blob: e5f1c84e3c4871bf54027dd29886b1f40917be37 [file] [log] [blame]
Thomas Gleixner465ae832019-05-20 19:07:51 +02001// SPDX-License-Identifier: GPL-2.0-or-later
Dmitry Kasatkincdec9cb2011-08-31 14:05:16 +03002/* mpihelp-mul.c - MPI helper functions
3 * Copyright (C) 1994, 1996, 1998, 1999,
4 * 2000 Free Software Foundation, Inc.
5 *
6 * This file is part of GnuPG.
7 *
Dmitry Kasatkincdec9cb2011-08-31 14:05:16 +03008 * Note: This code is heavily based on the GNU MP Library.
9 * Actually it's the same code with only minor changes in the
10 * way the data is stored; this is to support the abstraction
11 * of an optional secure memory allocation which may be used
12 * to avoid revealing of sensitive data due to paging etc.
13 * The GNU MP Library itself is published under the LGPL;
14 * however I decided to publish this code under the plain GPL.
15 */
16
17#include <linux/string.h>
18#include "mpi-internal.h"
19#include "longlong.h"
20
21#define MPN_MUL_N_RECURSE(prodp, up, vp, size, tspace) \
22 do { \
23 if ((size) < KARATSUBA_THRESHOLD) \
24 mul_n_basecase(prodp, up, vp, size); \
25 else \
26 mul_n(prodp, up, vp, size, tspace); \
27 } while (0);
28
29#define MPN_SQR_N_RECURSE(prodp, up, size, tspace) \
30 do { \
31 if ((size) < KARATSUBA_THRESHOLD) \
32 mpih_sqr_n_basecase(prodp, up, size); \
33 else \
34 mpih_sqr_n(prodp, up, size, tspace); \
35 } while (0);
36
37/* Multiply the natural numbers u (pointed to by UP) and v (pointed to by VP),
38 * both with SIZE limbs, and store the result at PRODP. 2 * SIZE limbs are
39 * always stored. Return the most significant limb.
40 *
41 * Argument constraints:
42 * 1. PRODP != UP and PRODP != VP, i.e. the destination
43 * must be distinct from the multiplier and the multiplicand.
44 *
45 *
46 * Handle simple cases with traditional multiplication.
47 *
48 * This is the most critical code of multiplication. All multiplies rely
49 * on this, both small and huge. Small ones arrive here immediately. Huge
50 * ones arrive here as this is the base case for Karatsuba's recursive
51 * algorithm below.
52 */
53
54static mpi_limb_t
55mul_n_basecase(mpi_ptr_t prodp, mpi_ptr_t up, mpi_ptr_t vp, mpi_size_t size)
56{
57 mpi_size_t i;
58 mpi_limb_t cy;
59 mpi_limb_t v_limb;
60
61 /* Multiply by the first limb in V separately, as the result can be
62 * stored (not added) to PROD. We also avoid a loop for zeroing. */
63 v_limb = vp[0];
64 if (v_limb <= 1) {
65 if (v_limb == 1)
66 MPN_COPY(prodp, up, size);
67 else
68 MPN_ZERO(prodp, size);
69 cy = 0;
70 } else
71 cy = mpihelp_mul_1(prodp, up, size, v_limb);
72
73 prodp[size] = cy;
74 prodp++;
75
76 /* For each iteration in the outer loop, multiply one limb from
77 * U with one limb from V, and add it to PROD. */
78 for (i = 1; i < size; i++) {
79 v_limb = vp[i];
80 if (v_limb <= 1) {
81 cy = 0;
82 if (v_limb == 1)
83 cy = mpihelp_add_n(prodp, prodp, up, size);
84 } else
85 cy = mpihelp_addmul_1(prodp, up, size, v_limb);
86
87 prodp[size] = cy;
88 prodp++;
89 }
90
91 return cy;
92}
93
94static void
95mul_n(mpi_ptr_t prodp, mpi_ptr_t up, mpi_ptr_t vp,
96 mpi_size_t size, mpi_ptr_t tspace)
97{
98 if (size & 1) {
99 /* The size is odd, and the code below doesn't handle that.
100 * Multiply the least significant (size - 1) limbs with a recursive
101 * call, and handle the most significant limb of S1 and S2
102 * separately.
103 * A slightly faster way to do this would be to make the Karatsuba
104 * code below behave as if the size were even, and let it check for
105 * odd size in the end. I.e., in essence move this code to the end.
106 * Doing so would save us a recursive call, and potentially make the
107 * stack grow a lot less.
108 */
109 mpi_size_t esize = size - 1; /* even size */
110 mpi_limb_t cy_limb;
111
112 MPN_MUL_N_RECURSE(prodp, up, vp, esize, tspace);
113 cy_limb = mpihelp_addmul_1(prodp + esize, up, esize, vp[esize]);
114 prodp[esize + esize] = cy_limb;
115 cy_limb = mpihelp_addmul_1(prodp + esize, vp, size, up[esize]);
116 prodp[esize + size] = cy_limb;
117 } else {
118 /* Anatolij Alekseevich Karatsuba's divide-and-conquer algorithm.
119 *
120 * Split U in two pieces, U1 and U0, such that
121 * U = U0 + U1*(B**n),
122 * and V in V1 and V0, such that
123 * V = V0 + V1*(B**n).
124 *
125 * UV is then computed recursively using the identity
126 *
127 * 2n n n n
128 * UV = (B + B )U V + B (U -U )(V -V ) + (B + 1)U V
129 * 1 1 1 0 0 1 0 0
130 *
131 * Where B = 2**BITS_PER_MP_LIMB.
132 */
133 mpi_size_t hsize = size >> 1;
134 mpi_limb_t cy;
135 int negflg;
136
137 /* Product H. ________________ ________________
138 * |_____U1 x V1____||____U0 x V0_____|
139 * Put result in upper part of PROD and pass low part of TSPACE
140 * as new TSPACE.
141 */
142 MPN_MUL_N_RECURSE(prodp + size, up + hsize, vp + hsize, hsize,
143 tspace);
144
145 /* Product M. ________________
146 * |_(U1-U0)(V0-V1)_|
147 */
148 if (mpihelp_cmp(up + hsize, up, hsize) >= 0) {
149 mpihelp_sub_n(prodp, up + hsize, up, hsize);
150 negflg = 0;
151 } else {
152 mpihelp_sub_n(prodp, up, up + hsize, hsize);
153 negflg = 1;
154 }
155 if (mpihelp_cmp(vp + hsize, vp, hsize) >= 0) {
156 mpihelp_sub_n(prodp + hsize, vp + hsize, vp, hsize);
157 negflg ^= 1;
158 } else {
159 mpihelp_sub_n(prodp + hsize, vp, vp + hsize, hsize);
160 /* No change of NEGFLG. */
161 }
162 /* Read temporary operands from low part of PROD.
163 * Put result in low part of TSPACE using upper part of TSPACE
164 * as new TSPACE.
165 */
166 MPN_MUL_N_RECURSE(tspace, prodp, prodp + hsize, hsize,
167 tspace + size);
168
169 /* Add/copy product H. */
170 MPN_COPY(prodp + hsize, prodp + size, hsize);
171 cy = mpihelp_add_n(prodp + size, prodp + size,
172 prodp + size + hsize, hsize);
173
174 /* Add product M (if NEGFLG M is a negative number) */
175 if (negflg)
176 cy -=
177 mpihelp_sub_n(prodp + hsize, prodp + hsize, tspace,
178 size);
179 else
180 cy +=
181 mpihelp_add_n(prodp + hsize, prodp + hsize, tspace,
182 size);
183
184 /* Product L. ________________ ________________
185 * |________________||____U0 x V0_____|
186 * Read temporary operands from low part of PROD.
187 * Put result in low part of TSPACE using upper part of TSPACE
188 * as new TSPACE.
189 */
190 MPN_MUL_N_RECURSE(tspace, up, vp, hsize, tspace + size);
191
192 /* Add/copy Product L (twice) */
193
194 cy += mpihelp_add_n(prodp + hsize, prodp + hsize, tspace, size);
195 if (cy)
196 mpihelp_add_1(prodp + hsize + size,
197 prodp + hsize + size, hsize, cy);
198
199 MPN_COPY(prodp, tspace, hsize);
200 cy = mpihelp_add_n(prodp + hsize, prodp + hsize, tspace + hsize,
201 hsize);
202 if (cy)
203 mpihelp_add_1(prodp + size, prodp + size, size, 1);
204 }
205}
206
207void mpih_sqr_n_basecase(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t size)
208{
209 mpi_size_t i;
210 mpi_limb_t cy_limb;
211 mpi_limb_t v_limb;
212
213 /* Multiply by the first limb in V separately, as the result can be
214 * stored (not added) to PROD. We also avoid a loop for zeroing. */
215 v_limb = up[0];
216 if (v_limb <= 1) {
217 if (v_limb == 1)
218 MPN_COPY(prodp, up, size);
219 else
220 MPN_ZERO(prodp, size);
221 cy_limb = 0;
222 } else
223 cy_limb = mpihelp_mul_1(prodp, up, size, v_limb);
224
225 prodp[size] = cy_limb;
226 prodp++;
227
228 /* For each iteration in the outer loop, multiply one limb from
229 * U with one limb from V, and add it to PROD. */
230 for (i = 1; i < size; i++) {
231 v_limb = up[i];
232 if (v_limb <= 1) {
233 cy_limb = 0;
234 if (v_limb == 1)
235 cy_limb = mpihelp_add_n(prodp, prodp, up, size);
236 } else
237 cy_limb = mpihelp_addmul_1(prodp, up, size, v_limb);
238
239 prodp[size] = cy_limb;
240 prodp++;
241 }
242}
243
244void
245mpih_sqr_n(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t size, mpi_ptr_t tspace)
246{
247 if (size & 1) {
248 /* The size is odd, and the code below doesn't handle that.
249 * Multiply the least significant (size - 1) limbs with a recursive
250 * call, and handle the most significant limb of S1 and S2
251 * separately.
252 * A slightly faster way to do this would be to make the Karatsuba
253 * code below behave as if the size were even, and let it check for
254 * odd size in the end. I.e., in essence move this code to the end.
255 * Doing so would save us a recursive call, and potentially make the
256 * stack grow a lot less.
257 */
258 mpi_size_t esize = size - 1; /* even size */
259 mpi_limb_t cy_limb;
260
261 MPN_SQR_N_RECURSE(prodp, up, esize, tspace);
262 cy_limb = mpihelp_addmul_1(prodp + esize, up, esize, up[esize]);
263 prodp[esize + esize] = cy_limb;
264 cy_limb = mpihelp_addmul_1(prodp + esize, up, size, up[esize]);
265
266 prodp[esize + size] = cy_limb;
267 } else {
268 mpi_size_t hsize = size >> 1;
269 mpi_limb_t cy;
270
271 /* Product H. ________________ ________________
272 * |_____U1 x U1____||____U0 x U0_____|
273 * Put result in upper part of PROD and pass low part of TSPACE
274 * as new TSPACE.
275 */
276 MPN_SQR_N_RECURSE(prodp + size, up + hsize, hsize, tspace);
277
278 /* Product M. ________________
279 * |_(U1-U0)(U0-U1)_|
280 */
281 if (mpihelp_cmp(up + hsize, up, hsize) >= 0)
282 mpihelp_sub_n(prodp, up + hsize, up, hsize);
283 else
284 mpihelp_sub_n(prodp, up, up + hsize, hsize);
285
286 /* Read temporary operands from low part of PROD.
287 * Put result in low part of TSPACE using upper part of TSPACE
288 * as new TSPACE. */
289 MPN_SQR_N_RECURSE(tspace, prodp, hsize, tspace + size);
290
291 /* Add/copy product H */
292 MPN_COPY(prodp + hsize, prodp + size, hsize);
293 cy = mpihelp_add_n(prodp + size, prodp + size,
294 prodp + size + hsize, hsize);
295
296 /* Add product M (if NEGFLG M is a negative number). */
297 cy -= mpihelp_sub_n(prodp + hsize, prodp + hsize, tspace, size);
298
299 /* Product L. ________________ ________________
300 * |________________||____U0 x U0_____|
301 * Read temporary operands from low part of PROD.
302 * Put result in low part of TSPACE using upper part of TSPACE
303 * as new TSPACE. */
304 MPN_SQR_N_RECURSE(tspace, up, hsize, tspace + size);
305
306 /* Add/copy Product L (twice). */
307 cy += mpihelp_add_n(prodp + hsize, prodp + hsize, tspace, size);
308 if (cy)
309 mpihelp_add_1(prodp + hsize + size,
310 prodp + hsize + size, hsize, cy);
311
312 MPN_COPY(prodp, tspace, hsize);
313 cy = mpihelp_add_n(prodp + hsize, prodp + hsize, tspace + hsize,
314 hsize);
315 if (cy)
316 mpihelp_add_1(prodp + size, prodp + size, size, 1);
317 }
318}
319
Tianjia Zhanga8ea8bd2020-09-21 00:20:55 +0800320
321void mpihelp_mul_n(mpi_ptr_t prodp,
322 mpi_ptr_t up, mpi_ptr_t vp, mpi_size_t size)
323{
324 if (up == vp) {
325 if (size < KARATSUBA_THRESHOLD)
326 mpih_sqr_n_basecase(prodp, up, size);
327 else {
328 mpi_ptr_t tspace;
329 tspace = mpi_alloc_limb_space(2 * size);
330 mpih_sqr_n(prodp, up, size, tspace);
331 mpi_free_limb_space(tspace);
332 }
333 } else {
334 if (size < KARATSUBA_THRESHOLD)
335 mul_n_basecase(prodp, up, vp, size);
336 else {
337 mpi_ptr_t tspace;
338 tspace = mpi_alloc_limb_space(2 * size);
339 mul_n(prodp, up, vp, size, tspace);
340 mpi_free_limb_space(tspace);
341 }
342 }
343}
344
Dmitry Kasatkincdec9cb2011-08-31 14:05:16 +0300345int
346mpihelp_mul_karatsuba_case(mpi_ptr_t prodp,
347 mpi_ptr_t up, mpi_size_t usize,
348 mpi_ptr_t vp, mpi_size_t vsize,
349 struct karatsuba_ctx *ctx)
350{
351 mpi_limb_t cy;
352
353 if (!ctx->tspace || ctx->tspace_size < vsize) {
354 if (ctx->tspace)
355 mpi_free_limb_space(ctx->tspace);
356 ctx->tspace = mpi_alloc_limb_space(2 * vsize);
357 if (!ctx->tspace)
358 return -ENOMEM;
359 ctx->tspace_size = vsize;
360 }
361
362 MPN_MUL_N_RECURSE(prodp, up, vp, vsize, ctx->tspace);
363
364 prodp += vsize;
365 up += vsize;
366 usize -= vsize;
367 if (usize >= vsize) {
368 if (!ctx->tp || ctx->tp_size < vsize) {
369 if (ctx->tp)
370 mpi_free_limb_space(ctx->tp);
371 ctx->tp = mpi_alloc_limb_space(2 * vsize);
372 if (!ctx->tp) {
373 if (ctx->tspace)
374 mpi_free_limb_space(ctx->tspace);
375 ctx->tspace = NULL;
376 return -ENOMEM;
377 }
378 ctx->tp_size = vsize;
379 }
380
381 do {
382 MPN_MUL_N_RECURSE(ctx->tp, up, vp, vsize, ctx->tspace);
383 cy = mpihelp_add_n(prodp, prodp, ctx->tp, vsize);
384 mpihelp_add_1(prodp + vsize, ctx->tp + vsize, vsize,
385 cy);
386 prodp += vsize;
387 up += vsize;
388 usize -= vsize;
389 } while (usize >= vsize);
390 }
391
392 if (usize) {
393 if (usize < KARATSUBA_THRESHOLD) {
394 mpi_limb_t tmp;
395 if (mpihelp_mul(ctx->tspace, vp, vsize, up, usize, &tmp)
396 < 0)
397 return -ENOMEM;
398 } else {
399 if (!ctx->next) {
400 ctx->next = kzalloc(sizeof *ctx, GFP_KERNEL);
401 if (!ctx->next)
402 return -ENOMEM;
403 }
404 if (mpihelp_mul_karatsuba_case(ctx->tspace,
405 vp, vsize,
406 up, usize,
407 ctx->next) < 0)
408 return -ENOMEM;
409 }
410
411 cy = mpihelp_add_n(prodp, prodp, ctx->tspace, vsize);
412 mpihelp_add_1(prodp + vsize, ctx->tspace + vsize, usize, cy);
413 }
414
415 return 0;
416}
417
418void mpihelp_release_karatsuba_ctx(struct karatsuba_ctx *ctx)
419{
420 struct karatsuba_ctx *ctx2;
421
422 if (ctx->tp)
423 mpi_free_limb_space(ctx->tp);
424 if (ctx->tspace)
425 mpi_free_limb_space(ctx->tspace);
426 for (ctx = ctx->next; ctx; ctx = ctx2) {
427 ctx2 = ctx->next;
428 if (ctx->tp)
429 mpi_free_limb_space(ctx->tp);
430 if (ctx->tspace)
431 mpi_free_limb_space(ctx->tspace);
432 kfree(ctx);
433 }
434}
435
436/* Multiply the natural numbers u (pointed to by UP, with USIZE limbs)
437 * and v (pointed to by VP, with VSIZE limbs), and store the result at
438 * PRODP. USIZE + VSIZE limbs are always stored, but if the input
439 * operands are normalized. Return the most significant limb of the
440 * result.
441 *
442 * NOTE: The space pointed to by PRODP is overwritten before finished
443 * with U and V, so overlap is an error.
444 *
445 * Argument constraints:
446 * 1. USIZE >= VSIZE.
447 * 2. PRODP != UP and PRODP != VP, i.e. the destination
448 * must be distinct from the multiplier and the multiplicand.
449 */
450
451int
452mpihelp_mul(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t usize,
453 mpi_ptr_t vp, mpi_size_t vsize, mpi_limb_t *_result)
454{
455 mpi_ptr_t prod_endp = prodp + usize + vsize - 1;
456 mpi_limb_t cy;
457 struct karatsuba_ctx ctx;
458
459 if (vsize < KARATSUBA_THRESHOLD) {
460 mpi_size_t i;
461 mpi_limb_t v_limb;
462
463 if (!vsize) {
464 *_result = 0;
465 return 0;
466 }
467
468 /* Multiply by the first limb in V separately, as the result can be
469 * stored (not added) to PROD. We also avoid a loop for zeroing. */
470 v_limb = vp[0];
471 if (v_limb <= 1) {
472 if (v_limb == 1)
473 MPN_COPY(prodp, up, usize);
474 else
475 MPN_ZERO(prodp, usize);
476 cy = 0;
477 } else
478 cy = mpihelp_mul_1(prodp, up, usize, v_limb);
479
480 prodp[usize] = cy;
481 prodp++;
482
483 /* For each iteration in the outer loop, multiply one limb from
484 * U with one limb from V, and add it to PROD. */
485 for (i = 1; i < vsize; i++) {
486 v_limb = vp[i];
487 if (v_limb <= 1) {
488 cy = 0;
489 if (v_limb == 1)
490 cy = mpihelp_add_n(prodp, prodp, up,
491 usize);
492 } else
493 cy = mpihelp_addmul_1(prodp, up, usize, v_limb);
494
495 prodp[usize] = cy;
496 prodp++;
497 }
498
499 *_result = cy;
500 return 0;
501 }
502
503 memset(&ctx, 0, sizeof ctx);
504 if (mpihelp_mul_karatsuba_case(prodp, up, usize, vp, vsize, &ctx) < 0)
505 return -ENOMEM;
506 mpihelp_release_karatsuba_ctx(&ctx);
507 *_result = *prod_endp;
508 return 0;
509}