blob: 337392c3f549deb5124326fa67f09dd657673bba [file] [log] [blame]
Paul Walmsley0b96af62010-01-26 20:13:03 -07001/*
2 * OMAP2/3/4 DPLL clock functions
3 *
4 * Copyright (C) 2005-2008 Texas Instruments, Inc.
5 * Copyright (C) 2004-2010 Nokia Corporation
6 *
7 * Contacts:
8 * Richard Woodruff <r-woodruff2@ti.com>
9 * Paul Walmsley
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License version 2 as
13 * published by the Free Software Foundation.
14 */
15#undef DEBUG
16
17#include <linux/kernel.h>
18#include <linux/errno.h>
19#include <linux/clk.h>
20#include <linux/io.h>
21
22#include <asm/div64.h>
23
24#include <plat/clock.h>
25
26#include "clock.h"
Paul Walmsley0b96af62010-01-26 20:13:03 -070027#include "cm-regbits-24xx.h"
28#include "cm-regbits-34xx.h"
29
30/* DPLL rate rounding: minimum DPLL multiplier, divider values */
Paul Walmsley93340a22010-02-22 22:09:12 -070031#define DPLL_MIN_MULTIPLIER 2
Paul Walmsley0b96af62010-01-26 20:13:03 -070032#define DPLL_MIN_DIVIDER 1
33
34/* Possible error results from _dpll_test_mult */
35#define DPLL_MULT_UNDERFLOW -1
36
37/*
38 * Scale factor to mitigate roundoff errors in DPLL rate rounding.
39 * The higher the scale factor, the greater the risk of arithmetic overflow,
40 * but the closer the rounded rate to the target rate. DPLL_SCALE_FACTOR
41 * must be a power of DPLL_SCALE_BASE.
42 */
43#define DPLL_SCALE_FACTOR 64
44#define DPLL_SCALE_BASE 2
45#define DPLL_ROUNDING_VAL ((DPLL_SCALE_BASE / 2) * \
46 (DPLL_SCALE_FACTOR / DPLL_SCALE_BASE))
47
48/* DPLL valid Fint frequency band limits - from 34xx TRM Section 4.7.6.2 */
49#define DPLL_FINT_BAND1_MIN 750000
50#define DPLL_FINT_BAND1_MAX 2100000
51#define DPLL_FINT_BAND2_MIN 7500000
52#define DPLL_FINT_BAND2_MAX 21000000
53
54/* _dpll_test_fint() return codes */
55#define DPLL_FINT_UNDERFLOW -1
56#define DPLL_FINT_INVALID -2
57
58/* Private functions */
59
60/*
61 * _dpll_test_fint - test whether an Fint value is valid for the DPLL
62 * @clk: DPLL struct clk to test
63 * @n: divider value (N) to test
64 *
65 * Tests whether a particular divider @n will result in a valid DPLL
66 * internal clock frequency Fint. See the 34xx TRM 4.7.6.2 "DPLL Jitter
67 * Correction". Returns 0 if OK, -1 if the enclosing loop can terminate
68 * (assuming that it is counting N upwards), or -2 if the enclosing loop
69 * should skip to the next iteration (again assuming N is increasing).
70 */
71static int _dpll_test_fint(struct clk *clk, u8 n)
72{
73 struct dpll_data *dd;
74 long fint;
75 int ret = 0;
76
77 dd = clk->dpll_data;
78
79 /* DPLL divider must result in a valid jitter correction val */
80 fint = clk->parent->rate / (n + 1);
81 if (fint < DPLL_FINT_BAND1_MIN) {
82
83 pr_debug("rejecting n=%d due to Fint failure, "
84 "lowering max_divider\n", n);
85 dd->max_divider = n;
86 ret = DPLL_FINT_UNDERFLOW;
87
88 } else if (fint > DPLL_FINT_BAND1_MAX &&
89 fint < DPLL_FINT_BAND2_MIN) {
90
91 pr_debug("rejecting n=%d due to Fint failure\n", n);
92 ret = DPLL_FINT_INVALID;
93
94 } else if (fint > DPLL_FINT_BAND2_MAX) {
95
96 pr_debug("rejecting n=%d due to Fint failure, "
97 "boosting min_divider\n", n);
98 dd->min_divider = n;
99 ret = DPLL_FINT_INVALID;
100
101 }
102
103 return ret;
104}
105
106static unsigned long _dpll_compute_new_rate(unsigned long parent_rate,
107 unsigned int m, unsigned int n)
108{
109 unsigned long long num;
110
111 num = (unsigned long long)parent_rate * m;
112 do_div(num, n);
113 return num;
114}
115
116/*
117 * _dpll_test_mult - test a DPLL multiplier value
118 * @m: pointer to the DPLL m (multiplier) value under test
119 * @n: current DPLL n (divider) value under test
120 * @new_rate: pointer to storage for the resulting rounded rate
121 * @target_rate: the desired DPLL rate
122 * @parent_rate: the DPLL's parent clock rate
123 *
124 * This code tests a DPLL multiplier value, ensuring that the
125 * resulting rate will not be higher than the target_rate, and that
126 * the multiplier value itself is valid for the DPLL. Initially, the
127 * integer pointed to by the m argument should be prescaled by
128 * multiplying by DPLL_SCALE_FACTOR. The code will replace this with
129 * a non-scaled m upon return. This non-scaled m will result in a
130 * new_rate as close as possible to target_rate (but not greater than
131 * target_rate) given the current (parent_rate, n, prescaled m)
132 * triple. Returns DPLL_MULT_UNDERFLOW in the event that the
133 * non-scaled m attempted to underflow, which can allow the calling
134 * function to bail out early; or 0 upon success.
135 */
136static int _dpll_test_mult(int *m, int n, unsigned long *new_rate,
137 unsigned long target_rate,
138 unsigned long parent_rate)
139{
140 int r = 0, carry = 0;
141
142 /* Unscale m and round if necessary */
143 if (*m % DPLL_SCALE_FACTOR >= DPLL_ROUNDING_VAL)
144 carry = 1;
145 *m = (*m / DPLL_SCALE_FACTOR) + carry;
146
147 /*
148 * The new rate must be <= the target rate to avoid programming
149 * a rate that is impossible for the hardware to handle
150 */
151 *new_rate = _dpll_compute_new_rate(parent_rate, *m, n);
152 if (*new_rate > target_rate) {
153 (*m)--;
154 *new_rate = 0;
155 }
156
157 /* Guard against m underflow */
158 if (*m < DPLL_MIN_MULTIPLIER) {
159 *m = DPLL_MIN_MULTIPLIER;
160 *new_rate = 0;
161 r = DPLL_MULT_UNDERFLOW;
162 }
163
164 if (*new_rate == 0)
165 *new_rate = _dpll_compute_new_rate(parent_rate, *m, n);
166
167 return r;
168}
169
170/* Public functions */
171
172void omap2_init_dpll_parent(struct clk *clk)
173{
174 u32 v;
175 struct dpll_data *dd;
176
177 dd = clk->dpll_data;
178 if (!dd)
179 return;
180
181 /* Return bypass rate if DPLL is bypassed */
182 v = __raw_readl(dd->control_reg);
183 v &= dd->enable_mask;
184 v >>= __ffs(dd->enable_mask);
185
186 /* Reparent in case the dpll is in bypass */
187 if (cpu_is_omap24xx()) {
188 if (v == OMAP2XXX_EN_DPLL_LPBYPASS ||
189 v == OMAP2XXX_EN_DPLL_FRBYPASS)
190 clk_reparent(clk, dd->clk_bypass);
191 } else if (cpu_is_omap34xx()) {
192 if (v == OMAP3XXX_EN_DPLL_LPBYPASS ||
193 v == OMAP3XXX_EN_DPLL_FRBYPASS)
194 clk_reparent(clk, dd->clk_bypass);
195 } else if (cpu_is_omap44xx()) {
196 if (v == OMAP4XXX_EN_DPLL_LPBYPASS ||
197 v == OMAP4XXX_EN_DPLL_FRBYPASS ||
198 v == OMAP4XXX_EN_DPLL_MNBYPASS)
199 clk_reparent(clk, dd->clk_bypass);
200 }
201 return;
202}
203
204/**
205 * omap2_get_dpll_rate - returns the current DPLL CLKOUT rate
206 * @clk: struct clk * of a DPLL
207 *
208 * DPLLs can be locked or bypassed - basically, enabled or disabled.
209 * When locked, the DPLL output depends on the M and N values. When
210 * bypassed, on OMAP2xxx, the output rate is either the 32KiHz clock
211 * or sys_clk. Bypass rates on OMAP3 depend on the DPLL: DPLLs 1 and
212 * 2 are bypassed with dpll1_fclk and dpll2_fclk respectively
213 * (generated by DPLL3), while DPLL 3, 4, and 5 bypass rates are sys_clk.
214 * Returns the current DPLL CLKOUT rate (*not* CLKOUTX2) if the DPLL is
215 * locked, or the appropriate bypass rate if the DPLL is bypassed, or 0
216 * if the clock @clk is not a DPLL.
217 */
218u32 omap2_get_dpll_rate(struct clk *clk)
219{
220 long long dpll_clk;
221 u32 dpll_mult, dpll_div, v;
222 struct dpll_data *dd;
223
224 dd = clk->dpll_data;
225 if (!dd)
226 return 0;
227
228 /* Return bypass rate if DPLL is bypassed */
229 v = __raw_readl(dd->control_reg);
230 v &= dd->enable_mask;
231 v >>= __ffs(dd->enable_mask);
232
233 if (cpu_is_omap24xx()) {
234 if (v == OMAP2XXX_EN_DPLL_LPBYPASS ||
235 v == OMAP2XXX_EN_DPLL_FRBYPASS)
236 return dd->clk_bypass->rate;
237 } else if (cpu_is_omap34xx()) {
238 if (v == OMAP3XXX_EN_DPLL_LPBYPASS ||
239 v == OMAP3XXX_EN_DPLL_FRBYPASS)
240 return dd->clk_bypass->rate;
241 } else if (cpu_is_omap44xx()) {
242 if (v == OMAP4XXX_EN_DPLL_LPBYPASS ||
243 v == OMAP4XXX_EN_DPLL_FRBYPASS ||
244 v == OMAP4XXX_EN_DPLL_MNBYPASS)
245 return dd->clk_bypass->rate;
246 }
247
248 v = __raw_readl(dd->mult_div1_reg);
249 dpll_mult = v & dd->mult_mask;
250 dpll_mult >>= __ffs(dd->mult_mask);
251 dpll_div = v & dd->div1_mask;
252 dpll_div >>= __ffs(dd->div1_mask);
253
254 dpll_clk = (long long)dd->clk_ref->rate * dpll_mult;
255 do_div(dpll_clk, dpll_div + 1);
256
257 return dpll_clk;
258}
259
260/* DPLL rate rounding code */
261
262/**
263 * omap2_dpll_set_rate_tolerance: set the error tolerance during rate rounding
264 * @clk: struct clk * of the DPLL
265 * @tolerance: maximum rate error tolerance
266 *
267 * Set the maximum DPLL rate error tolerance for the rate rounding
268 * algorithm. The rate tolerance is an attempt to balance DPLL power
269 * saving (the least divider value "n") vs. rate fidelity (the least
270 * difference between the desired DPLL target rate and the rounded
271 * rate out of the algorithm). So, increasing the tolerance is likely
272 * to decrease DPLL power consumption and increase DPLL rate error.
273 * Returns -EINVAL if provided a null clock ptr or a clk that is not a
274 * DPLL; or 0 upon success.
275 */
276int omap2_dpll_set_rate_tolerance(struct clk *clk, unsigned int tolerance)
277{
278 if (!clk || !clk->dpll_data)
279 return -EINVAL;
280
281 clk->dpll_data->rate_tolerance = tolerance;
282
283 return 0;
284}
285
286/**
287 * omap2_dpll_round_rate - round a target rate for an OMAP DPLL
288 * @clk: struct clk * for a DPLL
289 * @target_rate: desired DPLL clock rate
290 *
291 * Given a DPLL, a desired target rate, and a rate tolerance, round
292 * the target rate to a possible, programmable rate for this DPLL.
293 * Rate tolerance is assumed to be set by the caller before this
294 * function is called. Attempts to select the minimum possible n
295 * within the tolerance to reduce power consumption. Stores the
296 * computed (m, n) in the DPLL's dpll_data structure so set_rate()
297 * will not need to call this (expensive) function again. Returns ~0
298 * if the target rate cannot be rounded, either because the rate is
299 * too low or because the rate tolerance is set too tightly; or the
300 * rounded rate upon success.
301 */
302long omap2_dpll_round_rate(struct clk *clk, unsigned long target_rate)
303{
304 int m, n, r, e, scaled_max_m;
305 unsigned long scaled_rt_rp, new_rate;
306 int min_e = -1, min_e_m = -1, min_e_n = -1;
307 struct dpll_data *dd;
308
309 if (!clk || !clk->dpll_data)
310 return ~0;
311
312 dd = clk->dpll_data;
313
314 pr_debug("clock: starting DPLL round_rate for clock %s, target rate "
315 "%ld\n", clk->name, target_rate);
316
317 scaled_rt_rp = target_rate / (dd->clk_ref->rate / DPLL_SCALE_FACTOR);
318 scaled_max_m = dd->max_multiplier * DPLL_SCALE_FACTOR;
319
320 dd->last_rounded_rate = 0;
321
322 for (n = dd->min_divider; n <= dd->max_divider; n++) {
323
324 /* Is the (input clk, divider) pair valid for the DPLL? */
325 r = _dpll_test_fint(clk, n);
326 if (r == DPLL_FINT_UNDERFLOW)
327 break;
328 else if (r == DPLL_FINT_INVALID)
329 continue;
330
331 /* Compute the scaled DPLL multiplier, based on the divider */
332 m = scaled_rt_rp * n;
333
334 /*
335 * Since we're counting n up, a m overflow means we
336 * can bail out completely (since as n increases in
337 * the next iteration, there's no way that m can
338 * increase beyond the current m)
339 */
340 if (m > scaled_max_m)
341 break;
342
343 r = _dpll_test_mult(&m, n, &new_rate, target_rate,
344 dd->clk_ref->rate);
345
346 /* m can't be set low enough for this n - try with a larger n */
347 if (r == DPLL_MULT_UNDERFLOW)
348 continue;
349
350 e = target_rate - new_rate;
351 pr_debug("clock: n = %d: m = %d: rate error is %d "
352 "(new_rate = %ld)\n", n, m, e, new_rate);
353
354 if (min_e == -1 ||
355 min_e >= (int)(abs(e) - dd->rate_tolerance)) {
356 min_e = e;
357 min_e_m = m;
358 min_e_n = n;
359
360 pr_debug("clock: found new least error %d\n", min_e);
361
362 /* We found good settings -- bail out now */
363 if (min_e <= dd->rate_tolerance)
364 break;
365 }
366 }
367
368 if (min_e < 0) {
369 pr_debug("clock: error: target rate or tolerance too low\n");
370 return ~0;
371 }
372
373 dd->last_rounded_m = min_e_m;
374 dd->last_rounded_n = min_e_n;
375 dd->last_rounded_rate = _dpll_compute_new_rate(dd->clk_ref->rate,
376 min_e_m, min_e_n);
377
378 pr_debug("clock: final least error: e = %d, m = %d, n = %d\n",
379 min_e, min_e_m, min_e_n);
380 pr_debug("clock: final rate: %ld (target rate: %ld)\n",
381 dd->last_rounded_rate, target_rate);
382
383 return dd->last_rounded_rate;
384}
385