blob: 0dde145043bc22bfce15c2836c3243d5ceeeb872 [file] [log] [blame]
Mauro Carvalho Chehab58ccb2b2020-05-01 16:44:25 +02001.. SPDX-License-Identifier: GPL-2.0
2
3====================================
4Virtual Routing and Forwarding (VRF)
5====================================
6
7The VRF Device
8==============
9
10The VRF device combined with ip rules provides the ability to create virtual
11routing and forwarding domains (aka VRFs, VRF-lite to be specific) in the
12Linux network stack. One use case is the multi-tenancy problem where each
13tenant has their own unique routing tables and in the very least need
14different default gateways.
15
16Processes can be "VRF aware" by binding a socket to the VRF device. Packets
17through the socket then use the routing table associated with the VRF
18device. An important feature of the VRF device implementation is that it
19impacts only Layer 3 and above so L2 tools (e.g., LLDP) are not affected
20(ie., they do not need to be run in each VRF). The design also allows
21the use of higher priority ip rules (Policy Based Routing, PBR) to take
22precedence over the VRF device rules directing specific traffic as desired.
23
24In addition, VRF devices allow VRFs to be nested within namespaces. For
25example network namespaces provide separation of network interfaces at the
26device layer, VLANs on the interfaces within a namespace provide L2 separation
27and then VRF devices provide L3 separation.
28
29Design
30------
31A VRF device is created with an associated route table. Network interfaces
32are then enslaved to a VRF device::
33
34 +-----------------------------+
35 | vrf-blue | ===> route table 10
36 +-----------------------------+
37 | | |
38 +------+ +------+ +-------------+
39 | eth1 | | eth2 | ... | bond1 |
40 +------+ +------+ +-------------+
41 | |
42 +------+ +------+
43 | eth8 | | eth9 |
44 +------+ +------+
45
46Packets received on an enslaved device and are switched to the VRF device
47in the IPv4 and IPv6 processing stacks giving the impression that packets
48flow through the VRF device. Similarly on egress routing rules are used to
49send packets to the VRF device driver before getting sent out the actual
50interface. This allows tcpdump on a VRF device to capture all packets into
51and out of the VRF as a whole\ [1]_. Similarly, netfilter\ [2]_ and tc rules
52can be applied using the VRF device to specify rules that apply to the VRF
53domain as a whole.
54
55.. [1] Packets in the forwarded state do not flow through the device, so those
56 packets are not seen by tcpdump. Will revisit this limitation in a
57 future release.
58
59.. [2] Iptables on ingress supports PREROUTING with skb->dev set to the real
60 ingress device and both INPUT and PREROUTING rules with skb->dev set to
61 the VRF device. For egress POSTROUTING and OUTPUT rules can be written
62 using either the VRF device or real egress device.
63
64Setup
65-----
661. VRF device is created with an association to a FIB table.
67 e.g,::
68
69 ip link add vrf-blue type vrf table 10
70 ip link set dev vrf-blue up
71
722. An l3mdev FIB rule directs lookups to the table associated with the device.
73 A single l3mdev rule is sufficient for all VRFs. The VRF device adds the
74 l3mdev rule for IPv4 and IPv6 when the first device is created with a
75 default preference of 1000. Users may delete the rule if desired and add
76 with a different priority or install per-VRF rules.
77
78 Prior to the v4.8 kernel iif and oif rules are needed for each VRF device::
79
80 ip ru add oif vrf-blue table 10
81 ip ru add iif vrf-blue table 10
82
833. Set the default route for the table (and hence default route for the VRF)::
84
85 ip route add table 10 unreachable default metric 4278198272
86
87 This high metric value ensures that the default unreachable route can
88 be overridden by a routing protocol suite. FRRouting interprets
89 kernel metrics as a combined admin distance (upper byte) and priority
90 (lower 3 bytes). Thus the above metric translates to [255/8192].
91
924. Enslave L3 interfaces to a VRF device::
93
94 ip link set dev eth1 master vrf-blue
95
96 Local and connected routes for enslaved devices are automatically moved to
97 the table associated with VRF device. Any additional routes depending on
98 the enslaved device are dropped and will need to be reinserted to the VRF
99 FIB table following the enslavement.
100
101 The IPv6 sysctl option keep_addr_on_down can be enabled to keep IPv6 global
102 addresses as VRF enslavement changes::
103
104 sysctl -w net.ipv6.conf.all.keep_addr_on_down=1
105
1065. Additional VRF routes are added to associated table::
107
108 ip route add table 10 ...
109
110
111Applications
112------------
113Applications that are to work within a VRF need to bind their socket to the
114VRF device::
115
116 setsockopt(sd, SOL_SOCKET, SO_BINDTODEVICE, dev, strlen(dev)+1);
117
118or to specify the output device using cmsg and IP_PKTINFO.
119
120By default the scope of the port bindings for unbound sockets is
121limited to the default VRF. That is, it will not be matched by packets
122arriving on interfaces enslaved to an l3mdev and processes may bind to
123the same port if they bind to an l3mdev.
124
125TCP & UDP services running in the default VRF context (ie., not bound
126to any VRF device) can work across all VRF domains by enabling the
127tcp_l3mdev_accept and udp_l3mdev_accept sysctl options::
128
129 sysctl -w net.ipv4.tcp_l3mdev_accept=1
130 sysctl -w net.ipv4.udp_l3mdev_accept=1
131
132These options are disabled by default so that a socket in a VRF is only
133selected for packets in that VRF. There is a similar option for RAW
134sockets, which is enabled by default for reasons of backwards compatibility.
135This is so as to specify the output device with cmsg and IP_PKTINFO, but
136using a socket not bound to the corresponding VRF. This allows e.g. older ping
137implementations to be run with specifying the device but without executing it
138in the VRF. This option can be disabled so that packets received in a VRF
139context are only handled by a raw socket bound to the VRF, and packets in the
140default VRF are only handled by a socket not bound to any VRF::
141
142 sysctl -w net.ipv4.raw_l3mdev_accept=0
143
144netfilter rules on the VRF device can be used to limit access to services
145running in the default VRF context as well.
146
147--------------------------------------------------------------------------------
148
149Using iproute2 for VRFs
150=======================
151iproute2 supports the vrf keyword as of v4.7. For backwards compatibility this
152section lists both commands where appropriate -- with the vrf keyword and the
153older form without it.
154
1551. Create a VRF
156
157 To instantiate a VRF device and associate it with a table::
158
159 $ ip link add dev NAME type vrf table ID
160
161 As of v4.8 the kernel supports the l3mdev FIB rule where a single rule
162 covers all VRFs. The l3mdev rule is created for IPv4 and IPv6 on first
163 device create.
164
1652. List VRFs
166
167 To list VRFs that have been created::
168
169 $ ip [-d] link show type vrf
170 NOTE: The -d option is needed to show the table id
171
172 For example::
173
174 $ ip -d link show type vrf
175 11: mgmt: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
176 link/ether 72:b3:ba:91:e2:24 brd ff:ff:ff:ff:ff:ff promiscuity 0
177 vrf table 1 addrgenmode eui64
178 12: red: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
179 link/ether b6:6f:6e:f6:da:73 brd ff:ff:ff:ff:ff:ff promiscuity 0
180 vrf table 10 addrgenmode eui64
181 13: blue: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
182 link/ether 36:62:e8:7d:bb:8c brd ff:ff:ff:ff:ff:ff promiscuity 0
183 vrf table 66 addrgenmode eui64
184 14: green: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
185 link/ether e6:28:b8:63:70:bb brd ff:ff:ff:ff:ff:ff promiscuity 0
186 vrf table 81 addrgenmode eui64
187
188
189 Or in brief output::
190
191 $ ip -br link show type vrf
192 mgmt UP 72:b3:ba:91:e2:24 <NOARP,MASTER,UP,LOWER_UP>
193 red UP b6:6f:6e:f6:da:73 <NOARP,MASTER,UP,LOWER_UP>
194 blue UP 36:62:e8:7d:bb:8c <NOARP,MASTER,UP,LOWER_UP>
195 green UP e6:28:b8:63:70:bb <NOARP,MASTER,UP,LOWER_UP>
196
197
1983. Assign a Network Interface to a VRF
199
200 Network interfaces are assigned to a VRF by enslaving the netdevice to a
201 VRF device::
202
203 $ ip link set dev NAME master NAME
204
205 On enslavement connected and local routes are automatically moved to the
206 table associated with the VRF device.
207
208 For example::
209
210 $ ip link set dev eth0 master mgmt
211
212
2134. Show Devices Assigned to a VRF
214
215 To show devices that have been assigned to a specific VRF add the master
216 option to the ip command::
217
218 $ ip link show vrf NAME
219 $ ip link show master NAME
220
221 For example::
222
223 $ ip link show vrf red
224 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP mode DEFAULT group default qlen 1000
225 link/ether 02:00:00:00:02:02 brd ff:ff:ff:ff:ff:ff
226 4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP mode DEFAULT group default qlen 1000
227 link/ether 02:00:00:00:02:03 brd ff:ff:ff:ff:ff:ff
228 7: eth5: <BROADCAST,MULTICAST> mtu 1500 qdisc noop master red state DOWN mode DEFAULT group default qlen 1000
229 link/ether 02:00:00:00:02:06 brd ff:ff:ff:ff:ff:ff
230
231
232 Or using the brief output::
233
234 $ ip -br link show vrf red
235 eth1 UP 02:00:00:00:02:02 <BROADCAST,MULTICAST,UP,LOWER_UP>
236 eth2 UP 02:00:00:00:02:03 <BROADCAST,MULTICAST,UP,LOWER_UP>
237 eth5 DOWN 02:00:00:00:02:06 <BROADCAST,MULTICAST>
238
239
2405. Show Neighbor Entries for a VRF
241
242 To list neighbor entries associated with devices enslaved to a VRF device
243 add the master option to the ip command::
244
245 $ ip [-6] neigh show vrf NAME
246 $ ip [-6] neigh show master NAME
247
248 For example::
249
250 $ ip neigh show vrf red
251 10.2.1.254 dev eth1 lladdr a6:d9:c7:4f:06:23 REACHABLE
252 10.2.2.254 dev eth2 lladdr 5e:54:01:6a:ee:80 REACHABLE
253
254 $ ip -6 neigh show vrf red
255 2002:1::64 dev eth1 lladdr a6:d9:c7:4f:06:23 REACHABLE
256
257
2586. Show Addresses for a VRF
259
260 To show addresses for interfaces associated with a VRF add the master
261 option to the ip command::
262
263 $ ip addr show vrf NAME
264 $ ip addr show master NAME
265
266 For example::
267
268 $ ip addr show vrf red
269 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP group default qlen 1000
270 link/ether 02:00:00:00:02:02 brd ff:ff:ff:ff:ff:ff
271 inet 10.2.1.2/24 brd 10.2.1.255 scope global eth1
272 valid_lft forever preferred_lft forever
273 inet6 2002:1::2/120 scope global
274 valid_lft forever preferred_lft forever
275 inet6 fe80::ff:fe00:202/64 scope link
276 valid_lft forever preferred_lft forever
277 4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP group default qlen 1000
278 link/ether 02:00:00:00:02:03 brd ff:ff:ff:ff:ff:ff
279 inet 10.2.2.2/24 brd 10.2.2.255 scope global eth2
280 valid_lft forever preferred_lft forever
281 inet6 2002:2::2/120 scope global
282 valid_lft forever preferred_lft forever
283 inet6 fe80::ff:fe00:203/64 scope link
284 valid_lft forever preferred_lft forever
285 7: eth5: <BROADCAST,MULTICAST> mtu 1500 qdisc noop master red state DOWN group default qlen 1000
286 link/ether 02:00:00:00:02:06 brd ff:ff:ff:ff:ff:ff
287
288 Or in brief format::
289
290 $ ip -br addr show vrf red
291 eth1 UP 10.2.1.2/24 2002:1::2/120 fe80::ff:fe00:202/64
292 eth2 UP 10.2.2.2/24 2002:2::2/120 fe80::ff:fe00:203/64
293 eth5 DOWN
294
295
2967. Show Routes for a VRF
297
298 To show routes for a VRF use the ip command to display the table associated
299 with the VRF device::
300
301 $ ip [-6] route show vrf NAME
302 $ ip [-6] route show table ID
303
304 For example::
305
306 $ ip route show vrf red
307 unreachable default metric 4278198272
308 broadcast 10.2.1.0 dev eth1 proto kernel scope link src 10.2.1.2
309 10.2.1.0/24 dev eth1 proto kernel scope link src 10.2.1.2
310 local 10.2.1.2 dev eth1 proto kernel scope host src 10.2.1.2
311 broadcast 10.2.1.255 dev eth1 proto kernel scope link src 10.2.1.2
312 broadcast 10.2.2.0 dev eth2 proto kernel scope link src 10.2.2.2
313 10.2.2.0/24 dev eth2 proto kernel scope link src 10.2.2.2
314 local 10.2.2.2 dev eth2 proto kernel scope host src 10.2.2.2
315 broadcast 10.2.2.255 dev eth2 proto kernel scope link src 10.2.2.2
316
317 $ ip -6 route show vrf red
318 local 2002:1:: dev lo proto none metric 0 pref medium
319 local 2002:1::2 dev lo proto none metric 0 pref medium
320 2002:1::/120 dev eth1 proto kernel metric 256 pref medium
321 local 2002:2:: dev lo proto none metric 0 pref medium
322 local 2002:2::2 dev lo proto none metric 0 pref medium
323 2002:2::/120 dev eth2 proto kernel metric 256 pref medium
324 local fe80:: dev lo proto none metric 0 pref medium
325 local fe80:: dev lo proto none metric 0 pref medium
326 local fe80::ff:fe00:202 dev lo proto none metric 0 pref medium
327 local fe80::ff:fe00:203 dev lo proto none metric 0 pref medium
328 fe80::/64 dev eth1 proto kernel metric 256 pref medium
329 fe80::/64 dev eth2 proto kernel metric 256 pref medium
330 ff00::/8 dev red metric 256 pref medium
331 ff00::/8 dev eth1 metric 256 pref medium
332 ff00::/8 dev eth2 metric 256 pref medium
333 unreachable default dev lo metric 4278198272 error -101 pref medium
334
3358. Route Lookup for a VRF
336
337 A test route lookup can be done for a VRF::
338
339 $ ip [-6] route get vrf NAME ADDRESS
340 $ ip [-6] route get oif NAME ADDRESS
341
342 For example::
343
344 $ ip route get 10.2.1.40 vrf red
345 10.2.1.40 dev eth1 table red src 10.2.1.2
346 cache
347
348 $ ip -6 route get 2002:1::32 vrf red
349 2002:1::32 from :: dev eth1 table red proto kernel src 2002:1::2 metric 256 pref medium
350
351
3529. Removing Network Interface from a VRF
353
354 Network interfaces are removed from a VRF by breaking the enslavement to
355 the VRF device::
356
357 $ ip link set dev NAME nomaster
358
359 Connected routes are moved back to the default table and local entries are
360 moved to the local table.
361
362 For example::
363
364 $ ip link set dev eth0 nomaster
365
366--------------------------------------------------------------------------------
367
368Commands used in this example::
369
370 cat >> /etc/iproute2/rt_tables.d/vrf.conf <<EOF
371 1 mgmt
372 10 red
373 66 blue
374 81 green
375 EOF
376
377 function vrf_create
378 {
379 VRF=$1
380 TBID=$2
381
382 # create VRF device
383 ip link add ${VRF} type vrf table ${TBID}
384
385 if [ "${VRF}" != "mgmt" ]; then
386 ip route add table ${TBID} unreachable default metric 4278198272
387 fi
388 ip link set dev ${VRF} up
389 }
390
391 vrf_create mgmt 1
392 ip link set dev eth0 master mgmt
393
394 vrf_create red 10
395 ip link set dev eth1 master red
396 ip link set dev eth2 master red
397 ip link set dev eth5 master red
398
399 vrf_create blue 66
400 ip link set dev eth3 master blue
401
402 vrf_create green 81
403 ip link set dev eth4 master green
404
405
406 Interface addresses from /etc/network/interfaces:
407 auto eth0
408 iface eth0 inet static
409 address 10.0.0.2
410 netmask 255.255.255.0
411 gateway 10.0.0.254
412
413 iface eth0 inet6 static
414 address 2000:1::2
415 netmask 120
416
417 auto eth1
418 iface eth1 inet static
419 address 10.2.1.2
420 netmask 255.255.255.0
421
422 iface eth1 inet6 static
423 address 2002:1::2
424 netmask 120
425
426 auto eth2
427 iface eth2 inet static
428 address 10.2.2.2
429 netmask 255.255.255.0
430
431 iface eth2 inet6 static
432 address 2002:2::2
433 netmask 120
434
435 auto eth3
436 iface eth3 inet static
437 address 10.2.3.2
438 netmask 255.255.255.0
439
440 iface eth3 inet6 static
441 address 2002:3::2
442 netmask 120
443
444 auto eth4
445 iface eth4 inet static
446 address 10.2.4.2
447 netmask 255.255.255.0
448
449 iface eth4 inet6 static
450 address 2002:4::2
451 netmask 120