blob: 2557b399f0a8ee2bf87e408f6c191d677a8f4e75 [file] [log] [blame]
Omar Sandoval00e04392017-04-14 01:00:02 -07001/*
2 * The Kyber I/O scheduler. Controls latency by throttling queue depths using
3 * scalable techniques.
4 *
5 * Copyright (C) 2017 Facebook
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public
9 * License v2 as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <https://www.gnu.org/licenses/>.
18 */
19
20#include <linux/kernel.h>
21#include <linux/blkdev.h>
22#include <linux/blk-mq.h>
23#include <linux/elevator.h>
24#include <linux/module.h>
25#include <linux/sbitmap.h>
26
27#include "blk.h"
28#include "blk-mq.h"
Omar Sandoval16b738f2017-05-04 00:31:33 -070029#include "blk-mq-debugfs.h"
Omar Sandoval00e04392017-04-14 01:00:02 -070030#include "blk-mq-sched.h"
31#include "blk-mq-tag.h"
32#include "blk-stat.h"
33
34/* Scheduling domains. */
35enum {
36 KYBER_READ,
37 KYBER_SYNC_WRITE,
38 KYBER_OTHER, /* Async writes, discard, etc. */
39 KYBER_NUM_DOMAINS,
40};
41
42enum {
43 KYBER_MIN_DEPTH = 256,
44
45 /*
46 * In order to prevent starvation of synchronous requests by a flood of
47 * asynchronous requests, we reserve 25% of requests for synchronous
48 * operations.
49 */
50 KYBER_ASYNC_PERCENT = 75,
51};
52
53/*
54 * Initial device-wide depths for each scheduling domain.
55 *
56 * Even for fast devices with lots of tags like NVMe, you can saturate
57 * the device with only a fraction of the maximum possible queue depth.
58 * So, we cap these to a reasonable value.
59 */
60static const unsigned int kyber_depth[] = {
61 [KYBER_READ] = 256,
62 [KYBER_SYNC_WRITE] = 128,
63 [KYBER_OTHER] = 64,
64};
65
66/*
67 * Scheduling domain batch sizes. We favor reads.
68 */
69static const unsigned int kyber_batch_size[] = {
70 [KYBER_READ] = 16,
71 [KYBER_SYNC_WRITE] = 8,
72 [KYBER_OTHER] = 8,
73};
74
75struct kyber_queue_data {
76 struct request_queue *q;
77
78 struct blk_stat_callback *cb;
79
80 /*
81 * The device is divided into multiple scheduling domains based on the
82 * request type. Each domain has a fixed number of in-flight requests of
83 * that type device-wide, limited by these tokens.
84 */
85 struct sbitmap_queue domain_tokens[KYBER_NUM_DOMAINS];
86
87 /*
88 * Async request percentage, converted to per-word depth for
89 * sbitmap_get_shallow().
90 */
91 unsigned int async_depth;
92
93 /* Target latencies in nanoseconds. */
94 u64 read_lat_nsec, write_lat_nsec;
95};
96
97struct kyber_hctx_data {
98 spinlock_t lock;
99 struct list_head rqs[KYBER_NUM_DOMAINS];
100 unsigned int cur_domain;
101 unsigned int batching;
102 wait_queue_t domain_wait[KYBER_NUM_DOMAINS];
103 atomic_t wait_index[KYBER_NUM_DOMAINS];
104};
105
Stephen Batesa37244e2017-04-20 15:29:16 -0600106static int rq_sched_domain(const struct request *rq)
Omar Sandoval00e04392017-04-14 01:00:02 -0700107{
108 unsigned int op = rq->cmd_flags;
109
110 if ((op & REQ_OP_MASK) == REQ_OP_READ)
111 return KYBER_READ;
112 else if ((op & REQ_OP_MASK) == REQ_OP_WRITE && op_is_sync(op))
113 return KYBER_SYNC_WRITE;
114 else
115 return KYBER_OTHER;
116}
117
118enum {
119 NONE = 0,
120 GOOD = 1,
121 GREAT = 2,
122 BAD = -1,
123 AWFUL = -2,
124};
125
126#define IS_GOOD(status) ((status) > 0)
127#define IS_BAD(status) ((status) < 0)
128
129static int kyber_lat_status(struct blk_stat_callback *cb,
130 unsigned int sched_domain, u64 target)
131{
132 u64 latency;
133
134 if (!cb->stat[sched_domain].nr_samples)
135 return NONE;
136
137 latency = cb->stat[sched_domain].mean;
138 if (latency >= 2 * target)
139 return AWFUL;
140 else if (latency > target)
141 return BAD;
142 else if (latency <= target / 2)
143 return GREAT;
144 else /* (latency <= target) */
145 return GOOD;
146}
147
148/*
149 * Adjust the read or synchronous write depth given the status of reads and
150 * writes. The goal is that the latencies of the two domains are fair (i.e., if
151 * one is good, then the other is good).
152 */
153static void kyber_adjust_rw_depth(struct kyber_queue_data *kqd,
154 unsigned int sched_domain, int this_status,
155 int other_status)
156{
157 unsigned int orig_depth, depth;
158
159 /*
160 * If this domain had no samples, or reads and writes are both good or
161 * both bad, don't adjust the depth.
162 */
163 if (this_status == NONE ||
164 (IS_GOOD(this_status) && IS_GOOD(other_status)) ||
165 (IS_BAD(this_status) && IS_BAD(other_status)))
166 return;
167
168 orig_depth = depth = kqd->domain_tokens[sched_domain].sb.depth;
169
170 if (other_status == NONE) {
171 depth++;
172 } else {
173 switch (this_status) {
174 case GOOD:
175 if (other_status == AWFUL)
176 depth -= max(depth / 4, 1U);
177 else
178 depth -= max(depth / 8, 1U);
179 break;
180 case GREAT:
181 if (other_status == AWFUL)
182 depth /= 2;
183 else
184 depth -= max(depth / 4, 1U);
185 break;
186 case BAD:
187 depth++;
188 break;
189 case AWFUL:
190 if (other_status == GREAT)
191 depth += 2;
192 else
193 depth++;
194 break;
195 }
196 }
197
198 depth = clamp(depth, 1U, kyber_depth[sched_domain]);
199 if (depth != orig_depth)
200 sbitmap_queue_resize(&kqd->domain_tokens[sched_domain], depth);
201}
202
203/*
204 * Adjust the depth of other requests given the status of reads and synchronous
205 * writes. As long as either domain is doing fine, we don't throttle, but if
206 * both domains are doing badly, we throttle heavily.
207 */
208static void kyber_adjust_other_depth(struct kyber_queue_data *kqd,
209 int read_status, int write_status,
210 bool have_samples)
211{
212 unsigned int orig_depth, depth;
213 int status;
214
215 orig_depth = depth = kqd->domain_tokens[KYBER_OTHER].sb.depth;
216
217 if (read_status == NONE && write_status == NONE) {
218 depth += 2;
219 } else if (have_samples) {
220 if (read_status == NONE)
221 status = write_status;
222 else if (write_status == NONE)
223 status = read_status;
224 else
225 status = max(read_status, write_status);
226 switch (status) {
227 case GREAT:
228 depth += 2;
229 break;
230 case GOOD:
231 depth++;
232 break;
233 case BAD:
234 depth -= max(depth / 4, 1U);
235 break;
236 case AWFUL:
237 depth /= 2;
238 break;
239 }
240 }
241
242 depth = clamp(depth, 1U, kyber_depth[KYBER_OTHER]);
243 if (depth != orig_depth)
244 sbitmap_queue_resize(&kqd->domain_tokens[KYBER_OTHER], depth);
245}
246
247/*
248 * Apply heuristics for limiting queue depths based on gathered latency
249 * statistics.
250 */
251static void kyber_stat_timer_fn(struct blk_stat_callback *cb)
252{
253 struct kyber_queue_data *kqd = cb->data;
254 int read_status, write_status;
255
256 read_status = kyber_lat_status(cb, KYBER_READ, kqd->read_lat_nsec);
257 write_status = kyber_lat_status(cb, KYBER_SYNC_WRITE, kqd->write_lat_nsec);
258
259 kyber_adjust_rw_depth(kqd, KYBER_READ, read_status, write_status);
260 kyber_adjust_rw_depth(kqd, KYBER_SYNC_WRITE, write_status, read_status);
261 kyber_adjust_other_depth(kqd, read_status, write_status,
262 cb->stat[KYBER_OTHER].nr_samples != 0);
263
264 /*
265 * Continue monitoring latencies if we aren't hitting the targets or
266 * we're still throttling other requests.
267 */
268 if (!blk_stat_is_active(kqd->cb) &&
269 ((IS_BAD(read_status) || IS_BAD(write_status) ||
270 kqd->domain_tokens[KYBER_OTHER].sb.depth < kyber_depth[KYBER_OTHER])))
271 blk_stat_activate_msecs(kqd->cb, 100);
272}
273
274static unsigned int kyber_sched_tags_shift(struct kyber_queue_data *kqd)
275{
276 /*
277 * All of the hardware queues have the same depth, so we can just grab
278 * the shift of the first one.
279 */
280 return kqd->q->queue_hw_ctx[0]->sched_tags->bitmap_tags.sb.shift;
281}
282
283static struct kyber_queue_data *kyber_queue_data_alloc(struct request_queue *q)
284{
285 struct kyber_queue_data *kqd;
286 unsigned int max_tokens;
287 unsigned int shift;
288 int ret = -ENOMEM;
289 int i;
290
291 kqd = kmalloc_node(sizeof(*kqd), GFP_KERNEL, q->node);
292 if (!kqd)
293 goto err;
294 kqd->q = q;
295
296 kqd->cb = blk_stat_alloc_callback(kyber_stat_timer_fn, rq_sched_domain,
297 KYBER_NUM_DOMAINS, kqd);
298 if (!kqd->cb)
299 goto err_kqd;
300
301 /*
302 * The maximum number of tokens for any scheduling domain is at least
303 * the queue depth of a single hardware queue. If the hardware doesn't
304 * have many tags, still provide a reasonable number.
305 */
306 max_tokens = max_t(unsigned int, q->tag_set->queue_depth,
307 KYBER_MIN_DEPTH);
308 for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
309 WARN_ON(!kyber_depth[i]);
310 WARN_ON(!kyber_batch_size[i]);
311 ret = sbitmap_queue_init_node(&kqd->domain_tokens[i],
312 max_tokens, -1, false, GFP_KERNEL,
313 q->node);
314 if (ret) {
315 while (--i >= 0)
316 sbitmap_queue_free(&kqd->domain_tokens[i]);
317 goto err_cb;
318 }
319 sbitmap_queue_resize(&kqd->domain_tokens[i], kyber_depth[i]);
320 }
321
322 shift = kyber_sched_tags_shift(kqd);
323 kqd->async_depth = (1U << shift) * KYBER_ASYNC_PERCENT / 100U;
324
325 kqd->read_lat_nsec = 2000000ULL;
326 kqd->write_lat_nsec = 10000000ULL;
327
328 return kqd;
329
330err_cb:
331 blk_stat_free_callback(kqd->cb);
332err_kqd:
333 kfree(kqd);
334err:
335 return ERR_PTR(ret);
336}
337
338static int kyber_init_sched(struct request_queue *q, struct elevator_type *e)
339{
340 struct kyber_queue_data *kqd;
341 struct elevator_queue *eq;
342
343 eq = elevator_alloc(q, e);
344 if (!eq)
345 return -ENOMEM;
346
347 kqd = kyber_queue_data_alloc(q);
348 if (IS_ERR(kqd)) {
349 kobject_put(&eq->kobj);
350 return PTR_ERR(kqd);
351 }
352
353 eq->elevator_data = kqd;
354 q->elevator = eq;
355
356 blk_stat_add_callback(q, kqd->cb);
357
358 return 0;
359}
360
361static void kyber_exit_sched(struct elevator_queue *e)
362{
363 struct kyber_queue_data *kqd = e->elevator_data;
364 struct request_queue *q = kqd->q;
365 int i;
366
367 blk_stat_remove_callback(q, kqd->cb);
368
369 for (i = 0; i < KYBER_NUM_DOMAINS; i++)
370 sbitmap_queue_free(&kqd->domain_tokens[i]);
371 blk_stat_free_callback(kqd->cb);
372 kfree(kqd);
373}
374
375static int kyber_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
376{
377 struct kyber_hctx_data *khd;
378 int i;
379
380 khd = kmalloc_node(sizeof(*khd), GFP_KERNEL, hctx->numa_node);
381 if (!khd)
382 return -ENOMEM;
383
384 spin_lock_init(&khd->lock);
385
386 for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
387 INIT_LIST_HEAD(&khd->rqs[i]);
388 INIT_LIST_HEAD(&khd->domain_wait[i].task_list);
389 atomic_set(&khd->wait_index[i], 0);
390 }
391
392 khd->cur_domain = 0;
393 khd->batching = 0;
394
395 hctx->sched_data = khd;
396
397 return 0;
398}
399
400static void kyber_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
401{
402 kfree(hctx->sched_data);
403}
404
405static int rq_get_domain_token(struct request *rq)
406{
407 return (long)rq->elv.priv[0];
408}
409
410static void rq_set_domain_token(struct request *rq, int token)
411{
412 rq->elv.priv[0] = (void *)(long)token;
413}
414
415static void rq_clear_domain_token(struct kyber_queue_data *kqd,
416 struct request *rq)
417{
418 unsigned int sched_domain;
419 int nr;
420
421 nr = rq_get_domain_token(rq);
422 if (nr != -1) {
423 sched_domain = rq_sched_domain(rq);
424 sbitmap_queue_clear(&kqd->domain_tokens[sched_domain], nr,
425 rq->mq_ctx->cpu);
426 }
427}
428
429static struct request *kyber_get_request(struct request_queue *q,
430 unsigned int op,
431 struct blk_mq_alloc_data *data)
432{
433 struct kyber_queue_data *kqd = q->elevator->elevator_data;
434 struct request *rq;
435
436 /*
437 * We use the scheduler tags as per-hardware queue queueing tokens.
438 * Async requests can be limited at this stage.
439 */
440 if (!op_is_sync(op))
441 data->shallow_depth = kqd->async_depth;
442
443 rq = __blk_mq_alloc_request(data, op);
444 if (rq)
445 rq_set_domain_token(rq, -1);
446 return rq;
447}
448
Christoph Hellwig7b9e9362017-06-16 18:15:21 +0200449static void kyber_finish_request(struct request *rq)
Omar Sandoval00e04392017-04-14 01:00:02 -0700450{
Christoph Hellwig7b9e9362017-06-16 18:15:21 +0200451 struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
Omar Sandoval00e04392017-04-14 01:00:02 -0700452
453 rq_clear_domain_token(kqd, rq);
Omar Sandoval00e04392017-04-14 01:00:02 -0700454}
455
456static void kyber_completed_request(struct request *rq)
457{
458 struct request_queue *q = rq->q;
459 struct kyber_queue_data *kqd = q->elevator->elevator_data;
460 unsigned int sched_domain;
461 u64 now, latency, target;
462
463 /*
464 * Check if this request met our latency goal. If not, quickly gather
465 * some statistics and start throttling.
466 */
467 sched_domain = rq_sched_domain(rq);
468 switch (sched_domain) {
469 case KYBER_READ:
470 target = kqd->read_lat_nsec;
471 break;
472 case KYBER_SYNC_WRITE:
473 target = kqd->write_lat_nsec;
474 break;
475 default:
476 return;
477 }
478
479 /* If we are already monitoring latencies, don't check again. */
480 if (blk_stat_is_active(kqd->cb))
481 return;
482
483 now = __blk_stat_time(ktime_to_ns(ktime_get()));
484 if (now < blk_stat_time(&rq->issue_stat))
485 return;
486
487 latency = now - blk_stat_time(&rq->issue_stat);
488
489 if (latency > target)
490 blk_stat_activate_msecs(kqd->cb, 10);
491}
492
493static void kyber_flush_busy_ctxs(struct kyber_hctx_data *khd,
494 struct blk_mq_hw_ctx *hctx)
495{
496 LIST_HEAD(rq_list);
497 struct request *rq, *next;
498
499 blk_mq_flush_busy_ctxs(hctx, &rq_list);
500 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
501 unsigned int sched_domain;
502
503 sched_domain = rq_sched_domain(rq);
504 list_move_tail(&rq->queuelist, &khd->rqs[sched_domain]);
505 }
506}
507
508static int kyber_domain_wake(wait_queue_t *wait, unsigned mode, int flags,
509 void *key)
510{
511 struct blk_mq_hw_ctx *hctx = READ_ONCE(wait->private);
512
513 list_del_init(&wait->task_list);
514 blk_mq_run_hw_queue(hctx, true);
515 return 1;
516}
517
518static int kyber_get_domain_token(struct kyber_queue_data *kqd,
519 struct kyber_hctx_data *khd,
520 struct blk_mq_hw_ctx *hctx)
521{
522 unsigned int sched_domain = khd->cur_domain;
523 struct sbitmap_queue *domain_tokens = &kqd->domain_tokens[sched_domain];
524 wait_queue_t *wait = &khd->domain_wait[sched_domain];
525 struct sbq_wait_state *ws;
526 int nr;
527
528 nr = __sbitmap_queue_get(domain_tokens);
529 if (nr >= 0)
530 return nr;
531
532 /*
533 * If we failed to get a domain token, make sure the hardware queue is
534 * run when one becomes available. Note that this is serialized on
535 * khd->lock, but we still need to be careful about the waker.
536 */
537 if (list_empty_careful(&wait->task_list)) {
538 init_waitqueue_func_entry(wait, kyber_domain_wake);
539 wait->private = hctx;
540 ws = sbq_wait_ptr(domain_tokens,
541 &khd->wait_index[sched_domain]);
542 add_wait_queue(&ws->wait, wait);
543
544 /*
545 * Try again in case a token was freed before we got on the wait
546 * queue.
547 */
548 nr = __sbitmap_queue_get(domain_tokens);
549 }
550 return nr;
551}
552
553static struct request *
554kyber_dispatch_cur_domain(struct kyber_queue_data *kqd,
555 struct kyber_hctx_data *khd,
556 struct blk_mq_hw_ctx *hctx,
557 bool *flushed)
558{
559 struct list_head *rqs;
560 struct request *rq;
561 int nr;
562
563 rqs = &khd->rqs[khd->cur_domain];
564 rq = list_first_entry_or_null(rqs, struct request, queuelist);
565
566 /*
567 * If there wasn't already a pending request and we haven't flushed the
568 * software queues yet, flush the software queues and check again.
569 */
570 if (!rq && !*flushed) {
571 kyber_flush_busy_ctxs(khd, hctx);
572 *flushed = true;
573 rq = list_first_entry_or_null(rqs, struct request, queuelist);
574 }
575
576 if (rq) {
577 nr = kyber_get_domain_token(kqd, khd, hctx);
578 if (nr >= 0) {
579 khd->batching++;
580 rq_set_domain_token(rq, nr);
581 list_del_init(&rq->queuelist);
582 return rq;
583 }
584 }
585
586 /* There were either no pending requests or no tokens. */
587 return NULL;
588}
589
590static struct request *kyber_dispatch_request(struct blk_mq_hw_ctx *hctx)
591{
592 struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
593 struct kyber_hctx_data *khd = hctx->sched_data;
594 bool flushed = false;
595 struct request *rq;
596 int i;
597
598 spin_lock(&khd->lock);
599
600 /*
601 * First, if we are still entitled to batch, try to dispatch a request
602 * from the batch.
603 */
604 if (khd->batching < kyber_batch_size[khd->cur_domain]) {
605 rq = kyber_dispatch_cur_domain(kqd, khd, hctx, &flushed);
606 if (rq)
607 goto out;
608 }
609
610 /*
611 * Either,
612 * 1. We were no longer entitled to a batch.
613 * 2. The domain we were batching didn't have any requests.
614 * 3. The domain we were batching was out of tokens.
615 *
616 * Start another batch. Note that this wraps back around to the original
617 * domain if no other domains have requests or tokens.
618 */
619 khd->batching = 0;
620 for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
621 if (khd->cur_domain == KYBER_NUM_DOMAINS - 1)
622 khd->cur_domain = 0;
623 else
624 khd->cur_domain++;
625
626 rq = kyber_dispatch_cur_domain(kqd, khd, hctx, &flushed);
627 if (rq)
628 goto out;
629 }
630
631 rq = NULL;
632out:
633 spin_unlock(&khd->lock);
634 return rq;
635}
636
637static bool kyber_has_work(struct blk_mq_hw_ctx *hctx)
638{
639 struct kyber_hctx_data *khd = hctx->sched_data;
640 int i;
641
642 for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
643 if (!list_empty_careful(&khd->rqs[i]))
644 return true;
645 }
646 return false;
647}
648
649#define KYBER_LAT_SHOW_STORE(op) \
650static ssize_t kyber_##op##_lat_show(struct elevator_queue *e, \
651 char *page) \
652{ \
653 struct kyber_queue_data *kqd = e->elevator_data; \
654 \
655 return sprintf(page, "%llu\n", kqd->op##_lat_nsec); \
656} \
657 \
658static ssize_t kyber_##op##_lat_store(struct elevator_queue *e, \
659 const char *page, size_t count) \
660{ \
661 struct kyber_queue_data *kqd = e->elevator_data; \
662 unsigned long long nsec; \
663 int ret; \
664 \
665 ret = kstrtoull(page, 10, &nsec); \
666 if (ret) \
667 return ret; \
668 \
669 kqd->op##_lat_nsec = nsec; \
670 \
671 return count; \
672}
673KYBER_LAT_SHOW_STORE(read);
674KYBER_LAT_SHOW_STORE(write);
675#undef KYBER_LAT_SHOW_STORE
676
677#define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store)
678static struct elv_fs_entry kyber_sched_attrs[] = {
679 KYBER_LAT_ATTR(read),
680 KYBER_LAT_ATTR(write),
681 __ATTR_NULL
682};
683#undef KYBER_LAT_ATTR
684
Omar Sandoval16b738f2017-05-04 00:31:33 -0700685#ifdef CONFIG_BLK_DEBUG_FS
686#define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name) \
687static int kyber_##name##_tokens_show(void *data, struct seq_file *m) \
688{ \
689 struct request_queue *q = data; \
690 struct kyber_queue_data *kqd = q->elevator->elevator_data; \
691 \
692 sbitmap_queue_show(&kqd->domain_tokens[domain], m); \
693 return 0; \
694} \
695 \
696static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos) \
697 __acquires(&khd->lock) \
698{ \
699 struct blk_mq_hw_ctx *hctx = m->private; \
700 struct kyber_hctx_data *khd = hctx->sched_data; \
701 \
702 spin_lock(&khd->lock); \
703 return seq_list_start(&khd->rqs[domain], *pos); \
704} \
705 \
706static void *kyber_##name##_rqs_next(struct seq_file *m, void *v, \
707 loff_t *pos) \
708{ \
709 struct blk_mq_hw_ctx *hctx = m->private; \
710 struct kyber_hctx_data *khd = hctx->sched_data; \
711 \
712 return seq_list_next(v, &khd->rqs[domain], pos); \
713} \
714 \
715static void kyber_##name##_rqs_stop(struct seq_file *m, void *v) \
716 __releases(&khd->lock) \
717{ \
718 struct blk_mq_hw_ctx *hctx = m->private; \
719 struct kyber_hctx_data *khd = hctx->sched_data; \
720 \
721 spin_unlock(&khd->lock); \
722} \
723 \
724static const struct seq_operations kyber_##name##_rqs_seq_ops = { \
725 .start = kyber_##name##_rqs_start, \
726 .next = kyber_##name##_rqs_next, \
727 .stop = kyber_##name##_rqs_stop, \
728 .show = blk_mq_debugfs_rq_show, \
729}; \
730 \
731static int kyber_##name##_waiting_show(void *data, struct seq_file *m) \
732{ \
733 struct blk_mq_hw_ctx *hctx = data; \
734 struct kyber_hctx_data *khd = hctx->sched_data; \
735 wait_queue_t *wait = &khd->domain_wait[domain]; \
736 \
737 seq_printf(m, "%d\n", !list_empty_careful(&wait->task_list)); \
738 return 0; \
739}
740KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ, read)
741KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_SYNC_WRITE, sync_write)
742KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER, other)
743#undef KYBER_DEBUGFS_DOMAIN_ATTRS
744
745static int kyber_async_depth_show(void *data, struct seq_file *m)
746{
747 struct request_queue *q = data;
748 struct kyber_queue_data *kqd = q->elevator->elevator_data;
749
750 seq_printf(m, "%u\n", kqd->async_depth);
751 return 0;
752}
753
754static int kyber_cur_domain_show(void *data, struct seq_file *m)
755{
756 struct blk_mq_hw_ctx *hctx = data;
757 struct kyber_hctx_data *khd = hctx->sched_data;
758
759 switch (khd->cur_domain) {
760 case KYBER_READ:
761 seq_puts(m, "READ\n");
762 break;
763 case KYBER_SYNC_WRITE:
764 seq_puts(m, "SYNC_WRITE\n");
765 break;
766 case KYBER_OTHER:
767 seq_puts(m, "OTHER\n");
768 break;
769 default:
770 seq_printf(m, "%u\n", khd->cur_domain);
771 break;
772 }
773 return 0;
774}
775
776static int kyber_batching_show(void *data, struct seq_file *m)
777{
778 struct blk_mq_hw_ctx *hctx = data;
779 struct kyber_hctx_data *khd = hctx->sched_data;
780
781 seq_printf(m, "%u\n", khd->batching);
782 return 0;
783}
784
785#define KYBER_QUEUE_DOMAIN_ATTRS(name) \
786 {#name "_tokens", 0400, kyber_##name##_tokens_show}
787static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs[] = {
788 KYBER_QUEUE_DOMAIN_ATTRS(read),
789 KYBER_QUEUE_DOMAIN_ATTRS(sync_write),
790 KYBER_QUEUE_DOMAIN_ATTRS(other),
791 {"async_depth", 0400, kyber_async_depth_show},
792 {},
793};
794#undef KYBER_QUEUE_DOMAIN_ATTRS
795
796#define KYBER_HCTX_DOMAIN_ATTRS(name) \
797 {#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops}, \
798 {#name "_waiting", 0400, kyber_##name##_waiting_show}
799static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs[] = {
800 KYBER_HCTX_DOMAIN_ATTRS(read),
801 KYBER_HCTX_DOMAIN_ATTRS(sync_write),
802 KYBER_HCTX_DOMAIN_ATTRS(other),
803 {"cur_domain", 0400, kyber_cur_domain_show},
804 {"batching", 0400, kyber_batching_show},
805 {},
806};
807#undef KYBER_HCTX_DOMAIN_ATTRS
808#endif
809
Omar Sandoval00e04392017-04-14 01:00:02 -0700810static struct elevator_type kyber_sched = {
811 .ops.mq = {
812 .init_sched = kyber_init_sched,
813 .exit_sched = kyber_exit_sched,
814 .init_hctx = kyber_init_hctx,
815 .exit_hctx = kyber_exit_hctx,
816 .get_request = kyber_get_request,
Christoph Hellwig7b9e9362017-06-16 18:15:21 +0200817 .finish_request = kyber_finish_request,
Omar Sandoval00e04392017-04-14 01:00:02 -0700818 .completed_request = kyber_completed_request,
819 .dispatch_request = kyber_dispatch_request,
820 .has_work = kyber_has_work,
821 },
822 .uses_mq = true,
Omar Sandoval16b738f2017-05-04 00:31:33 -0700823#ifdef CONFIG_BLK_DEBUG_FS
824 .queue_debugfs_attrs = kyber_queue_debugfs_attrs,
825 .hctx_debugfs_attrs = kyber_hctx_debugfs_attrs,
826#endif
Omar Sandoval00e04392017-04-14 01:00:02 -0700827 .elevator_attrs = kyber_sched_attrs,
828 .elevator_name = "kyber",
829 .elevator_owner = THIS_MODULE,
830};
831
832static int __init kyber_init(void)
833{
834 return elv_register(&kyber_sched);
835}
836
837static void __exit kyber_exit(void)
838{
839 elv_unregister(&kyber_sched);
840}
841
842module_init(kyber_init);
843module_exit(kyber_exit);
844
845MODULE_AUTHOR("Omar Sandoval");
846MODULE_LICENSE("GPL");
847MODULE_DESCRIPTION("Kyber I/O scheduler");