Thomas Gleixner | 50acfb2 | 2019-05-29 07:18:00 -0700 | [diff] [blame] | 1 | /* SPDX-License-Identifier: GPL-2.0-only */ |
Palmer Dabbelt | fab957c | 2017-07-10 18:02:19 -0700 | [diff] [blame] | 2 | /* |
| 3 | * Copyright (C) 2012 Regents of the University of California |
Palmer Dabbelt | fab957c | 2017-07-10 18:02:19 -0700 | [diff] [blame] | 4 | */ |
| 5 | |
| 6 | #ifndef _ASM_RISCV_BITOPS_H |
| 7 | #define _ASM_RISCV_BITOPS_H |
| 8 | |
| 9 | #ifndef _LINUX_BITOPS_H |
| 10 | #error "Only <linux/bitops.h> can be included directly" |
| 11 | #endif /* _LINUX_BITOPS_H */ |
| 12 | |
| 13 | #include <linux/compiler.h> |
| 14 | #include <linux/irqflags.h> |
| 15 | #include <asm/barrier.h> |
| 16 | #include <asm/bitsperlong.h> |
| 17 | |
Palmer Dabbelt | fab957c | 2017-07-10 18:02:19 -0700 | [diff] [blame] | 18 | #include <asm-generic/bitops/__ffs.h> |
| 19 | #include <asm-generic/bitops/ffz.h> |
| 20 | #include <asm-generic/bitops/fls.h> |
| 21 | #include <asm-generic/bitops/__fls.h> |
| 22 | #include <asm-generic/bitops/fls64.h> |
| 23 | #include <asm-generic/bitops/find.h> |
| 24 | #include <asm-generic/bitops/sched.h> |
| 25 | #include <asm-generic/bitops/ffs.h> |
| 26 | |
| 27 | #include <asm-generic/bitops/hweight.h> |
| 28 | |
| 29 | #if (BITS_PER_LONG == 64) |
| 30 | #define __AMO(op) "amo" #op ".d" |
| 31 | #elif (BITS_PER_LONG == 32) |
| 32 | #define __AMO(op) "amo" #op ".w" |
| 33 | #else |
| 34 | #error "Unexpected BITS_PER_LONG" |
| 35 | #endif |
| 36 | |
| 37 | #define __test_and_op_bit_ord(op, mod, nr, addr, ord) \ |
| 38 | ({ \ |
| 39 | unsigned long __res, __mask; \ |
| 40 | __mask = BIT_MASK(nr); \ |
| 41 | __asm__ __volatile__ ( \ |
| 42 | __AMO(op) #ord " %0, %2, %1" \ |
| 43 | : "=r" (__res), "+A" (addr[BIT_WORD(nr)]) \ |
| 44 | : "r" (mod(__mask)) \ |
| 45 | : "memory"); \ |
| 46 | ((__res & __mask) != 0); \ |
| 47 | }) |
| 48 | |
| 49 | #define __op_bit_ord(op, mod, nr, addr, ord) \ |
| 50 | __asm__ __volatile__ ( \ |
| 51 | __AMO(op) #ord " zero, %1, %0" \ |
| 52 | : "+A" (addr[BIT_WORD(nr)]) \ |
| 53 | : "r" (mod(BIT_MASK(nr))) \ |
| 54 | : "memory"); |
| 55 | |
| 56 | #define __test_and_op_bit(op, mod, nr, addr) \ |
Palmer Dabbelt | 9347ce5 | 2017-11-28 14:04:05 -0800 | [diff] [blame] | 57 | __test_and_op_bit_ord(op, mod, nr, addr, .aqrl) |
Palmer Dabbelt | fab957c | 2017-07-10 18:02:19 -0700 | [diff] [blame] | 58 | #define __op_bit(op, mod, nr, addr) \ |
| 59 | __op_bit_ord(op, mod, nr, addr, ) |
| 60 | |
| 61 | /* Bitmask modifiers */ |
| 62 | #define __NOP(x) (x) |
| 63 | #define __NOT(x) (~(x)) |
| 64 | |
| 65 | /** |
| 66 | * test_and_set_bit - Set a bit and return its old value |
| 67 | * @nr: Bit to set |
| 68 | * @addr: Address to count from |
| 69 | * |
| 70 | * This operation may be reordered on other architectures than x86. |
| 71 | */ |
| 72 | static inline int test_and_set_bit(int nr, volatile unsigned long *addr) |
| 73 | { |
| 74 | return __test_and_op_bit(or, __NOP, nr, addr); |
| 75 | } |
| 76 | |
| 77 | /** |
| 78 | * test_and_clear_bit - Clear a bit and return its old value |
| 79 | * @nr: Bit to clear |
| 80 | * @addr: Address to count from |
| 81 | * |
| 82 | * This operation can be reordered on other architectures other than x86. |
| 83 | */ |
| 84 | static inline int test_and_clear_bit(int nr, volatile unsigned long *addr) |
| 85 | { |
| 86 | return __test_and_op_bit(and, __NOT, nr, addr); |
| 87 | } |
| 88 | |
| 89 | /** |
| 90 | * test_and_change_bit - Change a bit and return its old value |
| 91 | * @nr: Bit to change |
| 92 | * @addr: Address to count from |
| 93 | * |
| 94 | * This operation is atomic and cannot be reordered. |
| 95 | * It also implies a memory barrier. |
| 96 | */ |
| 97 | static inline int test_and_change_bit(int nr, volatile unsigned long *addr) |
| 98 | { |
| 99 | return __test_and_op_bit(xor, __NOP, nr, addr); |
| 100 | } |
| 101 | |
| 102 | /** |
| 103 | * set_bit - Atomically set a bit in memory |
| 104 | * @nr: the bit to set |
| 105 | * @addr: the address to start counting from |
| 106 | * |
| 107 | * Note: there are no guarantees that this function will not be reordered |
| 108 | * on non x86 architectures, so if you are writing portable code, |
| 109 | * make sure not to rely on its reordering guarantees. |
| 110 | * |
| 111 | * Note that @nr may be almost arbitrarily large; this function is not |
| 112 | * restricted to acting on a single-word quantity. |
| 113 | */ |
| 114 | static inline void set_bit(int nr, volatile unsigned long *addr) |
| 115 | { |
| 116 | __op_bit(or, __NOP, nr, addr); |
| 117 | } |
| 118 | |
| 119 | /** |
| 120 | * clear_bit - Clears a bit in memory |
| 121 | * @nr: Bit to clear |
| 122 | * @addr: Address to start counting from |
| 123 | * |
| 124 | * Note: there are no guarantees that this function will not be reordered |
| 125 | * on non x86 architectures, so if you are writing portable code, |
| 126 | * make sure not to rely on its reordering guarantees. |
| 127 | */ |
| 128 | static inline void clear_bit(int nr, volatile unsigned long *addr) |
| 129 | { |
| 130 | __op_bit(and, __NOT, nr, addr); |
| 131 | } |
| 132 | |
| 133 | /** |
| 134 | * change_bit - Toggle a bit in memory |
| 135 | * @nr: Bit to change |
| 136 | * @addr: Address to start counting from |
| 137 | * |
| 138 | * change_bit() may be reordered on other architectures than x86. |
| 139 | * Note that @nr may be almost arbitrarily large; this function is not |
| 140 | * restricted to acting on a single-word quantity. |
| 141 | */ |
| 142 | static inline void change_bit(int nr, volatile unsigned long *addr) |
| 143 | { |
| 144 | __op_bit(xor, __NOP, nr, addr); |
| 145 | } |
| 146 | |
| 147 | /** |
| 148 | * test_and_set_bit_lock - Set a bit and return its old value, for lock |
| 149 | * @nr: Bit to set |
| 150 | * @addr: Address to count from |
| 151 | * |
| 152 | * This operation is atomic and provides acquire barrier semantics. |
| 153 | * It can be used to implement bit locks. |
| 154 | */ |
| 155 | static inline int test_and_set_bit_lock( |
| 156 | unsigned long nr, volatile unsigned long *addr) |
| 157 | { |
| 158 | return __test_and_op_bit_ord(or, __NOP, nr, addr, .aq); |
| 159 | } |
| 160 | |
| 161 | /** |
| 162 | * clear_bit_unlock - Clear a bit in memory, for unlock |
| 163 | * @nr: the bit to set |
| 164 | * @addr: the address to start counting from |
| 165 | * |
| 166 | * This operation is atomic and provides release barrier semantics. |
| 167 | */ |
| 168 | static inline void clear_bit_unlock( |
| 169 | unsigned long nr, volatile unsigned long *addr) |
| 170 | { |
| 171 | __op_bit_ord(and, __NOT, nr, addr, .rl); |
| 172 | } |
| 173 | |
| 174 | /** |
| 175 | * __clear_bit_unlock - Clear a bit in memory, for unlock |
| 176 | * @nr: the bit to set |
| 177 | * @addr: the address to start counting from |
| 178 | * |
| 179 | * This operation is like clear_bit_unlock, however it is not atomic. |
| 180 | * It does provide release barrier semantics so it can be used to unlock |
| 181 | * a bit lock, however it would only be used if no other CPU can modify |
| 182 | * any bits in the memory until the lock is released (a good example is |
| 183 | * if the bit lock itself protects access to the other bits in the word). |
| 184 | * |
| 185 | * On RISC-V systems there seems to be no benefit to taking advantage of the |
| 186 | * non-atomic property here: it's a lot more instructions and we still have to |
| 187 | * provide release semantics anyway. |
| 188 | */ |
| 189 | static inline void __clear_bit_unlock( |
| 190 | unsigned long nr, volatile unsigned long *addr) |
| 191 | { |
| 192 | clear_bit_unlock(nr, addr); |
| 193 | } |
| 194 | |
| 195 | #undef __test_and_op_bit |
| 196 | #undef __op_bit |
| 197 | #undef __NOP |
| 198 | #undef __NOT |
| 199 | #undef __AMO |
| 200 | |
| 201 | #include <asm-generic/bitops/non-atomic.h> |
| 202 | #include <asm-generic/bitops/le.h> |
| 203 | #include <asm-generic/bitops/ext2-atomic.h> |
| 204 | |
| 205 | #endif /* _ASM_RISCV_BITOPS_H */ |