Thomas Gleixner | fda8d26 | 2019-05-28 09:57:06 -0700 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
Lars-Peter Clausen | 670b19a | 2015-10-13 18:10:28 +0200 | [diff] [blame] | 2 | /* |
| 3 | * Copyright 2013-2015 Analog Devices Inc. |
| 4 | * Author: Lars-Peter Clausen <lars@metafoo.de> |
Lars-Peter Clausen | 670b19a | 2015-10-13 18:10:28 +0200 | [diff] [blame] | 5 | */ |
| 6 | |
| 7 | #include <linux/slab.h> |
| 8 | #include <linux/kernel.h> |
| 9 | #include <linux/module.h> |
| 10 | #include <linux/device.h> |
| 11 | #include <linux/workqueue.h> |
| 12 | #include <linux/mutex.h> |
| 13 | #include <linux/sched.h> |
| 14 | #include <linux/poll.h> |
Phil Reid | 838519b | 2017-06-13 10:31:36 +0800 | [diff] [blame] | 15 | #include <linux/iio/buffer_impl.h> |
Lars-Peter Clausen | 670b19a | 2015-10-13 18:10:28 +0200 | [diff] [blame] | 16 | #include <linux/iio/buffer-dma.h> |
| 17 | #include <linux/dma-mapping.h> |
| 18 | #include <linux/sizes.h> |
| 19 | |
| 20 | /* |
| 21 | * For DMA buffers the storage is sub-divided into so called blocks. Each block |
| 22 | * has its own memory buffer. The size of the block is the granularity at which |
| 23 | * memory is exchanged between the hardware and the application. Increasing the |
| 24 | * basic unit of data exchange from one sample to one block decreases the |
| 25 | * management overhead that is associated with each sample. E.g. if we say the |
| 26 | * management overhead for one exchange is x and the unit of exchange is one |
| 27 | * sample the overhead will be x for each sample. Whereas when using a block |
| 28 | * which contains n samples the overhead per sample is reduced to x/n. This |
| 29 | * allows to achieve much higher samplerates than what can be sustained with |
| 30 | * the one sample approach. |
| 31 | * |
| 32 | * Blocks are exchanged between the DMA controller and the application via the |
| 33 | * means of two queues. The incoming queue and the outgoing queue. Blocks on the |
| 34 | * incoming queue are waiting for the DMA controller to pick them up and fill |
| 35 | * them with data. Block on the outgoing queue have been filled with data and |
| 36 | * are waiting for the application to dequeue them and read the data. |
| 37 | * |
| 38 | * A block can be in one of the following states: |
| 39 | * * Owned by the application. In this state the application can read data from |
| 40 | * the block. |
| 41 | * * On the incoming list: Blocks on the incoming list are queued up to be |
| 42 | * processed by the DMA controller. |
| 43 | * * Owned by the DMA controller: The DMA controller is processing the block |
| 44 | * and filling it with data. |
| 45 | * * On the outgoing list: Blocks on the outgoing list have been successfully |
| 46 | * processed by the DMA controller and contain data. They can be dequeued by |
| 47 | * the application. |
| 48 | * * Dead: A block that is dead has been marked as to be freed. It might still |
| 49 | * be owned by either the application or the DMA controller at the moment. |
| 50 | * But once they are done processing it instead of going to either the |
| 51 | * incoming or outgoing queue the block will be freed. |
| 52 | * |
| 53 | * In addition to this blocks are reference counted and the memory associated |
| 54 | * with both the block structure as well as the storage memory for the block |
| 55 | * will be freed when the last reference to the block is dropped. This means a |
| 56 | * block must not be accessed without holding a reference. |
| 57 | * |
| 58 | * The iio_dma_buffer implementation provides a generic infrastructure for |
| 59 | * managing the blocks. |
| 60 | * |
| 61 | * A driver for a specific piece of hardware that has DMA capabilities need to |
| 62 | * implement the submit() callback from the iio_dma_buffer_ops structure. This |
| 63 | * callback is supposed to initiate the DMA transfer copying data from the |
| 64 | * converter to the memory region of the block. Once the DMA transfer has been |
| 65 | * completed the driver must call iio_dma_buffer_block_done() for the completed |
| 66 | * block. |
| 67 | * |
| 68 | * Prior to this it must set the bytes_used field of the block contains |
| 69 | * the actual number of bytes in the buffer. Typically this will be equal to the |
| 70 | * size of the block, but if the DMA hardware has certain alignment requirements |
| 71 | * for the transfer length it might choose to use less than the full size. In |
| 72 | * either case it is expected that bytes_used is a multiple of the bytes per |
| 73 | * datum, i.e. the block must not contain partial samples. |
| 74 | * |
| 75 | * The driver must call iio_dma_buffer_block_done() for each block it has |
| 76 | * received through its submit_block() callback, even if it does not actually |
| 77 | * perform a DMA transfer for the block, e.g. because the buffer was disabled |
| 78 | * before the block transfer was started. In this case it should set bytes_used |
| 79 | * to 0. |
| 80 | * |
| 81 | * In addition it is recommended that a driver implements the abort() callback. |
| 82 | * It will be called when the buffer is disabled and can be used to cancel |
| 83 | * pending and stop active transfers. |
| 84 | * |
| 85 | * The specific driver implementation should use the default callback |
| 86 | * implementations provided by this module for the iio_buffer_access_funcs |
| 87 | * struct. It may overload some callbacks with custom variants if the hardware |
| 88 | * has special requirements that are not handled by the generic functions. If a |
| 89 | * driver chooses to overload a callback it has to ensure that the generic |
| 90 | * callback is called from within the custom callback. |
| 91 | */ |
| 92 | |
| 93 | static void iio_buffer_block_release(struct kref *kref) |
| 94 | { |
| 95 | struct iio_dma_buffer_block *block = container_of(kref, |
| 96 | struct iio_dma_buffer_block, kref); |
| 97 | |
| 98 | WARN_ON(block->state != IIO_BLOCK_STATE_DEAD); |
| 99 | |
| 100 | dma_free_coherent(block->queue->dev, PAGE_ALIGN(block->size), |
| 101 | block->vaddr, block->phys_addr); |
| 102 | |
| 103 | iio_buffer_put(&block->queue->buffer); |
| 104 | kfree(block); |
| 105 | } |
| 106 | |
| 107 | static void iio_buffer_block_get(struct iio_dma_buffer_block *block) |
| 108 | { |
| 109 | kref_get(&block->kref); |
| 110 | } |
| 111 | |
| 112 | static void iio_buffer_block_put(struct iio_dma_buffer_block *block) |
| 113 | { |
| 114 | kref_put(&block->kref, iio_buffer_block_release); |
| 115 | } |
| 116 | |
| 117 | /* |
| 118 | * dma_free_coherent can sleep, hence we need to take some special care to be |
| 119 | * able to drop a reference from an atomic context. |
| 120 | */ |
| 121 | static LIST_HEAD(iio_dma_buffer_dead_blocks); |
| 122 | static DEFINE_SPINLOCK(iio_dma_buffer_dead_blocks_lock); |
| 123 | |
| 124 | static void iio_dma_buffer_cleanup_worker(struct work_struct *work) |
| 125 | { |
| 126 | struct iio_dma_buffer_block *block, *_block; |
| 127 | LIST_HEAD(block_list); |
| 128 | |
| 129 | spin_lock_irq(&iio_dma_buffer_dead_blocks_lock); |
| 130 | list_splice_tail_init(&iio_dma_buffer_dead_blocks, &block_list); |
| 131 | spin_unlock_irq(&iio_dma_buffer_dead_blocks_lock); |
| 132 | |
| 133 | list_for_each_entry_safe(block, _block, &block_list, head) |
| 134 | iio_buffer_block_release(&block->kref); |
| 135 | } |
| 136 | static DECLARE_WORK(iio_dma_buffer_cleanup_work, iio_dma_buffer_cleanup_worker); |
| 137 | |
| 138 | static void iio_buffer_block_release_atomic(struct kref *kref) |
| 139 | { |
| 140 | struct iio_dma_buffer_block *block; |
| 141 | unsigned long flags; |
| 142 | |
| 143 | block = container_of(kref, struct iio_dma_buffer_block, kref); |
| 144 | |
| 145 | spin_lock_irqsave(&iio_dma_buffer_dead_blocks_lock, flags); |
| 146 | list_add_tail(&block->head, &iio_dma_buffer_dead_blocks); |
| 147 | spin_unlock_irqrestore(&iio_dma_buffer_dead_blocks_lock, flags); |
| 148 | |
| 149 | schedule_work(&iio_dma_buffer_cleanup_work); |
| 150 | } |
| 151 | |
| 152 | /* |
| 153 | * Version of iio_buffer_block_put() that can be called from atomic context |
| 154 | */ |
| 155 | static void iio_buffer_block_put_atomic(struct iio_dma_buffer_block *block) |
| 156 | { |
| 157 | kref_put(&block->kref, iio_buffer_block_release_atomic); |
| 158 | } |
| 159 | |
| 160 | static struct iio_dma_buffer_queue *iio_buffer_to_queue(struct iio_buffer *buf) |
| 161 | { |
| 162 | return container_of(buf, struct iio_dma_buffer_queue, buffer); |
| 163 | } |
| 164 | |
| 165 | static struct iio_dma_buffer_block *iio_dma_buffer_alloc_block( |
| 166 | struct iio_dma_buffer_queue *queue, size_t size) |
| 167 | { |
| 168 | struct iio_dma_buffer_block *block; |
| 169 | |
| 170 | block = kzalloc(sizeof(*block), GFP_KERNEL); |
| 171 | if (!block) |
| 172 | return NULL; |
| 173 | |
| 174 | block->vaddr = dma_alloc_coherent(queue->dev, PAGE_ALIGN(size), |
| 175 | &block->phys_addr, GFP_KERNEL); |
| 176 | if (!block->vaddr) { |
| 177 | kfree(block); |
| 178 | return NULL; |
| 179 | } |
| 180 | |
| 181 | block->size = size; |
| 182 | block->state = IIO_BLOCK_STATE_DEQUEUED; |
| 183 | block->queue = queue; |
| 184 | INIT_LIST_HEAD(&block->head); |
| 185 | kref_init(&block->kref); |
| 186 | |
| 187 | iio_buffer_get(&queue->buffer); |
| 188 | |
| 189 | return block; |
| 190 | } |
| 191 | |
| 192 | static void _iio_dma_buffer_block_done(struct iio_dma_buffer_block *block) |
| 193 | { |
| 194 | struct iio_dma_buffer_queue *queue = block->queue; |
| 195 | |
| 196 | /* |
| 197 | * The buffer has already been freed by the application, just drop the |
| 198 | * reference. |
| 199 | */ |
| 200 | if (block->state != IIO_BLOCK_STATE_DEAD) { |
| 201 | block->state = IIO_BLOCK_STATE_DONE; |
| 202 | list_add_tail(&block->head, &queue->outgoing); |
| 203 | } |
| 204 | } |
| 205 | |
| 206 | /** |
| 207 | * iio_dma_buffer_block_done() - Indicate that a block has been completed |
| 208 | * @block: The completed block |
| 209 | * |
| 210 | * Should be called when the DMA controller has finished handling the block to |
| 211 | * pass back ownership of the block to the queue. |
| 212 | */ |
| 213 | void iio_dma_buffer_block_done(struct iio_dma_buffer_block *block) |
| 214 | { |
| 215 | struct iio_dma_buffer_queue *queue = block->queue; |
| 216 | unsigned long flags; |
| 217 | |
| 218 | spin_lock_irqsave(&queue->list_lock, flags); |
| 219 | _iio_dma_buffer_block_done(block); |
| 220 | spin_unlock_irqrestore(&queue->list_lock, flags); |
| 221 | |
| 222 | iio_buffer_block_put_atomic(block); |
Linus Torvalds | a9a0884 | 2018-02-11 14:34:03 -0800 | [diff] [blame] | 223 | wake_up_interruptible_poll(&queue->buffer.pollq, EPOLLIN | EPOLLRDNORM); |
Lars-Peter Clausen | 670b19a | 2015-10-13 18:10:28 +0200 | [diff] [blame] | 224 | } |
| 225 | EXPORT_SYMBOL_GPL(iio_dma_buffer_block_done); |
| 226 | |
| 227 | /** |
| 228 | * iio_dma_buffer_block_list_abort() - Indicate that a list block has been |
| 229 | * aborted |
| 230 | * @queue: Queue for which to complete blocks. |
| 231 | * @list: List of aborted blocks. All blocks in this list must be from @queue. |
| 232 | * |
| 233 | * Typically called from the abort() callback after the DMA controller has been |
| 234 | * stopped. This will set bytes_used to 0 for each block in the list and then |
| 235 | * hand the blocks back to the queue. |
| 236 | */ |
| 237 | void iio_dma_buffer_block_list_abort(struct iio_dma_buffer_queue *queue, |
| 238 | struct list_head *list) |
| 239 | { |
| 240 | struct iio_dma_buffer_block *block, *_block; |
| 241 | unsigned long flags; |
| 242 | |
| 243 | spin_lock_irqsave(&queue->list_lock, flags); |
| 244 | list_for_each_entry_safe(block, _block, list, head) { |
| 245 | list_del(&block->head); |
| 246 | block->bytes_used = 0; |
| 247 | _iio_dma_buffer_block_done(block); |
| 248 | iio_buffer_block_put_atomic(block); |
| 249 | } |
| 250 | spin_unlock_irqrestore(&queue->list_lock, flags); |
| 251 | |
Linus Torvalds | a9a0884 | 2018-02-11 14:34:03 -0800 | [diff] [blame] | 252 | wake_up_interruptible_poll(&queue->buffer.pollq, EPOLLIN | EPOLLRDNORM); |
Lars-Peter Clausen | 670b19a | 2015-10-13 18:10:28 +0200 | [diff] [blame] | 253 | } |
| 254 | EXPORT_SYMBOL_GPL(iio_dma_buffer_block_list_abort); |
| 255 | |
| 256 | static bool iio_dma_block_reusable(struct iio_dma_buffer_block *block) |
| 257 | { |
| 258 | /* |
| 259 | * If the core owns the block it can be re-used. This should be the |
| 260 | * default case when enabling the buffer, unless the DMA controller does |
| 261 | * not support abort and has not given back the block yet. |
| 262 | */ |
| 263 | switch (block->state) { |
| 264 | case IIO_BLOCK_STATE_DEQUEUED: |
| 265 | case IIO_BLOCK_STATE_QUEUED: |
| 266 | case IIO_BLOCK_STATE_DONE: |
| 267 | return true; |
| 268 | default: |
| 269 | return false; |
| 270 | } |
| 271 | } |
| 272 | |
| 273 | /** |
| 274 | * iio_dma_buffer_request_update() - DMA buffer request_update callback |
| 275 | * @buffer: The buffer which to request an update |
| 276 | * |
| 277 | * Should be used as the iio_dma_buffer_request_update() callback for |
| 278 | * iio_buffer_access_ops struct for DMA buffers. |
| 279 | */ |
| 280 | int iio_dma_buffer_request_update(struct iio_buffer *buffer) |
| 281 | { |
| 282 | struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer); |
| 283 | struct iio_dma_buffer_block *block; |
| 284 | bool try_reuse = false; |
| 285 | size_t size; |
| 286 | int ret = 0; |
| 287 | int i; |
| 288 | |
| 289 | /* |
| 290 | * Split the buffer into two even parts. This is used as a double |
| 291 | * buffering scheme with usually one block at a time being used by the |
| 292 | * DMA and the other one by the application. |
| 293 | */ |
| 294 | size = DIV_ROUND_UP(queue->buffer.bytes_per_datum * |
| 295 | queue->buffer.length, 2); |
| 296 | |
| 297 | mutex_lock(&queue->lock); |
| 298 | |
| 299 | /* Allocations are page aligned */ |
| 300 | if (PAGE_ALIGN(queue->fileio.block_size) == PAGE_ALIGN(size)) |
| 301 | try_reuse = true; |
| 302 | |
| 303 | queue->fileio.block_size = size; |
| 304 | queue->fileio.active_block = NULL; |
| 305 | |
| 306 | spin_lock_irq(&queue->list_lock); |
Phil Reid | 29e3e06 | 2016-06-27 11:17:56 +0800 | [diff] [blame] | 307 | for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) { |
Lars-Peter Clausen | 670b19a | 2015-10-13 18:10:28 +0200 | [diff] [blame] | 308 | block = queue->fileio.blocks[i]; |
| 309 | |
| 310 | /* If we can't re-use it free it */ |
| 311 | if (block && (!iio_dma_block_reusable(block) || !try_reuse)) |
| 312 | block->state = IIO_BLOCK_STATE_DEAD; |
| 313 | } |
| 314 | |
| 315 | /* |
| 316 | * At this point all blocks are either owned by the core or marked as |
| 317 | * dead. This means we can reset the lists without having to fear |
| 318 | * corrution. |
| 319 | */ |
| 320 | INIT_LIST_HEAD(&queue->outgoing); |
| 321 | spin_unlock_irq(&queue->list_lock); |
| 322 | |
| 323 | INIT_LIST_HEAD(&queue->incoming); |
| 324 | |
Phil Reid | 29e3e06 | 2016-06-27 11:17:56 +0800 | [diff] [blame] | 325 | for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) { |
Lars-Peter Clausen | 670b19a | 2015-10-13 18:10:28 +0200 | [diff] [blame] | 326 | if (queue->fileio.blocks[i]) { |
| 327 | block = queue->fileio.blocks[i]; |
| 328 | if (block->state == IIO_BLOCK_STATE_DEAD) { |
| 329 | /* Could not reuse it */ |
| 330 | iio_buffer_block_put(block); |
| 331 | block = NULL; |
| 332 | } else { |
| 333 | block->size = size; |
| 334 | } |
| 335 | } else { |
| 336 | block = NULL; |
| 337 | } |
| 338 | |
| 339 | if (!block) { |
| 340 | block = iio_dma_buffer_alloc_block(queue, size); |
| 341 | if (!block) { |
| 342 | ret = -ENOMEM; |
| 343 | goto out_unlock; |
| 344 | } |
| 345 | queue->fileio.blocks[i] = block; |
| 346 | } |
| 347 | |
| 348 | block->state = IIO_BLOCK_STATE_QUEUED; |
| 349 | list_add_tail(&block->head, &queue->incoming); |
| 350 | } |
| 351 | |
| 352 | out_unlock: |
| 353 | mutex_unlock(&queue->lock); |
| 354 | |
| 355 | return ret; |
| 356 | } |
| 357 | EXPORT_SYMBOL_GPL(iio_dma_buffer_request_update); |
| 358 | |
| 359 | static void iio_dma_buffer_submit_block(struct iio_dma_buffer_queue *queue, |
| 360 | struct iio_dma_buffer_block *block) |
| 361 | { |
| 362 | int ret; |
| 363 | |
| 364 | /* |
| 365 | * If the hardware has already been removed we put the block into |
| 366 | * limbo. It will neither be on the incoming nor outgoing list, nor will |
| 367 | * it ever complete. It will just wait to be freed eventually. |
| 368 | */ |
| 369 | if (!queue->ops) |
| 370 | return; |
| 371 | |
| 372 | block->state = IIO_BLOCK_STATE_ACTIVE; |
| 373 | iio_buffer_block_get(block); |
| 374 | ret = queue->ops->submit(queue, block); |
| 375 | if (ret) { |
| 376 | /* |
| 377 | * This is a bit of a problem and there is not much we can do |
| 378 | * other then wait for the buffer to be disabled and re-enabled |
| 379 | * and try again. But it should not really happen unless we run |
| 380 | * out of memory or something similar. |
| 381 | * |
| 382 | * TODO: Implement support in the IIO core to allow buffers to |
| 383 | * notify consumers that something went wrong and the buffer |
| 384 | * should be disabled. |
| 385 | */ |
| 386 | iio_buffer_block_put(block); |
| 387 | } |
| 388 | } |
| 389 | |
| 390 | /** |
| 391 | * iio_dma_buffer_enable() - Enable DMA buffer |
| 392 | * @buffer: IIO buffer to enable |
| 393 | * @indio_dev: IIO device the buffer is attached to |
| 394 | * |
| 395 | * Needs to be called when the device that the buffer is attached to starts |
| 396 | * sampling. Typically should be the iio_buffer_access_ops enable callback. |
| 397 | * |
| 398 | * This will allocate the DMA buffers and start the DMA transfers. |
| 399 | */ |
| 400 | int iio_dma_buffer_enable(struct iio_buffer *buffer, |
| 401 | struct iio_dev *indio_dev) |
| 402 | { |
| 403 | struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer); |
| 404 | struct iio_dma_buffer_block *block, *_block; |
| 405 | |
| 406 | mutex_lock(&queue->lock); |
| 407 | queue->active = true; |
| 408 | list_for_each_entry_safe(block, _block, &queue->incoming, head) { |
| 409 | list_del(&block->head); |
| 410 | iio_dma_buffer_submit_block(queue, block); |
| 411 | } |
| 412 | mutex_unlock(&queue->lock); |
| 413 | |
| 414 | return 0; |
| 415 | } |
| 416 | EXPORT_SYMBOL_GPL(iio_dma_buffer_enable); |
| 417 | |
| 418 | /** |
| 419 | * iio_dma_buffer_disable() - Disable DMA buffer |
| 420 | * @buffer: IIO DMA buffer to disable |
| 421 | * @indio_dev: IIO device the buffer is attached to |
| 422 | * |
| 423 | * Needs to be called when the device that the buffer is attached to stops |
| 424 | * sampling. Typically should be the iio_buffer_access_ops disable callback. |
| 425 | */ |
| 426 | int iio_dma_buffer_disable(struct iio_buffer *buffer, |
| 427 | struct iio_dev *indio_dev) |
| 428 | { |
| 429 | struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer); |
| 430 | |
| 431 | mutex_lock(&queue->lock); |
| 432 | queue->active = false; |
| 433 | |
| 434 | if (queue->ops && queue->ops->abort) |
| 435 | queue->ops->abort(queue); |
| 436 | mutex_unlock(&queue->lock); |
| 437 | |
| 438 | return 0; |
| 439 | } |
| 440 | EXPORT_SYMBOL_GPL(iio_dma_buffer_disable); |
| 441 | |
| 442 | static void iio_dma_buffer_enqueue(struct iio_dma_buffer_queue *queue, |
| 443 | struct iio_dma_buffer_block *block) |
| 444 | { |
| 445 | if (block->state == IIO_BLOCK_STATE_DEAD) { |
| 446 | iio_buffer_block_put(block); |
| 447 | } else if (queue->active) { |
| 448 | iio_dma_buffer_submit_block(queue, block); |
| 449 | } else { |
| 450 | block->state = IIO_BLOCK_STATE_QUEUED; |
| 451 | list_add_tail(&block->head, &queue->incoming); |
| 452 | } |
| 453 | } |
| 454 | |
| 455 | static struct iio_dma_buffer_block *iio_dma_buffer_dequeue( |
| 456 | struct iio_dma_buffer_queue *queue) |
| 457 | { |
| 458 | struct iio_dma_buffer_block *block; |
| 459 | |
| 460 | spin_lock_irq(&queue->list_lock); |
| 461 | block = list_first_entry_or_null(&queue->outgoing, struct |
| 462 | iio_dma_buffer_block, head); |
| 463 | if (block != NULL) { |
| 464 | list_del(&block->head); |
| 465 | block->state = IIO_BLOCK_STATE_DEQUEUED; |
| 466 | } |
| 467 | spin_unlock_irq(&queue->list_lock); |
| 468 | |
| 469 | return block; |
| 470 | } |
| 471 | |
| 472 | /** |
| 473 | * iio_dma_buffer_read() - DMA buffer read callback |
| 474 | * @buffer: Buffer to read form |
| 475 | * @n: Number of bytes to read |
| 476 | * @user_buffer: Userspace buffer to copy the data to |
| 477 | * |
Lars-Peter Clausen | f6d4033 | 2019-12-11 12:43:00 +0200 | [diff] [blame] | 478 | * Should be used as the read callback for iio_buffer_access_ops |
Lars-Peter Clausen | 670b19a | 2015-10-13 18:10:28 +0200 | [diff] [blame] | 479 | * struct for DMA buffers. |
| 480 | */ |
| 481 | int iio_dma_buffer_read(struct iio_buffer *buffer, size_t n, |
| 482 | char __user *user_buffer) |
| 483 | { |
| 484 | struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer); |
| 485 | struct iio_dma_buffer_block *block; |
| 486 | int ret; |
| 487 | |
| 488 | if (n < buffer->bytes_per_datum) |
| 489 | return -EINVAL; |
| 490 | |
| 491 | mutex_lock(&queue->lock); |
| 492 | |
| 493 | if (!queue->fileio.active_block) { |
| 494 | block = iio_dma_buffer_dequeue(queue); |
| 495 | if (block == NULL) { |
| 496 | ret = 0; |
| 497 | goto out_unlock; |
| 498 | } |
| 499 | queue->fileio.pos = 0; |
| 500 | queue->fileio.active_block = block; |
| 501 | } else { |
| 502 | block = queue->fileio.active_block; |
| 503 | } |
| 504 | |
| 505 | n = rounddown(n, buffer->bytes_per_datum); |
| 506 | if (n > block->bytes_used - queue->fileio.pos) |
| 507 | n = block->bytes_used - queue->fileio.pos; |
| 508 | |
| 509 | if (copy_to_user(user_buffer, block->vaddr + queue->fileio.pos, n)) { |
| 510 | ret = -EFAULT; |
| 511 | goto out_unlock; |
| 512 | } |
| 513 | |
| 514 | queue->fileio.pos += n; |
| 515 | |
| 516 | if (queue->fileio.pos == block->bytes_used) { |
| 517 | queue->fileio.active_block = NULL; |
| 518 | iio_dma_buffer_enqueue(queue, block); |
| 519 | } |
| 520 | |
| 521 | ret = n; |
| 522 | |
| 523 | out_unlock: |
| 524 | mutex_unlock(&queue->lock); |
| 525 | |
| 526 | return ret; |
| 527 | } |
| 528 | EXPORT_SYMBOL_GPL(iio_dma_buffer_read); |
| 529 | |
| 530 | /** |
| 531 | * iio_dma_buffer_data_available() - DMA buffer data_available callback |
| 532 | * @buf: Buffer to check for data availability |
| 533 | * |
| 534 | * Should be used as the data_available callback for iio_buffer_access_ops |
| 535 | * struct for DMA buffers. |
| 536 | */ |
| 537 | size_t iio_dma_buffer_data_available(struct iio_buffer *buf) |
| 538 | { |
| 539 | struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buf); |
| 540 | struct iio_dma_buffer_block *block; |
| 541 | size_t data_available = 0; |
| 542 | |
| 543 | /* |
| 544 | * For counting the available bytes we'll use the size of the block not |
| 545 | * the number of actual bytes available in the block. Otherwise it is |
| 546 | * possible that we end up with a value that is lower than the watermark |
| 547 | * but won't increase since all blocks are in use. |
| 548 | */ |
| 549 | |
| 550 | mutex_lock(&queue->lock); |
| 551 | if (queue->fileio.active_block) |
| 552 | data_available += queue->fileio.active_block->size; |
| 553 | |
| 554 | spin_lock_irq(&queue->list_lock); |
| 555 | list_for_each_entry(block, &queue->outgoing, head) |
| 556 | data_available += block->size; |
| 557 | spin_unlock_irq(&queue->list_lock); |
| 558 | mutex_unlock(&queue->lock); |
| 559 | |
| 560 | return data_available; |
| 561 | } |
| 562 | EXPORT_SYMBOL_GPL(iio_dma_buffer_data_available); |
| 563 | |
| 564 | /** |
| 565 | * iio_dma_buffer_set_bytes_per_datum() - DMA buffer set_bytes_per_datum callback |
| 566 | * @buffer: Buffer to set the bytes-per-datum for |
| 567 | * @bpd: The new bytes-per-datum value |
| 568 | * |
| 569 | * Should be used as the set_bytes_per_datum callback for iio_buffer_access_ops |
| 570 | * struct for DMA buffers. |
| 571 | */ |
| 572 | int iio_dma_buffer_set_bytes_per_datum(struct iio_buffer *buffer, size_t bpd) |
| 573 | { |
| 574 | buffer->bytes_per_datum = bpd; |
| 575 | |
| 576 | return 0; |
| 577 | } |
| 578 | EXPORT_SYMBOL_GPL(iio_dma_buffer_set_bytes_per_datum); |
| 579 | |
| 580 | /** |
| 581 | * iio_dma_buffer_set_length - DMA buffer set_length callback |
| 582 | * @buffer: Buffer to set the length for |
| 583 | * @length: The new buffer length |
| 584 | * |
| 585 | * Should be used as the set_length callback for iio_buffer_access_ops |
| 586 | * struct for DMA buffers. |
| 587 | */ |
Martin Kelly | c043ec1 | 2018-03-26 14:27:51 -0700 | [diff] [blame] | 588 | int iio_dma_buffer_set_length(struct iio_buffer *buffer, unsigned int length) |
Lars-Peter Clausen | 670b19a | 2015-10-13 18:10:28 +0200 | [diff] [blame] | 589 | { |
| 590 | /* Avoid an invalid state */ |
| 591 | if (length < 2) |
| 592 | length = 2; |
| 593 | buffer->length = length; |
| 594 | buffer->watermark = length / 2; |
| 595 | |
| 596 | return 0; |
| 597 | } |
| 598 | EXPORT_SYMBOL_GPL(iio_dma_buffer_set_length); |
| 599 | |
| 600 | /** |
| 601 | * iio_dma_buffer_init() - Initialize DMA buffer queue |
| 602 | * @queue: Buffer to initialize |
| 603 | * @dev: DMA device |
| 604 | * @ops: DMA buffer queue callback operations |
| 605 | * |
| 606 | * The DMA device will be used by the queue to do DMA memory allocations. So it |
| 607 | * should refer to the device that will perform the DMA to ensure that |
| 608 | * allocations are done from a memory region that can be accessed by the device. |
| 609 | */ |
| 610 | int iio_dma_buffer_init(struct iio_dma_buffer_queue *queue, |
| 611 | struct device *dev, const struct iio_dma_buffer_ops *ops) |
| 612 | { |
| 613 | iio_buffer_init(&queue->buffer); |
| 614 | queue->buffer.length = PAGE_SIZE; |
| 615 | queue->buffer.watermark = queue->buffer.length / 2; |
| 616 | queue->dev = dev; |
| 617 | queue->ops = ops; |
| 618 | |
| 619 | INIT_LIST_HEAD(&queue->incoming); |
| 620 | INIT_LIST_HEAD(&queue->outgoing); |
| 621 | |
| 622 | mutex_init(&queue->lock); |
| 623 | spin_lock_init(&queue->list_lock); |
| 624 | |
| 625 | return 0; |
| 626 | } |
| 627 | EXPORT_SYMBOL_GPL(iio_dma_buffer_init); |
| 628 | |
| 629 | /** |
| 630 | * iio_dma_buffer_exit() - Cleanup DMA buffer queue |
| 631 | * @queue: Buffer to cleanup |
| 632 | * |
| 633 | * After this function has completed it is safe to free any resources that are |
| 634 | * associated with the buffer and are accessed inside the callback operations. |
| 635 | */ |
| 636 | void iio_dma_buffer_exit(struct iio_dma_buffer_queue *queue) |
| 637 | { |
| 638 | unsigned int i; |
| 639 | |
| 640 | mutex_lock(&queue->lock); |
| 641 | |
| 642 | spin_lock_irq(&queue->list_lock); |
| 643 | for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) { |
| 644 | if (!queue->fileio.blocks[i]) |
| 645 | continue; |
| 646 | queue->fileio.blocks[i]->state = IIO_BLOCK_STATE_DEAD; |
| 647 | } |
| 648 | INIT_LIST_HEAD(&queue->outgoing); |
| 649 | spin_unlock_irq(&queue->list_lock); |
| 650 | |
| 651 | INIT_LIST_HEAD(&queue->incoming); |
| 652 | |
| 653 | for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) { |
| 654 | if (!queue->fileio.blocks[i]) |
| 655 | continue; |
| 656 | iio_buffer_block_put(queue->fileio.blocks[i]); |
| 657 | queue->fileio.blocks[i] = NULL; |
| 658 | } |
| 659 | queue->fileio.active_block = NULL; |
| 660 | queue->ops = NULL; |
| 661 | |
| 662 | mutex_unlock(&queue->lock); |
| 663 | } |
| 664 | EXPORT_SYMBOL_GPL(iio_dma_buffer_exit); |
| 665 | |
| 666 | /** |
| 667 | * iio_dma_buffer_release() - Release final buffer resources |
| 668 | * @queue: Buffer to release |
| 669 | * |
| 670 | * Frees resources that can't yet be freed in iio_dma_buffer_exit(). Should be |
| 671 | * called in the buffers release callback implementation right before freeing |
| 672 | * the memory associated with the buffer. |
| 673 | */ |
| 674 | void iio_dma_buffer_release(struct iio_dma_buffer_queue *queue) |
| 675 | { |
| 676 | mutex_destroy(&queue->lock); |
| 677 | } |
| 678 | EXPORT_SYMBOL_GPL(iio_dma_buffer_release); |
| 679 | |
| 680 | MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>"); |
| 681 | MODULE_DESCRIPTION("DMA buffer for the IIO framework"); |
| 682 | MODULE_LICENSE("GPL v2"); |