Darrick J. Wong | 84d42ea | 2018-05-14 06:34:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2018 Oracle. All Rights Reserved. |
| 3 | * |
| 4 | * Author: Darrick J. Wong <darrick.wong@oracle.com> |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or |
| 7 | * modify it under the terms of the GNU General Public License |
| 8 | * as published by the Free Software Foundation; either version 2 |
| 9 | * of the License, or (at your option) any later version. |
| 10 | * |
| 11 | * This program is distributed in the hope that it would be useful, |
| 12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 | * GNU General Public License for more details. |
| 15 | * |
| 16 | * You should have received a copy of the GNU General Public License |
| 17 | * along with this program; if not, write the Free Software Foundation, |
| 18 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. |
| 19 | */ |
| 20 | #include "xfs.h" |
| 21 | #include "xfs_fs.h" |
| 22 | #include "xfs_shared.h" |
| 23 | #include "xfs_format.h" |
| 24 | #include "xfs_trans_resv.h" |
| 25 | #include "xfs_mount.h" |
| 26 | #include "xfs_defer.h" |
| 27 | #include "xfs_btree.h" |
| 28 | #include "xfs_bit.h" |
| 29 | #include "xfs_log_format.h" |
| 30 | #include "xfs_trans.h" |
| 31 | #include "xfs_sb.h" |
| 32 | #include "xfs_inode.h" |
| 33 | #include "xfs_icache.h" |
| 34 | #include "xfs_alloc.h" |
| 35 | #include "xfs_alloc_btree.h" |
| 36 | #include "xfs_ialloc.h" |
| 37 | #include "xfs_ialloc_btree.h" |
| 38 | #include "xfs_rmap.h" |
| 39 | #include "xfs_rmap_btree.h" |
| 40 | #include "xfs_refcount.h" |
| 41 | #include "xfs_refcount_btree.h" |
| 42 | #include "xfs_extent_busy.h" |
| 43 | #include "xfs_ag_resv.h" |
| 44 | #include "xfs_trans_space.h" |
Darrick J. Wong | 7e85bc6 | 2018-05-29 22:18:11 -0700 | [diff] [blame^] | 45 | #include "xfs_quota.h" |
Darrick J. Wong | 84d42ea | 2018-05-14 06:34:36 -0700 | [diff] [blame] | 46 | #include "scrub/xfs_scrub.h" |
| 47 | #include "scrub/scrub.h" |
| 48 | #include "scrub/common.h" |
| 49 | #include "scrub/trace.h" |
| 50 | #include "scrub/repair.h" |
| 51 | |
| 52 | /* |
| 53 | * Attempt to repair some metadata, if the metadata is corrupt and userspace |
| 54 | * told us to fix it. This function returns -EAGAIN to mean "re-run scrub", |
| 55 | * and will set *fixed to true if it thinks it repaired anything. |
| 56 | */ |
| 57 | int |
| 58 | xfs_repair_attempt( |
| 59 | struct xfs_inode *ip, |
| 60 | struct xfs_scrub_context *sc, |
| 61 | bool *fixed) |
| 62 | { |
| 63 | int error = 0; |
| 64 | |
| 65 | trace_xfs_repair_attempt(ip, sc->sm, error); |
| 66 | |
| 67 | xfs_scrub_ag_btcur_free(&sc->sa); |
| 68 | |
| 69 | /* Repair whatever's broken. */ |
| 70 | ASSERT(sc->ops->repair); |
| 71 | error = sc->ops->repair(sc); |
| 72 | trace_xfs_repair_done(ip, sc->sm, error); |
| 73 | switch (error) { |
| 74 | case 0: |
| 75 | /* |
| 76 | * Repair succeeded. Commit the fixes and perform a second |
| 77 | * scrub so that we can tell userspace if we fixed the problem. |
| 78 | */ |
| 79 | sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT; |
| 80 | *fixed = true; |
| 81 | return -EAGAIN; |
| 82 | case -EDEADLOCK: |
| 83 | case -EAGAIN: |
| 84 | /* Tell the caller to try again having grabbed all the locks. */ |
| 85 | if (!sc->try_harder) { |
| 86 | sc->try_harder = true; |
| 87 | return -EAGAIN; |
| 88 | } |
| 89 | /* |
| 90 | * We tried harder but still couldn't grab all the resources |
| 91 | * we needed to fix it. The corruption has not been fixed, |
| 92 | * so report back to userspace. |
| 93 | */ |
| 94 | return -EFSCORRUPTED; |
| 95 | default: |
| 96 | return error; |
| 97 | } |
| 98 | } |
| 99 | |
| 100 | /* |
| 101 | * Complain about unfixable problems in the filesystem. We don't log |
| 102 | * corruptions when IFLAG_REPAIR wasn't set on the assumption that the driver |
| 103 | * program is xfs_scrub, which will call back with IFLAG_REPAIR set if the |
| 104 | * administrator isn't running xfs_scrub in no-repairs mode. |
| 105 | * |
| 106 | * Use this helper function because _ratelimited silently declares a static |
| 107 | * structure to track rate limiting information. |
| 108 | */ |
| 109 | void |
| 110 | xfs_repair_failure( |
| 111 | struct xfs_mount *mp) |
| 112 | { |
| 113 | xfs_alert_ratelimited(mp, |
| 114 | "Corruption not fixed during online repair. Unmount and run xfs_repair."); |
| 115 | } |
| 116 | |
| 117 | /* |
| 118 | * Repair probe -- userspace uses this to probe if we're willing to repair a |
| 119 | * given mountpoint. |
| 120 | */ |
| 121 | int |
| 122 | xfs_repair_probe( |
| 123 | struct xfs_scrub_context *sc) |
| 124 | { |
| 125 | int error = 0; |
| 126 | |
| 127 | if (xfs_scrub_should_terminate(sc, &error)) |
| 128 | return error; |
| 129 | |
| 130 | return 0; |
| 131 | } |
Darrick J. Wong | 0a9633f | 2018-05-29 22:18:08 -0700 | [diff] [blame] | 132 | |
| 133 | /* |
| 134 | * Roll a transaction, keeping the AG headers locked and reinitializing |
| 135 | * the btree cursors. |
| 136 | */ |
| 137 | int |
| 138 | xfs_repair_roll_ag_trans( |
| 139 | struct xfs_scrub_context *sc) |
| 140 | { |
| 141 | int error; |
| 142 | |
| 143 | /* Keep the AG header buffers locked so we can keep going. */ |
| 144 | xfs_trans_bhold(sc->tp, sc->sa.agi_bp); |
| 145 | xfs_trans_bhold(sc->tp, sc->sa.agf_bp); |
| 146 | xfs_trans_bhold(sc->tp, sc->sa.agfl_bp); |
| 147 | |
| 148 | /* Roll the transaction. */ |
| 149 | error = xfs_trans_roll(&sc->tp); |
| 150 | if (error) |
| 151 | goto out_release; |
| 152 | |
| 153 | /* Join AG headers to the new transaction. */ |
| 154 | xfs_trans_bjoin(sc->tp, sc->sa.agi_bp); |
| 155 | xfs_trans_bjoin(sc->tp, sc->sa.agf_bp); |
| 156 | xfs_trans_bjoin(sc->tp, sc->sa.agfl_bp); |
| 157 | |
| 158 | return 0; |
| 159 | |
| 160 | out_release: |
| 161 | /* |
| 162 | * Rolling failed, so release the hold on the buffers. The |
| 163 | * buffers will be released during teardown on our way out |
| 164 | * of the kernel. |
| 165 | */ |
| 166 | xfs_trans_bhold_release(sc->tp, sc->sa.agi_bp); |
| 167 | xfs_trans_bhold_release(sc->tp, sc->sa.agf_bp); |
| 168 | xfs_trans_bhold_release(sc->tp, sc->sa.agfl_bp); |
| 169 | |
| 170 | return error; |
| 171 | } |
| 172 | |
| 173 | /* |
| 174 | * Does the given AG have enough space to rebuild a btree? Neither AG |
| 175 | * reservation can be critical, and we must have enough space (factoring |
| 176 | * in AG reservations) to construct a whole btree. |
| 177 | */ |
| 178 | bool |
| 179 | xfs_repair_ag_has_space( |
| 180 | struct xfs_perag *pag, |
| 181 | xfs_extlen_t nr_blocks, |
| 182 | enum xfs_ag_resv_type type) |
| 183 | { |
| 184 | return !xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) && |
| 185 | !xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA) && |
| 186 | pag->pagf_freeblks > xfs_ag_resv_needed(pag, type) + nr_blocks; |
| 187 | } |
| 188 | |
| 189 | /* |
| 190 | * Figure out how many blocks to reserve for an AG repair. We calculate the |
| 191 | * worst case estimate for the number of blocks we'd need to rebuild one of |
| 192 | * any type of per-AG btree. |
| 193 | */ |
| 194 | xfs_extlen_t |
| 195 | xfs_repair_calc_ag_resblks( |
| 196 | struct xfs_scrub_context *sc) |
| 197 | { |
| 198 | struct xfs_mount *mp = sc->mp; |
| 199 | struct xfs_scrub_metadata *sm = sc->sm; |
| 200 | struct xfs_perag *pag; |
| 201 | struct xfs_buf *bp; |
| 202 | xfs_agino_t icount = 0; |
| 203 | xfs_extlen_t aglen = 0; |
| 204 | xfs_extlen_t usedlen; |
| 205 | xfs_extlen_t freelen; |
| 206 | xfs_extlen_t bnobt_sz; |
| 207 | xfs_extlen_t inobt_sz; |
| 208 | xfs_extlen_t rmapbt_sz; |
| 209 | xfs_extlen_t refcbt_sz; |
| 210 | int error; |
| 211 | |
| 212 | if (!(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR)) |
| 213 | return 0; |
| 214 | |
| 215 | /* Use in-core counters if possible. */ |
| 216 | pag = xfs_perag_get(mp, sm->sm_agno); |
| 217 | if (pag->pagi_init) |
| 218 | icount = pag->pagi_count; |
| 219 | |
| 220 | /* |
| 221 | * Otherwise try to get the actual counters from disk; if not, make |
| 222 | * some worst case assumptions. |
| 223 | */ |
| 224 | if (icount == 0) { |
| 225 | error = xfs_ialloc_read_agi(mp, NULL, sm->sm_agno, &bp); |
| 226 | if (error) { |
| 227 | icount = mp->m_sb.sb_agblocks / mp->m_sb.sb_inopblock; |
| 228 | } else { |
| 229 | icount = pag->pagi_count; |
| 230 | xfs_buf_relse(bp); |
| 231 | } |
| 232 | } |
| 233 | |
| 234 | /* Now grab the block counters from the AGF. */ |
| 235 | error = xfs_alloc_read_agf(mp, NULL, sm->sm_agno, 0, &bp); |
| 236 | if (error) { |
| 237 | aglen = mp->m_sb.sb_agblocks; |
| 238 | freelen = aglen; |
| 239 | usedlen = aglen; |
| 240 | } else { |
| 241 | aglen = be32_to_cpu(XFS_BUF_TO_AGF(bp)->agf_length); |
| 242 | freelen = pag->pagf_freeblks; |
| 243 | usedlen = aglen - freelen; |
| 244 | xfs_buf_relse(bp); |
| 245 | } |
| 246 | xfs_perag_put(pag); |
| 247 | |
| 248 | trace_xfs_repair_calc_ag_resblks(mp, sm->sm_agno, icount, aglen, |
| 249 | freelen, usedlen); |
| 250 | |
| 251 | /* |
| 252 | * Figure out how many blocks we'd need worst case to rebuild |
| 253 | * each type of btree. Note that we can only rebuild the |
| 254 | * bnobt/cntbt or inobt/finobt as pairs. |
| 255 | */ |
| 256 | bnobt_sz = 2 * xfs_allocbt_calc_size(mp, freelen); |
| 257 | if (xfs_sb_version_hassparseinodes(&mp->m_sb)) |
| 258 | inobt_sz = xfs_iallocbt_calc_size(mp, icount / |
| 259 | XFS_INODES_PER_HOLEMASK_BIT); |
| 260 | else |
| 261 | inobt_sz = xfs_iallocbt_calc_size(mp, icount / |
| 262 | XFS_INODES_PER_CHUNK); |
| 263 | if (xfs_sb_version_hasfinobt(&mp->m_sb)) |
| 264 | inobt_sz *= 2; |
| 265 | if (xfs_sb_version_hasreflink(&mp->m_sb)) |
| 266 | refcbt_sz = xfs_refcountbt_calc_size(mp, usedlen); |
| 267 | else |
| 268 | refcbt_sz = 0; |
| 269 | if (xfs_sb_version_hasrmapbt(&mp->m_sb)) { |
| 270 | /* |
| 271 | * Guess how many blocks we need to rebuild the rmapbt. |
| 272 | * For non-reflink filesystems we can't have more records than |
| 273 | * used blocks. However, with reflink it's possible to have |
| 274 | * more than one rmap record per AG block. We don't know how |
| 275 | * many rmaps there could be in the AG, so we start off with |
| 276 | * what we hope is an generous over-estimation. |
| 277 | */ |
| 278 | if (xfs_sb_version_hasreflink(&mp->m_sb)) |
| 279 | rmapbt_sz = xfs_rmapbt_calc_size(mp, |
| 280 | (unsigned long long)aglen * 2); |
| 281 | else |
| 282 | rmapbt_sz = xfs_rmapbt_calc_size(mp, usedlen); |
| 283 | } else { |
| 284 | rmapbt_sz = 0; |
| 285 | } |
| 286 | |
| 287 | trace_xfs_repair_calc_ag_resblks_btsize(mp, sm->sm_agno, bnobt_sz, |
| 288 | inobt_sz, rmapbt_sz, refcbt_sz); |
| 289 | |
| 290 | return max(max(bnobt_sz, inobt_sz), max(rmapbt_sz, refcbt_sz)); |
| 291 | } |
Darrick J. Wong | 73d6b42 | 2018-05-29 22:18:09 -0700 | [diff] [blame] | 292 | |
| 293 | /* Allocate a block in an AG. */ |
| 294 | int |
| 295 | xfs_repair_alloc_ag_block( |
| 296 | struct xfs_scrub_context *sc, |
| 297 | struct xfs_owner_info *oinfo, |
| 298 | xfs_fsblock_t *fsbno, |
| 299 | enum xfs_ag_resv_type resv) |
| 300 | { |
| 301 | struct xfs_alloc_arg args = {0}; |
| 302 | xfs_agblock_t bno; |
| 303 | int error; |
| 304 | |
| 305 | switch (resv) { |
| 306 | case XFS_AG_RESV_AGFL: |
| 307 | case XFS_AG_RESV_RMAPBT: |
| 308 | error = xfs_alloc_get_freelist(sc->tp, sc->sa.agf_bp, &bno, 1); |
| 309 | if (error) |
| 310 | return error; |
| 311 | if (bno == NULLAGBLOCK) |
| 312 | return -ENOSPC; |
| 313 | xfs_extent_busy_reuse(sc->mp, sc->sa.agno, bno, |
| 314 | 1, false); |
| 315 | *fsbno = XFS_AGB_TO_FSB(sc->mp, sc->sa.agno, bno); |
| 316 | if (resv == XFS_AG_RESV_RMAPBT) |
| 317 | xfs_ag_resv_rmapbt_alloc(sc->mp, sc->sa.agno); |
| 318 | return 0; |
| 319 | default: |
| 320 | break; |
| 321 | } |
| 322 | |
| 323 | args.tp = sc->tp; |
| 324 | args.mp = sc->mp; |
| 325 | args.oinfo = *oinfo; |
| 326 | args.fsbno = XFS_AGB_TO_FSB(args.mp, sc->sa.agno, 0); |
| 327 | args.minlen = 1; |
| 328 | args.maxlen = 1; |
| 329 | args.prod = 1; |
| 330 | args.type = XFS_ALLOCTYPE_THIS_AG; |
| 331 | args.resv = resv; |
| 332 | |
| 333 | error = xfs_alloc_vextent(&args); |
| 334 | if (error) |
| 335 | return error; |
| 336 | if (args.fsbno == NULLFSBLOCK) |
| 337 | return -ENOSPC; |
| 338 | ASSERT(args.len == 1); |
| 339 | *fsbno = args.fsbno; |
| 340 | |
| 341 | return 0; |
| 342 | } |
| 343 | |
| 344 | /* Initialize a new AG btree root block with zero entries. */ |
| 345 | int |
| 346 | xfs_repair_init_btblock( |
| 347 | struct xfs_scrub_context *sc, |
| 348 | xfs_fsblock_t fsb, |
| 349 | struct xfs_buf **bpp, |
| 350 | xfs_btnum_t btnum, |
| 351 | const struct xfs_buf_ops *ops) |
| 352 | { |
| 353 | struct xfs_trans *tp = sc->tp; |
| 354 | struct xfs_mount *mp = sc->mp; |
| 355 | struct xfs_buf *bp; |
| 356 | |
| 357 | trace_xfs_repair_init_btblock(mp, XFS_FSB_TO_AGNO(mp, fsb), |
| 358 | XFS_FSB_TO_AGBNO(mp, fsb), btnum); |
| 359 | |
| 360 | ASSERT(XFS_FSB_TO_AGNO(mp, fsb) == sc->sa.agno); |
| 361 | bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, XFS_FSB_TO_DADDR(mp, fsb), |
| 362 | XFS_FSB_TO_BB(mp, 1), 0); |
| 363 | xfs_buf_zero(bp, 0, BBTOB(bp->b_length)); |
| 364 | xfs_btree_init_block(mp, bp, btnum, 0, 0, sc->sa.agno, 0); |
| 365 | xfs_trans_buf_set_type(tp, bp, XFS_BLFT_BTREE_BUF); |
| 366 | xfs_trans_log_buf(tp, bp, 0, bp->b_length); |
| 367 | bp->b_ops = ops; |
| 368 | *bpp = bp; |
| 369 | |
| 370 | return 0; |
| 371 | } |
Darrick J. Wong | 64a39d8 | 2018-05-29 22:18:09 -0700 | [diff] [blame] | 372 | |
| 373 | /* |
| 374 | * Reconstructing per-AG Btrees |
| 375 | * |
| 376 | * When a space btree is corrupt, we don't bother trying to fix it. Instead, |
| 377 | * we scan secondary space metadata to derive the records that should be in |
| 378 | * the damaged btree, initialize a fresh btree root, and insert the records. |
| 379 | * Note that for rebuilding the rmapbt we scan all the primary data to |
| 380 | * generate the new records. |
| 381 | * |
| 382 | * However, that leaves the matter of removing all the metadata describing the |
| 383 | * old broken structure. For primary metadata we use the rmap data to collect |
| 384 | * every extent with a matching rmap owner (exlist); we then iterate all other |
| 385 | * metadata structures with the same rmap owner to collect the extents that |
| 386 | * cannot be removed (sublist). We then subtract sublist from exlist to |
| 387 | * derive the blocks that were used by the old btree. These blocks can be |
| 388 | * reaped. |
| 389 | * |
| 390 | * For rmapbt reconstructions we must use different tactics for extent |
| 391 | * collection. First we iterate all primary metadata (this excludes the old |
| 392 | * rmapbt, obviously) to generate new rmap records. The gaps in the rmap |
| 393 | * records are collected as exlist. The bnobt records are collected as |
| 394 | * sublist. As with the other btrees we subtract sublist from exlist, and the |
| 395 | * result (since the rmapbt lives in the free space) are the blocks from the |
| 396 | * old rmapbt. |
| 397 | */ |
| 398 | |
| 399 | /* Collect a dead btree extent for later disposal. */ |
| 400 | int |
| 401 | xfs_repair_collect_btree_extent( |
| 402 | struct xfs_scrub_context *sc, |
| 403 | struct xfs_repair_extent_list *exlist, |
| 404 | xfs_fsblock_t fsbno, |
| 405 | xfs_extlen_t len) |
| 406 | { |
| 407 | struct xfs_repair_extent *rex; |
| 408 | |
| 409 | trace_xfs_repair_collect_btree_extent(sc->mp, |
| 410 | XFS_FSB_TO_AGNO(sc->mp, fsbno), |
| 411 | XFS_FSB_TO_AGBNO(sc->mp, fsbno), len); |
| 412 | |
| 413 | rex = kmem_alloc(sizeof(struct xfs_repair_extent), KM_MAYFAIL); |
| 414 | if (!rex) |
| 415 | return -ENOMEM; |
| 416 | |
| 417 | INIT_LIST_HEAD(&rex->list); |
| 418 | rex->fsbno = fsbno; |
| 419 | rex->len = len; |
| 420 | list_add_tail(&rex->list, &exlist->list); |
| 421 | |
| 422 | return 0; |
| 423 | } |
| 424 | |
| 425 | /* |
| 426 | * An error happened during the rebuild so the transaction will be cancelled. |
| 427 | * The fs will shut down, and the administrator has to unmount and run repair. |
| 428 | * Therefore, free all the memory associated with the list so we can die. |
| 429 | */ |
| 430 | void |
| 431 | xfs_repair_cancel_btree_extents( |
| 432 | struct xfs_scrub_context *sc, |
| 433 | struct xfs_repair_extent_list *exlist) |
| 434 | { |
| 435 | struct xfs_repair_extent *rex; |
| 436 | struct xfs_repair_extent *n; |
| 437 | |
| 438 | for_each_xfs_repair_extent_safe(rex, n, exlist) { |
| 439 | list_del(&rex->list); |
| 440 | kmem_free(rex); |
| 441 | } |
| 442 | } |
| 443 | |
| 444 | /* Compare two btree extents. */ |
| 445 | static int |
| 446 | xfs_repair_btree_extent_cmp( |
| 447 | void *priv, |
| 448 | struct list_head *a, |
| 449 | struct list_head *b) |
| 450 | { |
| 451 | struct xfs_repair_extent *ap; |
| 452 | struct xfs_repair_extent *bp; |
| 453 | |
| 454 | ap = container_of(a, struct xfs_repair_extent, list); |
| 455 | bp = container_of(b, struct xfs_repair_extent, list); |
| 456 | |
| 457 | if (ap->fsbno > bp->fsbno) |
| 458 | return 1; |
| 459 | if (ap->fsbno < bp->fsbno) |
| 460 | return -1; |
| 461 | return 0; |
| 462 | } |
| 463 | |
| 464 | /* |
| 465 | * Remove all the blocks mentioned in @sublist from the extents in @exlist. |
| 466 | * |
| 467 | * The intent is that callers will iterate the rmapbt for all of its records |
| 468 | * for a given owner to generate @exlist; and iterate all the blocks of the |
| 469 | * metadata structures that are not being rebuilt and have the same rmapbt |
| 470 | * owner to generate @sublist. This routine subtracts all the extents |
| 471 | * mentioned in sublist from all the extents linked in @exlist, which leaves |
| 472 | * @exlist as the list of blocks that are not accounted for, which we assume |
| 473 | * are the dead blocks of the old metadata structure. The blocks mentioned in |
| 474 | * @exlist can be reaped. |
| 475 | */ |
| 476 | #define LEFT_ALIGNED (1 << 0) |
| 477 | #define RIGHT_ALIGNED (1 << 1) |
| 478 | int |
| 479 | xfs_repair_subtract_extents( |
| 480 | struct xfs_scrub_context *sc, |
| 481 | struct xfs_repair_extent_list *exlist, |
| 482 | struct xfs_repair_extent_list *sublist) |
| 483 | { |
| 484 | struct list_head *lp; |
| 485 | struct xfs_repair_extent *ex; |
| 486 | struct xfs_repair_extent *newex; |
| 487 | struct xfs_repair_extent *subex; |
| 488 | xfs_fsblock_t sub_fsb; |
| 489 | xfs_extlen_t sub_len; |
| 490 | int state; |
| 491 | int error = 0; |
| 492 | |
| 493 | if (list_empty(&exlist->list) || list_empty(&sublist->list)) |
| 494 | return 0; |
| 495 | ASSERT(!list_empty(&sublist->list)); |
| 496 | |
| 497 | list_sort(NULL, &exlist->list, xfs_repair_btree_extent_cmp); |
| 498 | list_sort(NULL, &sublist->list, xfs_repair_btree_extent_cmp); |
| 499 | |
| 500 | /* |
| 501 | * Now that we've sorted both lists, we iterate exlist once, rolling |
| 502 | * forward through sublist and/or exlist as necessary until we find an |
| 503 | * overlap or reach the end of either list. We do not reset lp to the |
| 504 | * head of exlist nor do we reset subex to the head of sublist. The |
| 505 | * list traversal is similar to merge sort, but we're deleting |
| 506 | * instead. In this manner we avoid O(n^2) operations. |
| 507 | */ |
| 508 | subex = list_first_entry(&sublist->list, struct xfs_repair_extent, |
| 509 | list); |
| 510 | lp = exlist->list.next; |
| 511 | while (lp != &exlist->list) { |
| 512 | ex = list_entry(lp, struct xfs_repair_extent, list); |
| 513 | |
| 514 | /* |
| 515 | * Advance subex and/or ex until we find a pair that |
| 516 | * intersect or we run out of extents. |
| 517 | */ |
| 518 | while (subex->fsbno + subex->len <= ex->fsbno) { |
| 519 | if (list_is_last(&subex->list, &sublist->list)) |
| 520 | goto out; |
| 521 | subex = list_next_entry(subex, list); |
| 522 | } |
| 523 | if (subex->fsbno >= ex->fsbno + ex->len) { |
| 524 | lp = lp->next; |
| 525 | continue; |
| 526 | } |
| 527 | |
| 528 | /* trim subex to fit the extent we have */ |
| 529 | sub_fsb = subex->fsbno; |
| 530 | sub_len = subex->len; |
| 531 | if (subex->fsbno < ex->fsbno) { |
| 532 | sub_len -= ex->fsbno - subex->fsbno; |
| 533 | sub_fsb = ex->fsbno; |
| 534 | } |
| 535 | if (sub_len > ex->len) |
| 536 | sub_len = ex->len; |
| 537 | |
| 538 | state = 0; |
| 539 | if (sub_fsb == ex->fsbno) |
| 540 | state |= LEFT_ALIGNED; |
| 541 | if (sub_fsb + sub_len == ex->fsbno + ex->len) |
| 542 | state |= RIGHT_ALIGNED; |
| 543 | switch (state) { |
| 544 | case LEFT_ALIGNED: |
| 545 | /* Coincides with only the left. */ |
| 546 | ex->fsbno += sub_len; |
| 547 | ex->len -= sub_len; |
| 548 | break; |
| 549 | case RIGHT_ALIGNED: |
| 550 | /* Coincides with only the right. */ |
| 551 | ex->len -= sub_len; |
| 552 | lp = lp->next; |
| 553 | break; |
| 554 | case LEFT_ALIGNED | RIGHT_ALIGNED: |
| 555 | /* Total overlap, just delete ex. */ |
| 556 | lp = lp->next; |
| 557 | list_del(&ex->list); |
| 558 | kmem_free(ex); |
| 559 | break; |
| 560 | case 0: |
| 561 | /* |
| 562 | * Deleting from the middle: add the new right extent |
| 563 | * and then shrink the left extent. |
| 564 | */ |
| 565 | newex = kmem_alloc(sizeof(struct xfs_repair_extent), |
| 566 | KM_MAYFAIL); |
| 567 | if (!newex) { |
| 568 | error = -ENOMEM; |
| 569 | goto out; |
| 570 | } |
| 571 | INIT_LIST_HEAD(&newex->list); |
| 572 | newex->fsbno = sub_fsb + sub_len; |
| 573 | newex->len = ex->fsbno + ex->len - newex->fsbno; |
| 574 | list_add(&newex->list, &ex->list); |
| 575 | ex->len = sub_fsb - ex->fsbno; |
| 576 | lp = lp->next; |
| 577 | break; |
| 578 | default: |
| 579 | ASSERT(0); |
| 580 | break; |
| 581 | } |
| 582 | } |
| 583 | |
| 584 | out: |
| 585 | return error; |
| 586 | } |
| 587 | #undef LEFT_ALIGNED |
| 588 | #undef RIGHT_ALIGNED |
Darrick J. Wong | 12c6510e | 2018-05-29 22:18:10 -0700 | [diff] [blame] | 589 | |
| 590 | /* |
| 591 | * Disposal of Blocks from Old per-AG Btrees |
| 592 | * |
| 593 | * Now that we've constructed a new btree to replace the damaged one, we want |
| 594 | * to dispose of the blocks that (we think) the old btree was using. |
| 595 | * Previously, we used the rmapbt to collect the extents (exlist) with the |
| 596 | * rmap owner corresponding to the tree we rebuilt, collected extents for any |
| 597 | * blocks with the same rmap owner that are owned by another data structure |
| 598 | * (sublist), and subtracted sublist from exlist. In theory the extents |
| 599 | * remaining in exlist are the old btree's blocks. |
| 600 | * |
| 601 | * Unfortunately, it's possible that the btree was crosslinked with other |
| 602 | * blocks on disk. The rmap data can tell us if there are multiple owners, so |
| 603 | * if the rmapbt says there is an owner of this block other than @oinfo, then |
| 604 | * the block is crosslinked. Remove the reverse mapping and continue. |
| 605 | * |
| 606 | * If there is one rmap record, we can free the block, which removes the |
| 607 | * reverse mapping but doesn't add the block to the free space. Our repair |
| 608 | * strategy is to hope the other metadata objects crosslinked on this block |
| 609 | * will be rebuilt (atop different blocks), thereby removing all the cross |
| 610 | * links. |
| 611 | * |
| 612 | * If there are no rmap records at all, we also free the block. If the btree |
| 613 | * being rebuilt lives in the free space (bnobt/cntbt/rmapbt) then there isn't |
| 614 | * supposed to be a rmap record and everything is ok. For other btrees there |
| 615 | * had to have been an rmap entry for the block to have ended up on @exlist, |
| 616 | * so if it's gone now there's something wrong and the fs will shut down. |
| 617 | * |
| 618 | * Note: If there are multiple rmap records with only the same rmap owner as |
| 619 | * the btree we're trying to rebuild and the block is indeed owned by another |
| 620 | * data structure with the same rmap owner, then the block will be in sublist |
| 621 | * and therefore doesn't need disposal. If there are multiple rmap records |
| 622 | * with only the same rmap owner but the block is not owned by something with |
| 623 | * the same rmap owner, the block will be freed. |
| 624 | * |
| 625 | * The caller is responsible for locking the AG headers for the entire rebuild |
| 626 | * operation so that nothing else can sneak in and change the AG state while |
| 627 | * we're not looking. We also assume that the caller already invalidated any |
| 628 | * buffers associated with @exlist. |
| 629 | */ |
| 630 | |
| 631 | /* |
| 632 | * Invalidate buffers for per-AG btree blocks we're dumping. This function |
| 633 | * is not intended for use with file data repairs; we have bunmapi for that. |
| 634 | */ |
| 635 | int |
| 636 | xfs_repair_invalidate_blocks( |
| 637 | struct xfs_scrub_context *sc, |
| 638 | struct xfs_repair_extent_list *exlist) |
| 639 | { |
| 640 | struct xfs_repair_extent *rex; |
| 641 | struct xfs_repair_extent *n; |
| 642 | struct xfs_buf *bp; |
| 643 | xfs_fsblock_t fsbno; |
| 644 | xfs_agblock_t i; |
| 645 | |
| 646 | /* |
| 647 | * For each block in each extent, see if there's an incore buffer for |
| 648 | * exactly that block; if so, invalidate it. The buffer cache only |
| 649 | * lets us look for one buffer at a time, so we have to look one block |
| 650 | * at a time. Avoid invalidating AG headers and post-EOFS blocks |
| 651 | * because we never own those; and if we can't TRYLOCK the buffer we |
| 652 | * assume it's owned by someone else. |
| 653 | */ |
| 654 | for_each_xfs_repair_extent_safe(rex, n, exlist) { |
| 655 | for (fsbno = rex->fsbno, i = rex->len; i > 0; fsbno++, i--) { |
| 656 | /* Skip AG headers and post-EOFS blocks */ |
| 657 | if (!xfs_verify_fsbno(sc->mp, fsbno)) |
| 658 | continue; |
| 659 | bp = xfs_buf_incore(sc->mp->m_ddev_targp, |
| 660 | XFS_FSB_TO_DADDR(sc->mp, fsbno), |
| 661 | XFS_FSB_TO_BB(sc->mp, 1), XBF_TRYLOCK); |
| 662 | if (bp) { |
| 663 | xfs_trans_bjoin(sc->tp, bp); |
| 664 | xfs_trans_binval(sc->tp, bp); |
| 665 | } |
| 666 | } |
| 667 | } |
| 668 | |
| 669 | return 0; |
| 670 | } |
| 671 | |
| 672 | /* Ensure the freelist is the correct size. */ |
| 673 | int |
| 674 | xfs_repair_fix_freelist( |
| 675 | struct xfs_scrub_context *sc, |
| 676 | bool can_shrink) |
| 677 | { |
| 678 | struct xfs_alloc_arg args = {0}; |
| 679 | |
| 680 | args.mp = sc->mp; |
| 681 | args.tp = sc->tp; |
| 682 | args.agno = sc->sa.agno; |
| 683 | args.alignment = 1; |
| 684 | args.pag = sc->sa.pag; |
| 685 | |
| 686 | return xfs_alloc_fix_freelist(&args, |
| 687 | can_shrink ? 0 : XFS_ALLOC_FLAG_NOSHRINK); |
| 688 | } |
| 689 | |
| 690 | /* |
| 691 | * Put a block back on the AGFL. |
| 692 | */ |
| 693 | STATIC int |
| 694 | xfs_repair_put_freelist( |
| 695 | struct xfs_scrub_context *sc, |
| 696 | xfs_agblock_t agbno) |
| 697 | { |
| 698 | struct xfs_owner_info oinfo; |
| 699 | int error; |
| 700 | |
| 701 | /* Make sure there's space on the freelist. */ |
| 702 | error = xfs_repair_fix_freelist(sc, true); |
| 703 | if (error) |
| 704 | return error; |
| 705 | |
| 706 | /* |
| 707 | * Since we're "freeing" a lost block onto the AGFL, we have to |
| 708 | * create an rmap for the block prior to merging it or else other |
| 709 | * parts will break. |
| 710 | */ |
| 711 | xfs_rmap_ag_owner(&oinfo, XFS_RMAP_OWN_AG); |
| 712 | error = xfs_rmap_alloc(sc->tp, sc->sa.agf_bp, sc->sa.agno, agbno, 1, |
| 713 | &oinfo); |
| 714 | if (error) |
| 715 | return error; |
| 716 | |
| 717 | /* Put the block on the AGFL. */ |
| 718 | error = xfs_alloc_put_freelist(sc->tp, sc->sa.agf_bp, sc->sa.agfl_bp, |
| 719 | agbno, 0); |
| 720 | if (error) |
| 721 | return error; |
| 722 | xfs_extent_busy_insert(sc->tp, sc->sa.agno, agbno, 1, |
| 723 | XFS_EXTENT_BUSY_SKIP_DISCARD); |
| 724 | |
| 725 | return 0; |
| 726 | } |
| 727 | |
| 728 | /* Dispose of a single metadata block. */ |
| 729 | STATIC int |
| 730 | xfs_repair_dispose_btree_block( |
| 731 | struct xfs_scrub_context *sc, |
| 732 | xfs_fsblock_t fsbno, |
| 733 | struct xfs_owner_info *oinfo, |
| 734 | enum xfs_ag_resv_type resv) |
| 735 | { |
| 736 | struct xfs_btree_cur *cur; |
| 737 | struct xfs_buf *agf_bp = NULL; |
| 738 | xfs_agnumber_t agno; |
| 739 | xfs_agblock_t agbno; |
| 740 | bool has_other_rmap; |
| 741 | int error; |
| 742 | |
| 743 | agno = XFS_FSB_TO_AGNO(sc->mp, fsbno); |
| 744 | agbno = XFS_FSB_TO_AGBNO(sc->mp, fsbno); |
| 745 | |
| 746 | /* |
| 747 | * If we are repairing per-inode metadata, we need to read in the AGF |
| 748 | * buffer. Otherwise, we're repairing a per-AG structure, so reuse |
| 749 | * the AGF buffer that the setup functions already grabbed. |
| 750 | */ |
| 751 | if (sc->ip) { |
| 752 | error = xfs_alloc_read_agf(sc->mp, sc->tp, agno, 0, &agf_bp); |
| 753 | if (error) |
| 754 | return error; |
| 755 | if (!agf_bp) |
| 756 | return -ENOMEM; |
| 757 | } else { |
| 758 | agf_bp = sc->sa.agf_bp; |
| 759 | } |
| 760 | cur = xfs_rmapbt_init_cursor(sc->mp, sc->tp, agf_bp, agno); |
| 761 | |
| 762 | /* Can we find any other rmappings? */ |
| 763 | error = xfs_rmap_has_other_keys(cur, agbno, 1, oinfo, &has_other_rmap); |
| 764 | if (error) |
| 765 | goto out_cur; |
| 766 | xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); |
| 767 | |
| 768 | /* |
| 769 | * If there are other rmappings, this block is cross linked and must |
| 770 | * not be freed. Remove the reverse mapping and move on. Otherwise, |
| 771 | * we were the only owner of the block, so free the extent, which will |
| 772 | * also remove the rmap. |
| 773 | * |
| 774 | * XXX: XFS doesn't support detecting the case where a single block |
| 775 | * metadata structure is crosslinked with a multi-block structure |
| 776 | * because the buffer cache doesn't detect aliasing problems, so we |
| 777 | * can't fix 100% of crosslinking problems (yet). The verifiers will |
| 778 | * blow on writeout, the filesystem will shut down, and the admin gets |
| 779 | * to run xfs_repair. |
| 780 | */ |
| 781 | if (has_other_rmap) |
| 782 | error = xfs_rmap_free(sc->tp, agf_bp, agno, agbno, 1, oinfo); |
| 783 | else if (resv == XFS_AG_RESV_AGFL) |
| 784 | error = xfs_repair_put_freelist(sc, agbno); |
| 785 | else |
| 786 | error = xfs_free_extent(sc->tp, fsbno, 1, oinfo, resv); |
| 787 | if (agf_bp != sc->sa.agf_bp) |
| 788 | xfs_trans_brelse(sc->tp, agf_bp); |
| 789 | if (error) |
| 790 | return error; |
| 791 | |
| 792 | if (sc->ip) |
| 793 | return xfs_trans_roll_inode(&sc->tp, sc->ip); |
| 794 | return xfs_repair_roll_ag_trans(sc); |
| 795 | |
| 796 | out_cur: |
| 797 | xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); |
| 798 | if (agf_bp != sc->sa.agf_bp) |
| 799 | xfs_trans_brelse(sc->tp, agf_bp); |
| 800 | return error; |
| 801 | } |
| 802 | |
| 803 | /* Dispose of btree blocks from an old per-AG btree. */ |
| 804 | int |
| 805 | xfs_repair_reap_btree_extents( |
| 806 | struct xfs_scrub_context *sc, |
| 807 | struct xfs_repair_extent_list *exlist, |
| 808 | struct xfs_owner_info *oinfo, |
| 809 | enum xfs_ag_resv_type type) |
| 810 | { |
| 811 | struct xfs_repair_extent *rex; |
| 812 | struct xfs_repair_extent *n; |
| 813 | int error = 0; |
| 814 | |
| 815 | ASSERT(xfs_sb_version_hasrmapbt(&sc->mp->m_sb)); |
| 816 | |
| 817 | /* Dispose of every block from the old btree. */ |
| 818 | for_each_xfs_repair_extent_safe(rex, n, exlist) { |
| 819 | ASSERT(sc->ip != NULL || |
| 820 | XFS_FSB_TO_AGNO(sc->mp, rex->fsbno) == sc->sa.agno); |
| 821 | |
| 822 | trace_xfs_repair_dispose_btree_extent(sc->mp, |
| 823 | XFS_FSB_TO_AGNO(sc->mp, rex->fsbno), |
| 824 | XFS_FSB_TO_AGBNO(sc->mp, rex->fsbno), rex->len); |
| 825 | |
| 826 | for (; rex->len > 0; rex->len--, rex->fsbno++) { |
| 827 | error = xfs_repair_dispose_btree_block(sc, rex->fsbno, |
| 828 | oinfo, type); |
| 829 | if (error) |
| 830 | goto out; |
| 831 | } |
| 832 | list_del(&rex->list); |
| 833 | kmem_free(rex); |
| 834 | } |
| 835 | |
| 836 | out: |
| 837 | xfs_repair_cancel_btree_extents(sc, exlist); |
| 838 | return error; |
| 839 | } |
Darrick J. Wong | 04a2b7b | 2018-05-29 22:18:10 -0700 | [diff] [blame] | 840 | |
| 841 | /* |
| 842 | * Finding per-AG Btree Roots for AGF/AGI Reconstruction |
| 843 | * |
| 844 | * If the AGF or AGI become slightly corrupted, it may be necessary to rebuild |
| 845 | * the AG headers by using the rmap data to rummage through the AG looking for |
| 846 | * btree roots. This is not guaranteed to work if the AG is heavily damaged |
| 847 | * or the rmap data are corrupt. |
| 848 | * |
| 849 | * Callers of xfs_repair_find_ag_btree_roots must lock the AGF and AGFL |
| 850 | * buffers if the AGF is being rebuilt; or the AGF and AGI buffers if the |
| 851 | * AGI is being rebuilt. It must maintain these locks until it's safe for |
| 852 | * other threads to change the btrees' shapes. The caller provides |
| 853 | * information about the btrees to look for by passing in an array of |
| 854 | * xfs_repair_find_ag_btree with the (rmap owner, buf_ops, magic) fields set. |
| 855 | * The (root, height) fields will be set on return if anything is found. The |
| 856 | * last element of the array should have a NULL buf_ops to mark the end of the |
| 857 | * array. |
| 858 | * |
| 859 | * For every rmapbt record matching any of the rmap owners in btree_info, |
| 860 | * read each block referenced by the rmap record. If the block is a btree |
| 861 | * block from this filesystem matching any of the magic numbers and has a |
| 862 | * level higher than what we've already seen, remember the block and the |
| 863 | * height of the tree required to have such a block. When the call completes, |
| 864 | * we return the highest block we've found for each btree description; those |
| 865 | * should be the roots. |
| 866 | */ |
| 867 | |
| 868 | struct xfs_repair_findroot { |
| 869 | struct xfs_scrub_context *sc; |
| 870 | struct xfs_buf *agfl_bp; |
| 871 | struct xfs_agf *agf; |
| 872 | struct xfs_repair_find_ag_btree *btree_info; |
| 873 | }; |
| 874 | |
| 875 | /* See if our block is in the AGFL. */ |
| 876 | STATIC int |
| 877 | xfs_repair_findroot_agfl_walk( |
| 878 | struct xfs_mount *mp, |
| 879 | xfs_agblock_t bno, |
| 880 | void *priv) |
| 881 | { |
| 882 | xfs_agblock_t *agbno = priv; |
| 883 | |
| 884 | return (*agbno == bno) ? XFS_BTREE_QUERY_RANGE_ABORT : 0; |
| 885 | } |
| 886 | |
| 887 | /* Does this block match the btree information passed in? */ |
| 888 | STATIC int |
| 889 | xfs_repair_findroot_block( |
| 890 | struct xfs_repair_findroot *ri, |
| 891 | struct xfs_repair_find_ag_btree *fab, |
| 892 | uint64_t owner, |
| 893 | xfs_agblock_t agbno, |
| 894 | bool *found_it) |
| 895 | { |
| 896 | struct xfs_mount *mp = ri->sc->mp; |
| 897 | struct xfs_buf *bp; |
| 898 | struct xfs_btree_block *btblock; |
| 899 | xfs_daddr_t daddr; |
| 900 | int error; |
| 901 | |
| 902 | daddr = XFS_AGB_TO_DADDR(mp, ri->sc->sa.agno, agbno); |
| 903 | |
| 904 | /* |
| 905 | * Blocks in the AGFL have stale contents that might just happen to |
| 906 | * have a matching magic and uuid. We don't want to pull these blocks |
| 907 | * in as part of a tree root, so we have to filter out the AGFL stuff |
| 908 | * here. If the AGFL looks insane we'll just refuse to repair. |
| 909 | */ |
| 910 | if (owner == XFS_RMAP_OWN_AG) { |
| 911 | error = xfs_agfl_walk(mp, ri->agf, ri->agfl_bp, |
| 912 | xfs_repair_findroot_agfl_walk, &agbno); |
| 913 | if (error == XFS_BTREE_QUERY_RANGE_ABORT) |
| 914 | return 0; |
| 915 | if (error) |
| 916 | return error; |
| 917 | } |
| 918 | |
| 919 | error = xfs_trans_read_buf(mp, ri->sc->tp, mp->m_ddev_targp, daddr, |
| 920 | mp->m_bsize, 0, &bp, NULL); |
| 921 | if (error) |
| 922 | return error; |
| 923 | |
| 924 | /* |
| 925 | * Does this look like a block matching our fs and higher than any |
| 926 | * other block we've found so far? If so, reattach buffer verifiers |
| 927 | * so the AIL won't complain if the buffer is also dirty. |
| 928 | */ |
| 929 | btblock = XFS_BUF_TO_BLOCK(bp); |
| 930 | if (be32_to_cpu(btblock->bb_magic) != fab->magic) |
| 931 | goto out; |
| 932 | if (xfs_sb_version_hascrc(&mp->m_sb) && |
| 933 | !uuid_equal(&btblock->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid)) |
| 934 | goto out; |
| 935 | bp->b_ops = fab->buf_ops; |
| 936 | |
| 937 | /* Ignore this block if it's lower in the tree than we've seen. */ |
| 938 | if (fab->root != NULLAGBLOCK && |
| 939 | xfs_btree_get_level(btblock) < fab->height) |
| 940 | goto out; |
| 941 | |
| 942 | /* Make sure we pass the verifiers. */ |
| 943 | bp->b_ops->verify_read(bp); |
| 944 | if (bp->b_error) |
| 945 | goto out; |
| 946 | fab->root = agbno; |
| 947 | fab->height = xfs_btree_get_level(btblock) + 1; |
| 948 | *found_it = true; |
| 949 | |
| 950 | trace_xfs_repair_findroot_block(mp, ri->sc->sa.agno, agbno, |
| 951 | be32_to_cpu(btblock->bb_magic), fab->height - 1); |
| 952 | out: |
| 953 | xfs_trans_brelse(ri->sc->tp, bp); |
| 954 | return error; |
| 955 | } |
| 956 | |
| 957 | /* |
| 958 | * Do any of the blocks in this rmap record match one of the btrees we're |
| 959 | * looking for? |
| 960 | */ |
| 961 | STATIC int |
| 962 | xfs_repair_findroot_rmap( |
| 963 | struct xfs_btree_cur *cur, |
| 964 | struct xfs_rmap_irec *rec, |
| 965 | void *priv) |
| 966 | { |
| 967 | struct xfs_repair_findroot *ri = priv; |
| 968 | struct xfs_repair_find_ag_btree *fab; |
| 969 | xfs_agblock_t b; |
| 970 | bool found_it; |
| 971 | int error = 0; |
| 972 | |
| 973 | /* Ignore anything that isn't AG metadata. */ |
| 974 | if (!XFS_RMAP_NON_INODE_OWNER(rec->rm_owner)) |
| 975 | return 0; |
| 976 | |
| 977 | /* Otherwise scan each block + btree type. */ |
| 978 | for (b = 0; b < rec->rm_blockcount; b++) { |
| 979 | found_it = false; |
| 980 | for (fab = ri->btree_info; fab->buf_ops; fab++) { |
| 981 | if (rec->rm_owner != fab->rmap_owner) |
| 982 | continue; |
| 983 | error = xfs_repair_findroot_block(ri, fab, |
| 984 | rec->rm_owner, rec->rm_startblock + b, |
| 985 | &found_it); |
| 986 | if (error) |
| 987 | return error; |
| 988 | if (found_it) |
| 989 | break; |
| 990 | } |
| 991 | } |
| 992 | |
| 993 | return 0; |
| 994 | } |
| 995 | |
| 996 | /* Find the roots of the per-AG btrees described in btree_info. */ |
| 997 | int |
| 998 | xfs_repair_find_ag_btree_roots( |
| 999 | struct xfs_scrub_context *sc, |
| 1000 | struct xfs_buf *agf_bp, |
| 1001 | struct xfs_repair_find_ag_btree *btree_info, |
| 1002 | struct xfs_buf *agfl_bp) |
| 1003 | { |
| 1004 | struct xfs_mount *mp = sc->mp; |
| 1005 | struct xfs_repair_findroot ri; |
| 1006 | struct xfs_repair_find_ag_btree *fab; |
| 1007 | struct xfs_btree_cur *cur; |
| 1008 | int error; |
| 1009 | |
| 1010 | ASSERT(xfs_buf_islocked(agf_bp)); |
| 1011 | ASSERT(agfl_bp == NULL || xfs_buf_islocked(agfl_bp)); |
| 1012 | |
| 1013 | ri.sc = sc; |
| 1014 | ri.btree_info = btree_info; |
| 1015 | ri.agf = XFS_BUF_TO_AGF(agf_bp); |
| 1016 | ri.agfl_bp = agfl_bp; |
| 1017 | for (fab = btree_info; fab->buf_ops; fab++) { |
| 1018 | ASSERT(agfl_bp || fab->rmap_owner != XFS_RMAP_OWN_AG); |
| 1019 | ASSERT(XFS_RMAP_NON_INODE_OWNER(fab->rmap_owner)); |
| 1020 | fab->root = NULLAGBLOCK; |
| 1021 | fab->height = 0; |
| 1022 | } |
| 1023 | |
| 1024 | cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.agno); |
| 1025 | error = xfs_rmap_query_all(cur, xfs_repair_findroot_rmap, &ri); |
| 1026 | xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR); |
| 1027 | |
| 1028 | return error; |
| 1029 | } |
Darrick J. Wong | 7e85bc6 | 2018-05-29 22:18:11 -0700 | [diff] [blame^] | 1030 | |
| 1031 | /* Force a quotacheck the next time we mount. */ |
| 1032 | void |
| 1033 | xfs_repair_force_quotacheck( |
| 1034 | struct xfs_scrub_context *sc, |
| 1035 | uint dqtype) |
| 1036 | { |
| 1037 | uint flag; |
| 1038 | |
| 1039 | flag = xfs_quota_chkd_flag(dqtype); |
| 1040 | if (!(flag & sc->mp->m_qflags)) |
| 1041 | return; |
| 1042 | |
| 1043 | sc->mp->m_qflags &= ~flag; |
| 1044 | spin_lock(&sc->mp->m_sb_lock); |
| 1045 | sc->mp->m_sb.sb_qflags &= ~flag; |
| 1046 | spin_unlock(&sc->mp->m_sb_lock); |
| 1047 | xfs_log_sb(sc->tp); |
| 1048 | } |
| 1049 | |
| 1050 | /* |
| 1051 | * Attach dquots to this inode, or schedule quotacheck to fix them. |
| 1052 | * |
| 1053 | * This function ensures that the appropriate dquots are attached to an inode. |
| 1054 | * We cannot allow the dquot code to allocate an on-disk dquot block here |
| 1055 | * because we're already in transaction context with the inode locked. The |
| 1056 | * on-disk dquot should already exist anyway. If the quota code signals |
| 1057 | * corruption or missing quota information, schedule quotacheck, which will |
| 1058 | * repair corruptions in the quota metadata. |
| 1059 | */ |
| 1060 | int |
| 1061 | xfs_repair_ino_dqattach( |
| 1062 | struct xfs_scrub_context *sc) |
| 1063 | { |
| 1064 | int error; |
| 1065 | |
| 1066 | error = xfs_qm_dqattach_locked(sc->ip, false); |
| 1067 | switch (error) { |
| 1068 | case -EFSBADCRC: |
| 1069 | case -EFSCORRUPTED: |
| 1070 | case -ENOENT: |
| 1071 | xfs_err_ratelimited(sc->mp, |
| 1072 | "inode %llu repair encountered quota error %d, quotacheck forced.", |
| 1073 | (unsigned long long)sc->ip->i_ino, error); |
| 1074 | if (XFS_IS_UQUOTA_ON(sc->mp) && !sc->ip->i_udquot) |
| 1075 | xfs_repair_force_quotacheck(sc, XFS_DQ_USER); |
| 1076 | if (XFS_IS_GQUOTA_ON(sc->mp) && !sc->ip->i_gdquot) |
| 1077 | xfs_repair_force_quotacheck(sc, XFS_DQ_GROUP); |
| 1078 | if (XFS_IS_PQUOTA_ON(sc->mp) && !sc->ip->i_pdquot) |
| 1079 | xfs_repair_force_quotacheck(sc, XFS_DQ_PROJ); |
| 1080 | /* fall through */ |
| 1081 | case -ESRCH: |
| 1082 | error = 0; |
| 1083 | break; |
| 1084 | default: |
| 1085 | break; |
| 1086 | } |
| 1087 | |
| 1088 | return error; |
| 1089 | } |