Satya Tangirala | 1b26283 | 2020-05-14 00:37:17 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Copyright 2019 Google LLC |
| 4 | */ |
| 5 | |
| 6 | /** |
| 7 | * DOC: The Keyslot Manager |
| 8 | * |
| 9 | * Many devices with inline encryption support have a limited number of "slots" |
| 10 | * into which encryption contexts may be programmed, and requests can be tagged |
| 11 | * with a slot number to specify the key to use for en/decryption. |
| 12 | * |
| 13 | * As the number of slots is limited, and programming keys is expensive on |
| 14 | * many inline encryption hardware, we don't want to program the same key into |
| 15 | * multiple slots - if multiple requests are using the same key, we want to |
| 16 | * program just one slot with that key and use that slot for all requests. |
| 17 | * |
| 18 | * The keyslot manager manages these keyslots appropriately, and also acts as |
| 19 | * an abstraction between the inline encryption hardware and the upper layers. |
| 20 | * |
| 21 | * Lower layer devices will set up a keyslot manager in their request queue |
| 22 | * and tell it how to perform device specific operations like programming/ |
| 23 | * evicting keys from keyslots. |
| 24 | * |
| 25 | * Upper layers will call blk_ksm_get_slot_for_key() to program a |
| 26 | * key into some slot in the inline encryption hardware. |
| 27 | */ |
Satya Tangirala | d145dc2 | 2020-05-14 00:37:19 +0000 | [diff] [blame] | 28 | |
| 29 | #define pr_fmt(fmt) "blk-crypto: " fmt |
| 30 | |
Satya Tangirala | 1b26283 | 2020-05-14 00:37:17 +0000 | [diff] [blame] | 31 | #include <linux/keyslot-manager.h> |
Eric Biggers | 5851d3b | 2021-01-21 00:21:54 -0800 | [diff] [blame] | 32 | #include <linux/device.h> |
Satya Tangirala | 1b26283 | 2020-05-14 00:37:17 +0000 | [diff] [blame] | 33 | #include <linux/atomic.h> |
| 34 | #include <linux/mutex.h> |
| 35 | #include <linux/pm_runtime.h> |
| 36 | #include <linux/wait.h> |
| 37 | #include <linux/blkdev.h> |
| 38 | |
| 39 | struct blk_ksm_keyslot { |
| 40 | atomic_t slot_refs; |
| 41 | struct list_head idle_slot_node; |
| 42 | struct hlist_node hash_node; |
| 43 | const struct blk_crypto_key *key; |
| 44 | struct blk_keyslot_manager *ksm; |
| 45 | }; |
| 46 | |
| 47 | static inline void blk_ksm_hw_enter(struct blk_keyslot_manager *ksm) |
| 48 | { |
| 49 | /* |
| 50 | * Calling into the driver requires ksm->lock held and the device |
| 51 | * resumed. But we must resume the device first, since that can acquire |
| 52 | * and release ksm->lock via blk_ksm_reprogram_all_keys(). |
| 53 | */ |
| 54 | if (ksm->dev) |
| 55 | pm_runtime_get_sync(ksm->dev); |
| 56 | down_write(&ksm->lock); |
| 57 | } |
| 58 | |
| 59 | static inline void blk_ksm_hw_exit(struct blk_keyslot_manager *ksm) |
| 60 | { |
| 61 | up_write(&ksm->lock); |
| 62 | if (ksm->dev) |
| 63 | pm_runtime_put_sync(ksm->dev); |
| 64 | } |
| 65 | |
Satya Tangirala | 7bdcc48 | 2021-02-01 05:10:15 +0000 | [diff] [blame] | 66 | static inline bool blk_ksm_is_passthrough(struct blk_keyslot_manager *ksm) |
| 67 | { |
| 68 | return ksm->num_slots == 0; |
| 69 | } |
| 70 | |
Satya Tangirala | 1b26283 | 2020-05-14 00:37:17 +0000 | [diff] [blame] | 71 | /** |
| 72 | * blk_ksm_init() - Initialize a keyslot manager |
| 73 | * @ksm: The keyslot_manager to initialize. |
| 74 | * @num_slots: The number of key slots to manage. |
| 75 | * |
| 76 | * Allocate memory for keyslots and initialize a keyslot manager. Called by |
| 77 | * e.g. storage drivers to set up a keyslot manager in their request_queue. |
| 78 | * |
| 79 | * Return: 0 on success, or else a negative error code. |
| 80 | */ |
| 81 | int blk_ksm_init(struct blk_keyslot_manager *ksm, unsigned int num_slots) |
| 82 | { |
| 83 | unsigned int slot; |
| 84 | unsigned int i; |
| 85 | unsigned int slot_hashtable_size; |
| 86 | |
| 87 | memset(ksm, 0, sizeof(*ksm)); |
| 88 | |
| 89 | if (num_slots == 0) |
| 90 | return -EINVAL; |
| 91 | |
| 92 | ksm->slots = kvcalloc(num_slots, sizeof(ksm->slots[0]), GFP_KERNEL); |
| 93 | if (!ksm->slots) |
| 94 | return -ENOMEM; |
| 95 | |
| 96 | ksm->num_slots = num_slots; |
| 97 | |
| 98 | init_rwsem(&ksm->lock); |
| 99 | |
| 100 | init_waitqueue_head(&ksm->idle_slots_wait_queue); |
| 101 | INIT_LIST_HEAD(&ksm->idle_slots); |
| 102 | |
| 103 | for (slot = 0; slot < num_slots; slot++) { |
| 104 | ksm->slots[slot].ksm = ksm; |
| 105 | list_add_tail(&ksm->slots[slot].idle_slot_node, |
| 106 | &ksm->idle_slots); |
| 107 | } |
| 108 | |
| 109 | spin_lock_init(&ksm->idle_slots_lock); |
| 110 | |
| 111 | slot_hashtable_size = roundup_pow_of_two(num_slots); |
Eric Biggers | 47a84653 | 2020-11-11 13:48:55 -0800 | [diff] [blame] | 112 | /* |
| 113 | * hash_ptr() assumes bits != 0, so ensure the hash table has at least 2 |
| 114 | * buckets. This only makes a difference when there is only 1 keyslot. |
| 115 | */ |
| 116 | if (slot_hashtable_size < 2) |
| 117 | slot_hashtable_size = 2; |
| 118 | |
Satya Tangirala | 1b26283 | 2020-05-14 00:37:17 +0000 | [diff] [blame] | 119 | ksm->log_slot_ht_size = ilog2(slot_hashtable_size); |
| 120 | ksm->slot_hashtable = kvmalloc_array(slot_hashtable_size, |
| 121 | sizeof(ksm->slot_hashtable[0]), |
| 122 | GFP_KERNEL); |
| 123 | if (!ksm->slot_hashtable) |
| 124 | goto err_destroy_ksm; |
| 125 | for (i = 0; i < slot_hashtable_size; i++) |
| 126 | INIT_HLIST_HEAD(&ksm->slot_hashtable[i]); |
| 127 | |
| 128 | return 0; |
| 129 | |
| 130 | err_destroy_ksm: |
| 131 | blk_ksm_destroy(ksm); |
| 132 | return -ENOMEM; |
| 133 | } |
| 134 | EXPORT_SYMBOL_GPL(blk_ksm_init); |
| 135 | |
Eric Biggers | 5851d3b | 2021-01-21 00:21:54 -0800 | [diff] [blame] | 136 | static void blk_ksm_destroy_callback(void *ksm) |
| 137 | { |
| 138 | blk_ksm_destroy(ksm); |
| 139 | } |
| 140 | |
| 141 | /** |
| 142 | * devm_blk_ksm_init() - Resource-managed blk_ksm_init() |
| 143 | * @dev: The device which owns the blk_keyslot_manager. |
| 144 | * @ksm: The blk_keyslot_manager to initialize. |
| 145 | * @num_slots: The number of key slots to manage. |
| 146 | * |
| 147 | * Like blk_ksm_init(), but causes blk_ksm_destroy() to be called automatically |
| 148 | * on driver detach. |
| 149 | * |
| 150 | * Return: 0 on success, or else a negative error code. |
| 151 | */ |
| 152 | int devm_blk_ksm_init(struct device *dev, struct blk_keyslot_manager *ksm, |
| 153 | unsigned int num_slots) |
| 154 | { |
| 155 | int err = blk_ksm_init(ksm, num_slots); |
| 156 | |
| 157 | if (err) |
| 158 | return err; |
| 159 | |
| 160 | return devm_add_action_or_reset(dev, blk_ksm_destroy_callback, ksm); |
| 161 | } |
| 162 | EXPORT_SYMBOL_GPL(devm_blk_ksm_init); |
| 163 | |
Satya Tangirala | 1b26283 | 2020-05-14 00:37:17 +0000 | [diff] [blame] | 164 | static inline struct hlist_head * |
| 165 | blk_ksm_hash_bucket_for_key(struct blk_keyslot_manager *ksm, |
| 166 | const struct blk_crypto_key *key) |
| 167 | { |
| 168 | return &ksm->slot_hashtable[hash_ptr(key, ksm->log_slot_ht_size)]; |
| 169 | } |
| 170 | |
| 171 | static void blk_ksm_remove_slot_from_lru_list(struct blk_ksm_keyslot *slot) |
| 172 | { |
| 173 | struct blk_keyslot_manager *ksm = slot->ksm; |
| 174 | unsigned long flags; |
| 175 | |
| 176 | spin_lock_irqsave(&ksm->idle_slots_lock, flags); |
| 177 | list_del(&slot->idle_slot_node); |
| 178 | spin_unlock_irqrestore(&ksm->idle_slots_lock, flags); |
| 179 | } |
| 180 | |
| 181 | static struct blk_ksm_keyslot *blk_ksm_find_keyslot( |
| 182 | struct blk_keyslot_manager *ksm, |
| 183 | const struct blk_crypto_key *key) |
| 184 | { |
| 185 | const struct hlist_head *head = blk_ksm_hash_bucket_for_key(ksm, key); |
| 186 | struct blk_ksm_keyslot *slotp; |
| 187 | |
| 188 | hlist_for_each_entry(slotp, head, hash_node) { |
| 189 | if (slotp->key == key) |
| 190 | return slotp; |
| 191 | } |
| 192 | return NULL; |
| 193 | } |
| 194 | |
| 195 | static struct blk_ksm_keyslot *blk_ksm_find_and_grab_keyslot( |
| 196 | struct blk_keyslot_manager *ksm, |
| 197 | const struct blk_crypto_key *key) |
| 198 | { |
| 199 | struct blk_ksm_keyslot *slot; |
| 200 | |
| 201 | slot = blk_ksm_find_keyslot(ksm, key); |
| 202 | if (!slot) |
| 203 | return NULL; |
| 204 | if (atomic_inc_return(&slot->slot_refs) == 1) { |
| 205 | /* Took first reference to this slot; remove it from LRU list */ |
| 206 | blk_ksm_remove_slot_from_lru_list(slot); |
| 207 | } |
| 208 | return slot; |
| 209 | } |
| 210 | |
| 211 | unsigned int blk_ksm_get_slot_idx(struct blk_ksm_keyslot *slot) |
| 212 | { |
| 213 | return slot - slot->ksm->slots; |
| 214 | } |
| 215 | EXPORT_SYMBOL_GPL(blk_ksm_get_slot_idx); |
| 216 | |
| 217 | /** |
| 218 | * blk_ksm_get_slot_for_key() - Program a key into a keyslot. |
| 219 | * @ksm: The keyslot manager to program the key into. |
| 220 | * @key: Pointer to the key object to program, including the raw key, crypto |
| 221 | * mode, and data unit size. |
| 222 | * @slot_ptr: A pointer to return the pointer of the allocated keyslot. |
| 223 | * |
| 224 | * Get a keyslot that's been programmed with the specified key. If one already |
| 225 | * exists, return it with incremented refcount. Otherwise, wait for a keyslot |
| 226 | * to become idle and program it. |
| 227 | * |
| 228 | * Context: Process context. Takes and releases ksm->lock. |
| 229 | * Return: BLK_STS_OK on success (and keyslot is set to the pointer of the |
| 230 | * allocated keyslot), or some other blk_status_t otherwise (and |
| 231 | * keyslot is set to NULL). |
| 232 | */ |
| 233 | blk_status_t blk_ksm_get_slot_for_key(struct blk_keyslot_manager *ksm, |
| 234 | const struct blk_crypto_key *key, |
| 235 | struct blk_ksm_keyslot **slot_ptr) |
| 236 | { |
| 237 | struct blk_ksm_keyslot *slot; |
| 238 | int slot_idx; |
| 239 | int err; |
| 240 | |
| 241 | *slot_ptr = NULL; |
Satya Tangirala | 7bdcc48 | 2021-02-01 05:10:15 +0000 | [diff] [blame] | 242 | |
| 243 | if (blk_ksm_is_passthrough(ksm)) |
| 244 | return BLK_STS_OK; |
| 245 | |
Satya Tangirala | 1b26283 | 2020-05-14 00:37:17 +0000 | [diff] [blame] | 246 | down_read(&ksm->lock); |
| 247 | slot = blk_ksm_find_and_grab_keyslot(ksm, key); |
| 248 | up_read(&ksm->lock); |
| 249 | if (slot) |
| 250 | goto success; |
| 251 | |
| 252 | for (;;) { |
| 253 | blk_ksm_hw_enter(ksm); |
| 254 | slot = blk_ksm_find_and_grab_keyslot(ksm, key); |
| 255 | if (slot) { |
| 256 | blk_ksm_hw_exit(ksm); |
| 257 | goto success; |
| 258 | } |
| 259 | |
| 260 | /* |
| 261 | * If we're here, that means there wasn't a slot that was |
| 262 | * already programmed with the key. So try to program it. |
| 263 | */ |
| 264 | if (!list_empty(&ksm->idle_slots)) |
| 265 | break; |
| 266 | |
| 267 | blk_ksm_hw_exit(ksm); |
| 268 | wait_event(ksm->idle_slots_wait_queue, |
| 269 | !list_empty(&ksm->idle_slots)); |
| 270 | } |
| 271 | |
| 272 | slot = list_first_entry(&ksm->idle_slots, struct blk_ksm_keyslot, |
| 273 | idle_slot_node); |
| 274 | slot_idx = blk_ksm_get_slot_idx(slot); |
| 275 | |
| 276 | err = ksm->ksm_ll_ops.keyslot_program(ksm, key, slot_idx); |
| 277 | if (err) { |
| 278 | wake_up(&ksm->idle_slots_wait_queue); |
| 279 | blk_ksm_hw_exit(ksm); |
| 280 | return errno_to_blk_status(err); |
| 281 | } |
| 282 | |
| 283 | /* Move this slot to the hash list for the new key. */ |
| 284 | if (slot->key) |
| 285 | hlist_del(&slot->hash_node); |
| 286 | slot->key = key; |
| 287 | hlist_add_head(&slot->hash_node, blk_ksm_hash_bucket_for_key(ksm, key)); |
| 288 | |
| 289 | atomic_set(&slot->slot_refs, 1); |
| 290 | |
| 291 | blk_ksm_remove_slot_from_lru_list(slot); |
| 292 | |
| 293 | blk_ksm_hw_exit(ksm); |
| 294 | success: |
| 295 | *slot_ptr = slot; |
| 296 | return BLK_STS_OK; |
| 297 | } |
| 298 | |
| 299 | /** |
| 300 | * blk_ksm_put_slot() - Release a reference to a slot |
| 301 | * @slot: The keyslot to release the reference of. |
| 302 | * |
| 303 | * Context: Any context. |
| 304 | */ |
| 305 | void blk_ksm_put_slot(struct blk_ksm_keyslot *slot) |
| 306 | { |
| 307 | struct blk_keyslot_manager *ksm; |
| 308 | unsigned long flags; |
| 309 | |
| 310 | if (!slot) |
| 311 | return; |
| 312 | |
| 313 | ksm = slot->ksm; |
| 314 | |
| 315 | if (atomic_dec_and_lock_irqsave(&slot->slot_refs, |
| 316 | &ksm->idle_slots_lock, flags)) { |
| 317 | list_add_tail(&slot->idle_slot_node, &ksm->idle_slots); |
| 318 | spin_unlock_irqrestore(&ksm->idle_slots_lock, flags); |
| 319 | wake_up(&ksm->idle_slots_wait_queue); |
| 320 | } |
| 321 | } |
| 322 | |
| 323 | /** |
| 324 | * blk_ksm_crypto_cfg_supported() - Find out if a crypto configuration is |
| 325 | * supported by a ksm. |
| 326 | * @ksm: The keyslot manager to check |
| 327 | * @cfg: The crypto configuration to check for. |
| 328 | * |
| 329 | * Checks for crypto_mode/data unit size/dun bytes support. |
| 330 | * |
| 331 | * Return: Whether or not this ksm supports the specified crypto config. |
| 332 | */ |
| 333 | bool blk_ksm_crypto_cfg_supported(struct blk_keyslot_manager *ksm, |
| 334 | const struct blk_crypto_config *cfg) |
| 335 | { |
| 336 | if (!ksm) |
| 337 | return false; |
| 338 | if (!(ksm->crypto_modes_supported[cfg->crypto_mode] & |
| 339 | cfg->data_unit_size)) |
| 340 | return false; |
| 341 | if (ksm->max_dun_bytes_supported < cfg->dun_bytes) |
| 342 | return false; |
| 343 | return true; |
| 344 | } |
| 345 | |
| 346 | /** |
| 347 | * blk_ksm_evict_key() - Evict a key from the lower layer device. |
| 348 | * @ksm: The keyslot manager to evict from |
| 349 | * @key: The key to evict |
| 350 | * |
| 351 | * Find the keyslot that the specified key was programmed into, and evict that |
| 352 | * slot from the lower layer device. The slot must not be in use by any |
| 353 | * in-flight IO when this function is called. |
| 354 | * |
| 355 | * Context: Process context. Takes and releases ksm->lock. |
| 356 | * Return: 0 on success or if there's no keyslot with the specified key, -EBUSY |
| 357 | * if the keyslot is still in use, or another -errno value on other |
| 358 | * error. |
| 359 | */ |
| 360 | int blk_ksm_evict_key(struct blk_keyslot_manager *ksm, |
| 361 | const struct blk_crypto_key *key) |
| 362 | { |
| 363 | struct blk_ksm_keyslot *slot; |
| 364 | int err = 0; |
| 365 | |
Satya Tangirala | 7bdcc48 | 2021-02-01 05:10:15 +0000 | [diff] [blame] | 366 | if (blk_ksm_is_passthrough(ksm)) { |
| 367 | if (ksm->ksm_ll_ops.keyslot_evict) { |
| 368 | blk_ksm_hw_enter(ksm); |
| 369 | err = ksm->ksm_ll_ops.keyslot_evict(ksm, key, -1); |
| 370 | blk_ksm_hw_exit(ksm); |
| 371 | return err; |
| 372 | } |
| 373 | return 0; |
| 374 | } |
| 375 | |
Satya Tangirala | 1b26283 | 2020-05-14 00:37:17 +0000 | [diff] [blame] | 376 | blk_ksm_hw_enter(ksm); |
| 377 | slot = blk_ksm_find_keyslot(ksm, key); |
| 378 | if (!slot) |
| 379 | goto out_unlock; |
| 380 | |
| 381 | if (WARN_ON_ONCE(atomic_read(&slot->slot_refs) != 0)) { |
| 382 | err = -EBUSY; |
| 383 | goto out_unlock; |
| 384 | } |
| 385 | err = ksm->ksm_ll_ops.keyslot_evict(ksm, key, |
| 386 | blk_ksm_get_slot_idx(slot)); |
| 387 | if (err) |
| 388 | goto out_unlock; |
| 389 | |
| 390 | hlist_del(&slot->hash_node); |
| 391 | slot->key = NULL; |
| 392 | err = 0; |
| 393 | out_unlock: |
| 394 | blk_ksm_hw_exit(ksm); |
| 395 | return err; |
| 396 | } |
| 397 | |
| 398 | /** |
| 399 | * blk_ksm_reprogram_all_keys() - Re-program all keyslots. |
| 400 | * @ksm: The keyslot manager |
| 401 | * |
| 402 | * Re-program all keyslots that are supposed to have a key programmed. This is |
| 403 | * intended only for use by drivers for hardware that loses its keys on reset. |
| 404 | * |
| 405 | * Context: Process context. Takes and releases ksm->lock. |
| 406 | */ |
| 407 | void blk_ksm_reprogram_all_keys(struct blk_keyslot_manager *ksm) |
| 408 | { |
| 409 | unsigned int slot; |
| 410 | |
Satya Tangirala | 7bdcc48 | 2021-02-01 05:10:15 +0000 | [diff] [blame] | 411 | if (blk_ksm_is_passthrough(ksm)) |
| 412 | return; |
| 413 | |
Satya Tangirala | 1b26283 | 2020-05-14 00:37:17 +0000 | [diff] [blame] | 414 | /* This is for device initialization, so don't resume the device */ |
| 415 | down_write(&ksm->lock); |
| 416 | for (slot = 0; slot < ksm->num_slots; slot++) { |
| 417 | const struct blk_crypto_key *key = ksm->slots[slot].key; |
| 418 | int err; |
| 419 | |
| 420 | if (!key) |
| 421 | continue; |
| 422 | |
| 423 | err = ksm->ksm_ll_ops.keyslot_program(ksm, key, slot); |
| 424 | WARN_ON(err); |
| 425 | } |
| 426 | up_write(&ksm->lock); |
| 427 | } |
| 428 | EXPORT_SYMBOL_GPL(blk_ksm_reprogram_all_keys); |
| 429 | |
| 430 | void blk_ksm_destroy(struct blk_keyslot_manager *ksm) |
| 431 | { |
| 432 | if (!ksm) |
| 433 | return; |
| 434 | kvfree(ksm->slot_hashtable); |
Eric Biggers | 3e20aa9 | 2020-06-16 08:56:54 -0700 | [diff] [blame] | 435 | kvfree_sensitive(ksm->slots, sizeof(ksm->slots[0]) * ksm->num_slots); |
Satya Tangirala | 1b26283 | 2020-05-14 00:37:17 +0000 | [diff] [blame] | 436 | memzero_explicit(ksm, sizeof(*ksm)); |
| 437 | } |
| 438 | EXPORT_SYMBOL_GPL(blk_ksm_destroy); |
Satya Tangirala | d145dc2 | 2020-05-14 00:37:19 +0000 | [diff] [blame] | 439 | |
| 440 | bool blk_ksm_register(struct blk_keyslot_manager *ksm, struct request_queue *q) |
| 441 | { |
| 442 | if (blk_integrity_queue_supports_integrity(q)) { |
| 443 | pr_warn("Integrity and hardware inline encryption are not supported together. Disabling hardware inline encryption.\n"); |
| 444 | return false; |
| 445 | } |
| 446 | q->ksm = ksm; |
| 447 | return true; |
| 448 | } |
| 449 | EXPORT_SYMBOL_GPL(blk_ksm_register); |
| 450 | |
| 451 | void blk_ksm_unregister(struct request_queue *q) |
| 452 | { |
| 453 | q->ksm = NULL; |
| 454 | } |
Satya Tangirala | 7bdcc48 | 2021-02-01 05:10:15 +0000 | [diff] [blame] | 455 | |
| 456 | /** |
Satya Tangirala | d3b17a2 | 2021-02-01 05:10:16 +0000 | [diff] [blame] | 457 | * blk_ksm_intersect_modes() - restrict supported modes by child device |
| 458 | * @parent: The keyslot manager for parent device |
| 459 | * @child: The keyslot manager for child device, or NULL |
| 460 | * |
| 461 | * Clear any crypto mode support bits in @parent that aren't set in @child. |
| 462 | * If @child is NULL, then all parent bits are cleared. |
| 463 | * |
| 464 | * Only use this when setting up the keyslot manager for a layered device, |
| 465 | * before it's been exposed yet. |
| 466 | */ |
| 467 | void blk_ksm_intersect_modes(struct blk_keyslot_manager *parent, |
| 468 | const struct blk_keyslot_manager *child) |
| 469 | { |
| 470 | if (child) { |
| 471 | unsigned int i; |
| 472 | |
| 473 | parent->max_dun_bytes_supported = |
| 474 | min(parent->max_dun_bytes_supported, |
| 475 | child->max_dun_bytes_supported); |
| 476 | for (i = 0; i < ARRAY_SIZE(child->crypto_modes_supported); |
| 477 | i++) { |
| 478 | parent->crypto_modes_supported[i] &= |
| 479 | child->crypto_modes_supported[i]; |
| 480 | } |
| 481 | } else { |
| 482 | parent->max_dun_bytes_supported = 0; |
| 483 | memset(parent->crypto_modes_supported, 0, |
| 484 | sizeof(parent->crypto_modes_supported)); |
| 485 | } |
| 486 | } |
| 487 | EXPORT_SYMBOL_GPL(blk_ksm_intersect_modes); |
| 488 | |
| 489 | /** |
| 490 | * blk_ksm_is_superset() - Check if a KSM supports a superset of crypto modes |
| 491 | * and DUN bytes that another KSM supports. Here, |
| 492 | * "superset" refers to the mathematical meaning of the |
| 493 | * word - i.e. if two KSMs have the *same* capabilities, |
| 494 | * they *are* considered supersets of each other. |
| 495 | * @ksm_superset: The KSM that we want to verify is a superset |
| 496 | * @ksm_subset: The KSM that we want to verify is a subset |
| 497 | * |
| 498 | * Return: True if @ksm_superset supports a superset of the crypto modes and DUN |
| 499 | * bytes that @ksm_subset supports. |
| 500 | */ |
| 501 | bool blk_ksm_is_superset(struct blk_keyslot_manager *ksm_superset, |
| 502 | struct blk_keyslot_manager *ksm_subset) |
| 503 | { |
| 504 | int i; |
| 505 | |
| 506 | if (!ksm_subset) |
| 507 | return true; |
| 508 | |
| 509 | if (!ksm_superset) |
| 510 | return false; |
| 511 | |
| 512 | for (i = 0; i < ARRAY_SIZE(ksm_superset->crypto_modes_supported); i++) { |
| 513 | if (ksm_subset->crypto_modes_supported[i] & |
| 514 | (~ksm_superset->crypto_modes_supported[i])) { |
| 515 | return false; |
| 516 | } |
| 517 | } |
| 518 | |
| 519 | if (ksm_subset->max_dun_bytes_supported > |
| 520 | ksm_superset->max_dun_bytes_supported) { |
| 521 | return false; |
| 522 | } |
| 523 | |
| 524 | return true; |
| 525 | } |
| 526 | EXPORT_SYMBOL_GPL(blk_ksm_is_superset); |
| 527 | |
| 528 | /** |
| 529 | * blk_ksm_update_capabilities() - Update the restrictions of a KSM to those of |
| 530 | * another KSM |
| 531 | * @target_ksm: The KSM whose restrictions to update. |
| 532 | * @reference_ksm: The KSM to whose restrictions this function will update |
| 533 | * @target_ksm's restrictions to. |
| 534 | * |
| 535 | * Blk-crypto requires that crypto capabilities that were |
| 536 | * advertised when a bio was created continue to be supported by the |
| 537 | * device until that bio is ended. This is turn means that a device cannot |
| 538 | * shrink its advertised crypto capabilities without any explicit |
| 539 | * synchronization with upper layers. So if there's no such explicit |
| 540 | * synchronization, @reference_ksm must support all the crypto capabilities that |
| 541 | * @target_ksm does |
| 542 | * (i.e. we need blk_ksm_is_superset(@reference_ksm, @target_ksm) == true). |
| 543 | * |
| 544 | * Note also that as long as the crypto capabilities are being expanded, the |
| 545 | * order of updates becoming visible is not important because it's alright |
| 546 | * for blk-crypto to see stale values - they only cause blk-crypto to |
| 547 | * believe that a crypto capability isn't supported when it actually is (which |
| 548 | * might result in blk-crypto-fallback being used if available, or the bio being |
| 549 | * failed). |
| 550 | */ |
| 551 | void blk_ksm_update_capabilities(struct blk_keyslot_manager *target_ksm, |
| 552 | struct blk_keyslot_manager *reference_ksm) |
| 553 | { |
| 554 | memcpy(target_ksm->crypto_modes_supported, |
| 555 | reference_ksm->crypto_modes_supported, |
| 556 | sizeof(target_ksm->crypto_modes_supported)); |
| 557 | |
| 558 | target_ksm->max_dun_bytes_supported = |
| 559 | reference_ksm->max_dun_bytes_supported; |
| 560 | } |
| 561 | EXPORT_SYMBOL_GPL(blk_ksm_update_capabilities); |
| 562 | |
| 563 | /** |
Satya Tangirala | 7bdcc48 | 2021-02-01 05:10:15 +0000 | [diff] [blame] | 564 | * blk_ksm_init_passthrough() - Init a passthrough keyslot manager |
| 565 | * @ksm: The keyslot manager to init |
| 566 | * |
| 567 | * Initialize a passthrough keyslot manager. |
| 568 | * Called by e.g. storage drivers to set up a keyslot manager in their |
| 569 | * request_queue, when the storage driver wants to manage its keys by itself. |
| 570 | * This is useful for inline encryption hardware that doesn't have the concept |
| 571 | * of keyslots, and for layered devices. |
| 572 | */ |
| 573 | void blk_ksm_init_passthrough(struct blk_keyslot_manager *ksm) |
| 574 | { |
| 575 | memset(ksm, 0, sizeof(*ksm)); |
| 576 | init_rwsem(&ksm->lock); |
| 577 | } |
| 578 | EXPORT_SYMBOL_GPL(blk_ksm_init_passthrough); |