 # cat /sys/kernel/debug/tracing/events/resctrl/pseudo_lock_mem_latency/hist
Reinette Chatree17e7332018-06-22 15:42:07 -0700603
Changbin Du1cd7af52019-05-08 23:21:31 +0800604 # event histogram
605 #
606 # trigger info: hist:keys=latency:vals=hitcount:sort=hitcount:size=2048 [active]
607 #
Reinette Chatree17e7332018-06-22 15:42:07 -0700608
Changbin Du1cd7af52019-05-08 23:21:31 +0800609 { latency: 456 } hitcount: 1
610 { latency: 50 } hitcount: 83
611 { latency: 36 } hitcount: 96
612 { latency: 44 } hitcount: 174
613 { latency: 48 } hitcount: 195
614 { latency: 46 } hitcount: 262
615 { latency: 42 } hitcount: 693
616 { latency: 40 } hitcount: 3204
617 { latency: 38 } hitcount: 3484
Reinette Chatree17e7332018-06-22 15:42:07 -0700618
Changbin Du1cd7af52019-05-08 23:21:31 +0800619 Totals:
620 Hits: 8192
621 Entries: 9
622 Dropped: 0
623
624Example of cache hits/misses debugging
625~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Reinette Chatree17e7332018-06-22 15:42:07 -0700626In this example a pseudo-locked region named "newlock" was created on the L2
627cache of a platform. Here is how we can obtain details of the cache hits
628and misses using the platform's precision counters.
Changbin Du1cd7af52019-05-08 23:21:31 +0800629::
Reinette Chatree17e7332018-06-22 15:42:07 -0700630
Changbin Du1cd7af52019-05-08 23:21:31 +0800631 # :> /sys/kernel/debug/tracing/trace
632 # echo 1 > /sys/kernel/debug/tracing/events/resctrl/pseudo_lock_l2/enable
633 # echo 2 > /sys/kernel/debug/resctrl/newlock/pseudo_lock_measure
634 # echo 0 > /sys/kernel/debug/tracing/events/resctrl/pseudo_lock_l2/enable
635 # cat /sys/kernel/debug/tracing/trace
Reinette Chatree17e7332018-06-22 15:42:07 -0700636
Changbin Du1cd7af52019-05-08 23:21:31 +0800637 # tracer: nop
638 #
639 # _-----=> irqs-off
640 # / _----=> need-resched
641 # | / _---=> hardirq/softirq
642 # || / _--=> preempt-depth
643 # ||| / delay
644 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
645 # | | | |||| | |
646 pseudo_lock_mea-1672 [002] .... 3132.860500: pseudo_lock_l2: hits=4097 miss=0
Reinette Chatree17e7332018-06-22 15:42:07 -0700647
648
Changbin Du1cd7af52019-05-08 23:21:31 +0800649Examples for RDT allocation usage
650~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Vikas Shivappa1640ae92017-07-25 14:14:21 -0700651
Changbin Du1cd7af52019-05-08 23:21:31 +08006521) Example 1
653
Fenghua Yuf20e5782016-10-28 15:04:40 -0700654On a two socket machine (one L3 cache per socket) with just four bits
Vikas Shivappaa9cad3d2017-04-07 17:33:50 -0700655for cache bit masks, minimum b/w of 10% with a memory bandwidth
Changbin Du1cd7af52019-05-08 23:21:31 +0800656granularity of 10%.
657::
Fenghua Yuf20e5782016-10-28 15:04:40 -0700658
Changbin Du1cd7af52019-05-08 23:21:31 +0800659 # mount -t resctrl resctrl /sys/fs/resctrl
660 # cd /sys/fs/resctrl
661 # mkdir p0 p1
662 # echo "L3:0=3;1=c\nMB:0=50;1=50" > /sys/fs/resctrl/p0/schemata
663 # echo "L3:0=3;1=3\nMB:0=50;1=50" > /sys/fs/resctrl/p1/schemata
Fenghua Yuf20e5782016-10-28 15:04:40 -0700664
665The default resource group is unmodified, so we have access to all parts
666of all caches (its schemata file reads "L3:0=f;1=f").
667
668Tasks that are under the control of group "p0" may only allocate from the
669"lower" 50% on cache ID 0, and the "upper" 50% of cache ID 1.
670Tasks in group "p1" use the "lower" 50% of cache on both sockets.
671
Vikas Shivappaa9cad3d2017-04-07 17:33:50 -0700672Similarly, tasks that are under the control of group "p0" may use a
673maximum memory b/w of 50% on socket0 and 50% on socket 1.
674Tasks in group "p1" may also use 50% memory b/w on both sockets.
675Note that unlike cache masks, memory b/w cannot specify whether these
676allocations can overlap or not. The allocations specifies the maximum
677b/w that the group may be able to use and the system admin can configure
678the b/w accordingly.
679
James Morseb5453a82019-06-07 16:14:08 +0100680If resctrl is using the software controller (mba_sc) then user can enter the
681max b/w in MB rather than the percentage values.
Changbin Du1cd7af52019-05-08 23:21:31 +0800682::
Vikas Shivappad6c64a42018-04-20 15:36:16 -0700683
Changbin Du1cd7af52019-05-08 23:21:31 +0800684 # echo "L3:0=3;1=c\nMB:0=1024;1=500" > /sys/fs/resctrl/p0/schemata
685 # echo "L3:0=3;1=3\nMB:0=1024;1=500" > /sys/fs/resctrl/p1/schemata
Vikas Shivappad6c64a42018-04-20 15:36:16 -0700686
687In the above example the tasks in "p1" and "p0" on socket 0 would use a max b/w
688of 1024MB where as on socket 1 they would use 500MB.
689
Changbin Du1cd7af52019-05-08 23:21:31 +08006902) Example 2
691
Fenghua Yuf20e5782016-10-28 15:04:40 -0700692Again two sockets, but this time with a more realistic 20-bit mask.
693
694Two real time tasks pid=1234 running on processor 0 and pid=5678 running on
695processor 1 on socket 0 on a 2-socket and dual core machine. To avoid noisy
696neighbors, each of the two real-time tasks exclusively occupies one quarter
697of L3 cache on socket 0.
Changbin Du1cd7af52019-05-08 23:21:31 +0800698::
Fenghua Yuf20e5782016-10-28 15:04:40 -0700699
Changbin Du1cd7af52019-05-08 23:21:31 +0800700 # mount -t resctrl resctrl /sys/fs/resctrl
701 # cd /sys/fs/resctrl
Fenghua Yuf20e5782016-10-28 15:04:40 -0700702
703First we reset the schemata for the default group so that the "upper"
Vikas Shivappaa9cad3d2017-04-07 17:33:50 -070070450% of the L3 cache on socket 0 and 50% of memory b/w cannot be used by
Changbin Du1cd7af52019-05-08 23:21:31 +0800705ordinary tasks::
Fenghua Yuf20e5782016-10-28 15:04:40 -0700706
Changbin Du1cd7af52019-05-08 23:21:31 +0800707 # echo "L3:0=3ff;1=fffff\nMB:0=50;1=100" > schemata
Fenghua Yuf20e5782016-10-28 15:04:40 -0700708
709Next we make a resource group for our first real time task and give
710it access to the "top" 25% of the cache on socket 0.
Changbin Du1cd7af52019-05-08 23:21:31 +0800711::
Fenghua Yuf20e5782016-10-28 15:04:40 -0700712
Changbin Du1cd7af52019-05-08 23:21:31 +0800713 # mkdir p0
714 # echo "L3:0=f8000;1=fffff" > p0/schemata
Fenghua Yuf20e5782016-10-28 15:04:40 -0700715
716Finally we move our first real time task into this resource group. We
717also use taskset(1) to ensure the task always runs on a dedicated CPU
718on socket 0. Most uses of resource groups will also constrain which
719processors tasks run on.
Changbin Du1cd7af52019-05-08 23:21:31 +0800720::
Fenghua Yuf20e5782016-10-28 15:04:40 -0700721
Changbin Du1cd7af52019-05-08 23:21:31 +0800722 # echo 1234 > p0/tasks
723 # taskset -cp 1 1234
Fenghua Yuf20e5782016-10-28 15:04:40 -0700724
Changbin Du1cd7af52019-05-08 23:21:31 +0800725Ditto for the second real time task (with the remaining 25% of cache)::
Fenghua Yuf20e5782016-10-28 15:04:40 -0700726
Changbin Du1cd7af52019-05-08 23:21:31 +0800727 # mkdir p1
728 # echo "L3:0=7c00;1=fffff" > p1/schemata
729 # echo 5678 > p1/tasks
730 # taskset -cp 2 5678
Fenghua Yuf20e5782016-10-28 15:04:40 -0700731
Vikas Shivappaa9cad3d2017-04-07 17:33:50 -0700732For the same 2 socket system with memory b/w resource and CAT L3 the
733schemata would look like(Assume min_bandwidth 10 and bandwidth_gran is
73410):
735
Changbin Du1cd7af52019-05-08 23:21:31 +0800736For our first real time task this would request 20% memory b/w on socket 0.
737::
Vikas Shivappaa9cad3d2017-04-07 17:33:50 -0700738
Changbin Du1cd7af52019-05-08 23:21:31 +0800739 # echo -e "L3:0=f8000;1=fffff\nMB:0=20;1=100" > p0/schemata
Vikas Shivappaa9cad3d2017-04-07 17:33:50 -0700740
741For our second real time task this would request an other 20% memory b/w
742on socket 0.
Changbin Du1cd7af52019-05-08 23:21:31 +0800743::
Vikas Shivappaa9cad3d2017-04-07 17:33:50 -0700744
Changbin Du1cd7af52019-05-08 23:21:31 +0800745 # echo -e "L3:0=f8000;1=fffff\nMB:0=20;1=100" > p0/schemata
Vikas Shivappaa9cad3d2017-04-07 17:33:50 -0700746
Changbin Du1cd7af52019-05-08 23:21:31 +08007473) Example 3
Fenghua Yuf20e5782016-10-28 15:04:40 -0700748
749A single socket system which has real-time tasks running on core 4-7 and
750non real-time workload assigned to core 0-3. The real-time tasks share text
751and data, so a per task association is not required and due to interaction
752with the kernel it's desired that the kernel on these cores shares L3 with
753the tasks.
Changbin Du1cd7af52019-05-08 23:21:31 +0800754::
Fenghua Yuf20e5782016-10-28 15:04:40 -0700755
Changbin Du1cd7af52019-05-08 23:21:31 +0800756 # mount -t resctrl resctrl /sys/fs/resctrl
757 # cd /sys/fs/resctrl
Fenghua Yuf20e5782016-10-28 15:04:40 -0700758
759First we reset the schemata for the default group so that the "upper"
Vikas Shivappaa9cad3d2017-04-07 17:33:50 -070076050% of the L3 cache on socket 0, and 50% of memory bandwidth on socket 0
Changbin Du1cd7af52019-05-08 23:21:31 +0800761cannot be used by ordinary tasks::
Fenghua Yuf20e5782016-10-28 15:04:40 -0700762
Changbin Du1cd7af52019-05-08 23:21:31 +0800763 # echo "L3:0=3ff\nMB:0=50" > schemata
Fenghua Yuf20e5782016-10-28 15:04:40 -0700764
Vikas Shivappaa9cad3d2017-04-07 17:33:50 -0700765Next we make a resource group for our real time cores and give it access
766to the "top" 50% of the cache on socket 0 and 50% of memory bandwidth on
767socket 0.
Changbin Du1cd7af52019-05-08 23:21:31 +0800768::
Fenghua Yuf20e5782016-10-28 15:04:40 -0700769
Changbin Du1cd7af52019-05-08 23:21:31 +0800770 # mkdir p0
771 # echo "L3:0=ffc00\nMB:0=50" > p0/schemata
Fenghua Yuf20e5782016-10-28 15:04:40 -0700772
773Finally we move core 4-7 over to the new group and make sure that the
Vikas Shivappaa9cad3d2017-04-07 17:33:50 -0700774kernel and the tasks running there get 50% of the cache. They should
775also get 50% of memory bandwidth assuming that the cores 4-7 are SMT
776siblings and only the real time threads are scheduled on the cores 4-7.
Changbin Du1cd7af52019-05-08 23:21:31 +0800777::
Fenghua Yuf20e5782016-10-28 15:04:40 -0700778
Changbin Du1cd7af52019-05-08 23:21:31 +0800779 # echo F0 > p0/cpus
Marcelo Tosatti3c2a7692016-12-14 15:08:37 -0200780
Changbin Du1cd7af52019-05-08 23:21:31 +08007814) Example 4
Reinette Chatrecba1aab2018-06-22 15:41:53 -0700782
783The resource groups in previous examples were all in the default "shareable"
784mode allowing sharing of their cache allocations. If one resource group
785configures a cache allocation then nothing prevents another resource group
786to overlap with that allocation.
787
788In this example a new exclusive resource group will be created on a L2 CAT
789system with two L2 cache instances that can be configured with an 8-bit
790capacity bitmask. The new exclusive resource group will be configured to use
79125% of each cache instance.
Changbin Du1cd7af52019-05-08 23:21:31 +0800792::
Reinette Chatrecba1aab2018-06-22 15:41:53 -0700793
Changbin Du1cd7af52019-05-08 23:21:31 +0800794 # mount -t resctrl resctrl /sys/fs/resctrl/
795 # cd /sys/fs/resctrl
Reinette Chatrecba1aab2018-06-22 15:41:53 -0700796
797First, we observe that the default group is configured to allocate to all L2
Changbin Du1cd7af52019-05-08 23:21:31 +0800798cache::
Reinette Chatrecba1aab2018-06-22 15:41:53 -0700799
Changbin Du1cd7af52019-05-08 23:21:31 +0800800 # cat schemata
801 L2:0=ff;1=ff
Reinette Chatrecba1aab2018-06-22 15:41:53 -0700802
803We could attempt to create the new resource group at this point, but it will
Changbin Du1cd7af52019-05-08 23:21:31 +0800804fail because of the overlap with the schemata of the default group::
805
806 # mkdir p0
807 # echo 'L2:0=0x3;1=0x3' > p0/schemata
808 # cat p0/mode
809 shareable
810 # echo exclusive > p0/mode
811 -sh: echo: write error: Invalid argument
812 # cat info/last_cmd_status
813 schemata overlaps
Reinette Chatrecba1aab2018-06-22 15:41:53 -0700814
815To ensure that there is no overlap with another resource group the default
816resource group's schemata has to change, making it possible for the new
817resource group to become exclusive.
Changbin Du1cd7af52019-05-08 23:21:31 +0800818::
819
820 # echo 'L2:0=0xfc;1=0xfc' > schemata
821 # echo exclusive > p0/mode
822 # grep . p0/*
823 p0/cpus:0
824 p0/mode:exclusive
825 p0/schemata:L2:0=03;1=03
826 p0/size:L2:0=262144;1=262144
Reinette Chatrecba1aab2018-06-22 15:41:53 -0700827
828A new resource group will on creation not overlap with an exclusive resource
Changbin Du1cd7af52019-05-08 23:21:31 +0800829group::
Reinette Chatrecba1aab2018-06-22 15:41:53 -0700830
Changbin Du1cd7af52019-05-08 23:21:31 +0800831 # mkdir p1
832 # grep . p1/*
833 p1/cpus:0
834 p1/mode:shareable
835 p1/schemata:L2:0=fc;1=fc
836 p1/size:L2:0=786432;1=786432
Reinette Chatrecba1aab2018-06-22 15:41:53 -0700837
Changbin Du1cd7af52019-05-08 23:21:31 +0800838The bit_usage will reflect how the cache is used::
839
840 # cat info/L2/bit_usage
841 0=SSSSSSEE;1=SSSSSSEE
842
843A resource group cannot be forced to overlap with an exclusive resource group::
844
845 # echo 'L2:0=0x1;1=0x1' > p1/schemata
846 -sh: echo: write error: Invalid argument
847 # cat info/last_cmd_status
848 overlaps with exclusive group
Reinette Chatrecba1aab2018-06-22 15:41:53 -0700849
Reinette Chatree17e7332018-06-22 15:42:07 -0700850Example of Cache Pseudo-Locking
Changbin Du1cd7af52019-05-08 23:21:31 +0800851~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Reinette Chatree17e7332018-06-22 15:42:07 -0700852Lock portion of L2 cache from cache id 1 using CBM 0x3. Pseudo-locked
853region is exposed at /dev/pseudo_lock/newlock that can be provided to
854application for argument to mmap().
Changbin Du1cd7af52019-05-08 23:21:31 +0800855::
Reinette Chatree17e7332018-06-22 15:42:07 -0700856
Changbin Du1cd7af52019-05-08 23:21:31 +0800857 # mount -t resctrl resctrl /sys/fs/resctrl/
858 # cd /sys/fs/resctrl
Reinette Chatree17e7332018-06-22 15:42:07 -0700859
860Ensure that there are bits available that can be pseudo-locked, since only
861unused bits can be pseudo-locked the bits to be pseudo-locked needs to be
Changbin Du1cd7af52019-05-08 23:21:31 +0800862removed from the default resource group's schemata::
863
864 # cat info/L2/bit_usage
865 0=SSSSSSSS;1=SSSSSSSS
866 # echo 'L2:1=0xfc' > schemata
867 # cat info/L2/bit_usage
868 0=SSSSSSSS;1=SSSSSS00
Reinette Chatree17e7332018-06-22 15:42:07 -0700869
870Create a new resource group that will be associated with the pseudo-locked
871region, indicate that it will be used for a pseudo-locked region, and
Changbin Du1cd7af52019-05-08 23:21:31 +0800872configure the requested pseudo-locked region capacity bitmask::
Reinette Chatree17e7332018-06-22 15:42:07 -0700873
Changbin Du1cd7af52019-05-08 23:21:31 +0800874 # mkdir newlock
875 # echo pseudo-locksetup > newlock/mode
876 # echo 'L2:1=0x3' > newlock/schemata
Reinette Chatree17e7332018-06-22 15:42:07 -0700877
878On success the resource group's mode will change to pseudo-locked, the
879bit_usage will reflect the pseudo-locked region, and the character device
Changbin Du1cd7af52019-05-08 23:21:31 +0800880exposing the pseudo-locked region will exist::
Reinette Chatree17e7332018-06-22 15:42:07 -0700881
Changbin Du1cd7af52019-05-08 23:21:31 +0800882 # cat newlock/mode
883 pseudo-locked
884 # cat info/L2/bit_usage
885 0=SSSSSSSS;1=SSSSSSPP
886 # ls -l /dev/pseudo_lock/newlock
887 crw------- 1 root root 243, 0 Apr 3 05:01 /dev/pseudo_lock/newlock
Reinette Chatree17e7332018-06-22 15:42:07 -0700888
Changbin Du1cd7af52019-05-08 23:21:31 +0800889::
Reinette Chatree17e7332018-06-22 15:42:07 -0700890
Changbin Du1cd7af52019-05-08 23:21:31 +0800891 /*
892 * Example code to access one page of pseudo-locked cache region
893 * from user space.
894 */
895 #define _GNU_SOURCE
896 #include <fcntl.h>
897 #include <sched.h>
898 #include <stdio.h>
899 #include <stdlib.h>
900 #include <unistd.h>
901 #include <sys/mman.h>
Reinette Chatree17e7332018-06-22 15:42:07 -0700902
Changbin Du1cd7af52019-05-08 23:21:31 +0800903 /*
904 * It is required that the application runs with affinity to only
905 * cores associated with the pseudo-locked region. Here the cpu
906 * is hardcoded for convenience of example.
907 */
908 static int cpuid = 2;
Reinette Chatree17e7332018-06-22 15:42:07 -0700909
Changbin Du1cd7af52019-05-08 23:21:31 +0800910 int main(int argc, char *argv[])
911 {
912 cpu_set_t cpuset;
913 long page_size;
914 void *mapping;
915 int dev_fd;
916 int ret;
Reinette Chatree17e7332018-06-22 15:42:07 -0700917
Changbin Du1cd7af52019-05-08 23:21:31 +0800918 page_size = sysconf(_SC_PAGESIZE);
Reinette Chatree17e7332018-06-22 15:42:07 -0700919
Changbin Du1cd7af52019-05-08 23:21:31 +0800920 CPU_ZERO(&cpuset);
921 CPU_SET(cpuid, &cpuset);
922 ret = sched_setaffinity(0, sizeof(cpuset), &cpuset);
923 if (ret < 0) {
924 perror("sched_setaffinity");
925 exit(EXIT_FAILURE);
926 }
Reinette Chatree17e7332018-06-22 15:42:07 -0700927
Changbin Du1cd7af52019-05-08 23:21:31 +0800928 dev_fd = open("/dev/pseudo_lock/newlock", O_RDWR);
929 if (dev_fd < 0) {
930 perror("open");
931 exit(EXIT_FAILURE);
932 }
Reinette Chatree17e7332018-06-22 15:42:07 -0700933
Changbin Du1cd7af52019-05-08 23:21:31 +0800934 mapping = mmap(0, page_size, PROT_READ | PROT_WRITE, MAP_SHARED,
935 dev_fd, 0);
936 if (mapping == MAP_FAILED) {
937 perror("mmap");
938 close(dev_fd);
939 exit(EXIT_FAILURE);
940 }
Reinette Chatree17e7332018-06-22 15:42:07 -0700941
Changbin Du1cd7af52019-05-08 23:21:31 +0800942 /* Application interacts with pseudo-locked memory @mapping */
Reinette Chatree17e7332018-06-22 15:42:07 -0700943
Changbin Du1cd7af52019-05-08 23:21:31 +0800944 ret = munmap(mapping, page_size);
945 if (ret < 0) {
946 perror("munmap");
947 close(dev_fd);
948 exit(EXIT_FAILURE);
949 }
950
951 close(dev_fd);
952 exit(EXIT_SUCCESS);
953 }
Reinette Chatree17e7332018-06-22 15:42:07 -0700954
Reinette Chatrecba1aab2018-06-22 15:41:53 -0700955Locking between applications
956----------------------------
Marcelo Tosatti3c2a7692016-12-14 15:08:37 -0200957
958Certain operations on the resctrl filesystem, composed of read/writes
959to/from multiple files, must be atomic.
960
961As an example, the allocation of an exclusive reservation of L3 cache
962involves:
963
Reinette Chatrecba1aab2018-06-22 15:41:53 -0700964 1. Read the cbmmasks from each directory or the per-resource "bit_usage"
Marcelo Tosatti3c2a7692016-12-14 15:08:37 -0200965 2. Find a contiguous set of bits in the global CBM bitmask that is clear
966 in any of the directory cbmmasks
967 3. Create a new directory
968 4. Set the bits found in step 2 to the new directory "schemata" file
969
970If two applications attempt to allocate space concurrently then they can
971end up allocating the same bits so the reservations are shared instead of
972exclusive.
973
974To coordinate atomic operations on the resctrlfs and to avoid the problem
975above, the following locking procedure is recommended:
976
977Locking is based on flock, which is available in libc and also as a shell
978script command
979
980Write lock:
981
982 A) Take flock(LOCK_EX) on /sys/fs/resctrl
983 B) Read/write the directory structure.
984 C) funlock
985
986Read lock:
987
988 A) Take flock(LOCK_SH) on /sys/fs/resctrl
989 B) If success read the directory structure.
990 C) funlock
991
Changbin Du1cd7af52019-05-08 23:21:31 +0800992Example with bash::
Marcelo Tosatti3c2a7692016-12-14 15:08:37 -0200993
Changbin Du1cd7af52019-05-08 23:21:31 +0800994 # Atomically read directory structure
995 $ flock -s /sys/fs/resctrl/ find /sys/fs/resctrl
Marcelo Tosatti3c2a7692016-12-14 15:08:37 -0200996
Changbin Du1cd7af52019-05-08 23:21:31 +0800997 # Read directory contents and create new subdirectory
Marcelo Tosatti3c2a7692016-12-14 15:08:37 -0200998
Changbin Du1cd7af52019-05-08 23:21:31 +0800999 $ cat create-dir.sh
1000 find /sys/fs/resctrl/ > output.txt
1001 mask = function-of(output.txt)
1002 mkdir /sys/fs/resctrl/newres/
1003 echo mask > /sys/fs/resctrl/newres/schemata
Marcelo Tosatti3c2a7692016-12-14 15:08:37 -02001004
Changbin Du1cd7af52019-05-08 23:21:31 +08001005 $ flock /sys/fs/resctrl/ ./create-dir.sh
Marcelo Tosatti3c2a7692016-12-14 15:08:37 -02001006
Changbin Du1cd7af52019-05-08 23:21:31 +08001007Example with C::
Marcelo Tosatti3c2a7692016-12-14 15:08:37 -02001008
Changbin Du1cd7af52019-05-08 23:21:31 +08001009 /*
1010 * Example code do take advisory locks
1011 * before accessing resctrl filesystem
1012 */
1013 #include <sys/file.h>
1014 #include <stdlib.h>
Marcelo Tosatti3c2a7692016-12-14 15:08:37 -02001015
Changbin Du1cd7af52019-05-08 23:21:31 +08001016 void resctrl_take_shared_lock(int fd)
1017 {
1018 int ret;
Marcelo Tosatti3c2a7692016-12-14 15:08:37 -02001019
Changbin Du1cd7af52019-05-08 23:21:31 +08001020 /* take shared lock on resctrl filesystem */
1021 ret = flock(fd, LOCK_SH);
1022 if (ret) {
1023 perror("flock");
1024 exit(-1);
1025 }
1026 }
Marcelo Tosatti3c2a7692016-12-14 15:08:37 -02001027
Changbin Du1cd7af52019-05-08 23:21:31 +08001028 void resctrl_take_exclusive_lock(int fd)
1029 {
1030 int ret;
Marcelo Tosatti3c2a7692016-12-14 15:08:37 -02001031
Changbin Du1cd7af52019-05-08 23:21:31 +08001032 /* release lock on resctrl filesystem */
1033 ret = flock(fd, LOCK_EX);
1034 if (ret) {
1035 perror("flock");
1036 exit(-1);
1037 }
1038 }
Marcelo Tosatti3c2a7692016-12-14 15:08:37 -02001039
Changbin Du1cd7af52019-05-08 23:21:31 +08001040 void resctrl_release_lock(int fd)
1041 {
1042 int ret;
Marcelo Tosatti3c2a7692016-12-14 15:08:37 -02001043
Changbin Du1cd7af52019-05-08 23:21:31 +08001044 /* take shared lock on resctrl filesystem */
1045 ret = flock(fd, LOCK_UN);
1046 if (ret) {
1047 perror("flock");
1048 exit(-1);
1049 }
1050 }
Marcelo Tosatti3c2a7692016-12-14 15:08:37 -02001051
Changbin Du1cd7af52019-05-08 23:21:31 +08001052 void main(void)
1053 {
1054 int fd, ret;
Marcelo Tosatti3c2a7692016-12-14 15:08:37 -02001055
Changbin Du1cd7af52019-05-08 23:21:31 +08001056 fd = open("/sys/fs/resctrl", O_DIRECTORY);
1057 if (fd == -1) {
1058 perror("open");
1059 exit(-1);
1060 }
1061 resctrl_take_shared_lock(fd);
1062 /* code to read directory contents */
1063 resctrl_release_lock(fd);
Marcelo Tosatti3c2a7692016-12-14 15:08:37 -02001064
Changbin Du1cd7af52019-05-08 23:21:31 +08001065 resctrl_take_exclusive_lock(fd);
1066 /* code to read and write directory contents */
1067 resctrl_release_lock(fd);
1068 }
Vikas Shivappa1640ae92017-07-25 14:14:21 -07001069
Changbin Du1cd7af52019-05-08 23:21:31 +08001070Examples for RDT Monitoring along with allocation usage
1071=======================================================
Vikas Shivappa1640ae92017-07-25 14:14:21 -07001072Reading monitored data
1073----------------------
1074Reading an event file (for ex: mon_data/mon_L3_00/llc_occupancy) would
1075show the current snapshot of LLC occupancy of the corresponding MON
1076group or CTRL_MON group.
1077
1078
1079Example 1 (Monitor CTRL_MON group and subset of tasks in CTRL_MON group)
Changbin Du1cd7af52019-05-08 23:21:31 +08001080------------------------------------------------------------------------
Vikas Shivappa1640ae92017-07-25 14:14:21 -07001081On a two socket machine (one L3 cache per socket) with just four bits
Changbin Du1cd7af52019-05-08 23:21:31 +08001082for cache bit masks::
Vikas Shivappa1640ae92017-07-25 14:14:21 -07001083
Changbin Du1cd7af52019-05-08 23:21:31 +08001084 # mount -t resctrl resctrl /sys/fs/resctrl
1085 # cd /sys/fs/resctrl
1086 # mkdir p0 p1
1087 # echo "L3:0=3;1=c" > /sys/fs/resctrl/p0/schemata
1088 # echo "L3:0=3;1=3" > /sys/fs/resctrl/p1/schemata
1089 # echo 5678 > p1/tasks
1090 # echo 5679 > p1/tasks
Vikas Shivappa1640ae92017-07-25 14:14:21 -07001091
1092The default resource group is unmodified, so we have access to all parts
1093of all caches (its schemata file reads "L3:0=f;1=f").
1094
1095Tasks that are under the control of group "p0" may only allocate from the
1096"lower" 50% on cache ID 0, and the "upper" 50% of cache ID 1.
1097Tasks in group "p1" use the "lower" 50% of cache on both sockets.
1098
1099Create monitor groups and assign a subset of tasks to each monitor group.
Changbin Du1cd7af52019-05-08 23:21:31 +08001100::
Vikas Shivappa1640ae92017-07-25 14:14:21 -07001101
Changbin Du1cd7af52019-05-08 23:21:31 +08001102 # cd /sys/fs/resctrl/p1/mon_groups
1103 # mkdir m11 m12
1104 # echo 5678 > m11/tasks
1105 # echo 5679 > m12/tasks
Vikas Shivappa1640ae92017-07-25 14:14:21 -07001106
1107fetch data (data shown in bytes)
Changbin Du1cd7af52019-05-08 23:21:31 +08001108::
Vikas Shivappa1640ae92017-07-25 14:14:21 -07001109
Changbin Du1cd7af52019-05-08 23:21:31 +08001110 # cat m11/mon_data/mon_L3_00/llc_occupancy
1111 16234000
1112 # cat m11/mon_data/mon_L3_01/llc_occupancy
1113 14789000
1114 # cat m12/mon_data/mon_L3_00/llc_occupancy
1115 16789000
Vikas Shivappa1640ae92017-07-25 14:14:21 -07001116
1117The parent ctrl_mon group shows the aggregated data.
Changbin Du1cd7af52019-05-08 23:21:31 +08001118::
Vikas Shivappa1640ae92017-07-25 14:14:21 -07001119
Changbin Du1cd7af52019-05-08 23:21:31 +08001120 # cat /sys/fs/resctrl/p1/mon_data/mon_l3_00/llc_occupancy
1121 31234000
Vikas Shivappa1640ae92017-07-25 14:14:21 -07001122
1123Example 2 (Monitor a task from its creation)
Changbin Du1cd7af52019-05-08 23:21:31 +08001124--------------------------------------------
1125On a two socket machine (one L3 cache per socket)::
Vikas Shivappa1640ae92017-07-25 14:14:21 -07001126
Changbin Du1cd7af52019-05-08 23:21:31 +08001127 # mount -t resctrl resctrl /sys/fs/resctrl
1128 # cd /sys/fs/resctrl
1129 # mkdir p0 p1
Vikas Shivappa1640ae92017-07-25 14:14:21 -07001130
1131An RMID is allocated to the group once its created and hence the <cmd>
1132below is monitored from its creation.
Changbin Du1cd7af52019-05-08 23:21:31 +08001133::
Vikas Shivappa1640ae92017-07-25 14:14:21 -07001134
Changbin Du1cd7af52019-05-08 23:21:31 +08001135 # echo $$ > /sys/fs/resctrl/p1/tasks
1136 # <cmd>
Vikas Shivappa1640ae92017-07-25 14:14:21 -07001137
Changbin Du1cd7af52019-05-08 23:21:31 +08001138Fetch the data::
Vikas Shivappa1640ae92017-07-25 14:14:21 -07001139
Changbin Du1cd7af52019-05-08 23:21:31 +08001140 # cat /sys/fs/resctrl/p1/mon_data/mon_l3_00/llc_occupancy
1141 31789000
Vikas Shivappa1640ae92017-07-25 14:14:21 -07001142
1143Example 3 (Monitor without CAT support or before creating CAT groups)
Changbin Du1cd7af52019-05-08 23:21:31 +08001144---------------------------------------------------------------------
Vikas Shivappa1640ae92017-07-25 14:14:21 -07001145
1146Assume a system like HSW has only CQM and no CAT support. In this case
1147the resctrl will still mount but cannot create CTRL_MON directories.
1148But user can create different MON groups within the root group thereby
1149able to monitor all tasks including kernel threads.
1150
1151This can also be used to profile jobs cache size footprint before being
1152able to allocate them to different allocation groups.
Changbin Du1cd7af52019-05-08 23:21:31 +08001153::
Vikas Shivappa1640ae92017-07-25 14:14:21 -07001154
Changbin Du1cd7af52019-05-08 23:21:31 +08001155 # mount -t resctrl resctrl /sys/fs/resctrl
1156 # cd /sys/fs/resctrl
1157 # mkdir mon_groups/m01
1158 # mkdir mon_groups/m02
Vikas Shivappa1640ae92017-07-25 14:14:21 -07001159
Changbin Du1cd7af52019-05-08 23:21:31 +08001160 # echo 3478 > /sys/fs/resctrl/mon_groups/m01/tasks
1161 # echo 2467 > /sys/fs/resctrl/mon_groups/m02/tasks
Vikas Shivappa1640ae92017-07-25 14:14:21 -07001162
1163Monitor the groups separately and also get per domain data. From the
1164below its apparent that the tasks are mostly doing work on
1165domain(socket) 0.
Changbin Du1cd7af52019-05-08 23:21:31 +08001166::
Vikas Shivappa1640ae92017-07-25 14:14:21 -07001167
Changbin Du1cd7af52019-05-08 23:21:31 +08001168 # cat /sys/fs/resctrl/mon_groups/m01/mon_L3_00/llc_occupancy
1169 31234000
1170 # cat /sys/fs/resctrl/mon_groups/m01/mon_L3_01/llc_occupancy
1171 34555
1172 # cat /sys/fs/resctrl/mon_groups/m02/mon_L3_00/llc_occupancy
1173 31234000
1174 # cat /sys/fs/resctrl/mon_groups/m02/mon_L3_01/llc_occupancy
1175 32789
Vikas Shivappa1640ae92017-07-25 14:14:21 -07001176
1177
1178Example 4 (Monitor real time tasks)
1179-----------------------------------
1180
1181A single socket system which has real time tasks running on cores 4-7
1182and non real time tasks on other cpus. We want to monitor the cache
1183occupancy of the real time threads on these cores.
Changbin Du1cd7af52019-05-08 23:21:31 +08001184::
Vikas Shivappa1640ae92017-07-25 14:14:21 -07001185
Changbin Du1cd7af52019-05-08 23:21:31 +08001186 # mount -t resctrl resctrl /sys/fs/resctrl
1187 # cd /sys/fs/resctrl
1188 # mkdir p1
Vikas Shivappa1640ae92017-07-25 14:14:21 -07001189
Changbin Du1cd7af52019-05-08 23:21:31 +08001190Move the cpus 4-7 over to p1::
Vikas Shivappa1640ae92017-07-25 14:14:21 -07001191
Changbin Du1cd7af52019-05-08 23:21:31 +08001192 # echo f0 > p1/cpus
Vikas Shivappa1640ae92017-07-25 14:14:21 -07001193
Changbin Du1cd7af52019-05-08 23:21:31 +08001194View the llc occupancy snapshot::
1195
1196 # cat /sys/fs/resctrl/p1/mon_data/mon_L3_00/llc_occupancy
1197 11234000