Marc Zyngier | 4493b1c | 2016-04-26 11:06:12 +0100 | [diff] [blame] | 1 | /* |
| 2 | * VGIC MMIO handling functions |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or modify |
| 5 | * it under the terms of the GNU General Public License version 2 as |
| 6 | * published by the Free Software Foundation. |
| 7 | * |
| 8 | * This program is distributed in the hope that it will be useful, |
| 9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 11 | * GNU General Public License for more details. |
| 12 | */ |
| 13 | |
| 14 | #include <linux/bitops.h> |
| 15 | #include <linux/bsearch.h> |
| 16 | #include <linux/kvm.h> |
| 17 | #include <linux/kvm_host.h> |
| 18 | #include <kvm/iodev.h> |
| 19 | #include <kvm/arm_vgic.h> |
| 20 | |
| 21 | #include "vgic.h" |
| 22 | #include "vgic-mmio.h" |
| 23 | |
| 24 | unsigned long vgic_mmio_read_raz(struct kvm_vcpu *vcpu, |
| 25 | gpa_t addr, unsigned int len) |
| 26 | { |
| 27 | return 0; |
| 28 | } |
| 29 | |
| 30 | unsigned long vgic_mmio_read_rao(struct kvm_vcpu *vcpu, |
| 31 | gpa_t addr, unsigned int len) |
| 32 | { |
| 33 | return -1UL; |
| 34 | } |
| 35 | |
| 36 | void vgic_mmio_write_wi(struct kvm_vcpu *vcpu, gpa_t addr, |
| 37 | unsigned int len, unsigned long val) |
| 38 | { |
| 39 | /* Ignore */ |
| 40 | } |
| 41 | |
Andre Przywara | fd122e6 | 2015-12-01 14:33:05 +0000 | [diff] [blame] | 42 | /* |
| 43 | * Read accesses to both GICD_ICENABLER and GICD_ISENABLER return the value |
| 44 | * of the enabled bit, so there is only one function for both here. |
| 45 | */ |
| 46 | unsigned long vgic_mmio_read_enable(struct kvm_vcpu *vcpu, |
| 47 | gpa_t addr, unsigned int len) |
| 48 | { |
| 49 | u32 intid = VGIC_ADDR_TO_INTID(addr, 1); |
| 50 | u32 value = 0; |
| 51 | int i; |
| 52 | |
| 53 | /* Loop over all IRQs affected by this read */ |
| 54 | for (i = 0; i < len * 8; i++) { |
| 55 | struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); |
| 56 | |
| 57 | if (irq->enabled) |
| 58 | value |= (1U << i); |
| 59 | } |
| 60 | |
| 61 | return value; |
| 62 | } |
| 63 | |
| 64 | void vgic_mmio_write_senable(struct kvm_vcpu *vcpu, |
| 65 | gpa_t addr, unsigned int len, |
| 66 | unsigned long val) |
| 67 | { |
| 68 | u32 intid = VGIC_ADDR_TO_INTID(addr, 1); |
| 69 | int i; |
| 70 | |
| 71 | for_each_set_bit(i, &val, len * 8) { |
| 72 | struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); |
| 73 | |
| 74 | spin_lock(&irq->irq_lock); |
| 75 | irq->enabled = true; |
| 76 | vgic_queue_irq_unlock(vcpu->kvm, irq); |
| 77 | } |
| 78 | } |
| 79 | |
| 80 | void vgic_mmio_write_cenable(struct kvm_vcpu *vcpu, |
| 81 | gpa_t addr, unsigned int len, |
| 82 | unsigned long val) |
| 83 | { |
| 84 | u32 intid = VGIC_ADDR_TO_INTID(addr, 1); |
| 85 | int i; |
| 86 | |
| 87 | for_each_set_bit(i, &val, len * 8) { |
| 88 | struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); |
| 89 | |
| 90 | spin_lock(&irq->irq_lock); |
| 91 | |
| 92 | irq->enabled = false; |
| 93 | |
| 94 | spin_unlock(&irq->irq_lock); |
| 95 | } |
| 96 | } |
| 97 | |
Andre Przywara | 96b2980 | 2015-12-01 14:33:41 +0000 | [diff] [blame] | 98 | unsigned long vgic_mmio_read_pending(struct kvm_vcpu *vcpu, |
| 99 | gpa_t addr, unsigned int len) |
| 100 | { |
| 101 | u32 intid = VGIC_ADDR_TO_INTID(addr, 1); |
| 102 | u32 value = 0; |
| 103 | int i; |
| 104 | |
| 105 | /* Loop over all IRQs affected by this read */ |
| 106 | for (i = 0; i < len * 8; i++) { |
| 107 | struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); |
| 108 | |
| 109 | if (irq->pending) |
| 110 | value |= (1U << i); |
| 111 | } |
| 112 | |
| 113 | return value; |
| 114 | } |
| 115 | |
| 116 | void vgic_mmio_write_spending(struct kvm_vcpu *vcpu, |
| 117 | gpa_t addr, unsigned int len, |
| 118 | unsigned long val) |
| 119 | { |
| 120 | u32 intid = VGIC_ADDR_TO_INTID(addr, 1); |
| 121 | int i; |
| 122 | |
| 123 | for_each_set_bit(i, &val, len * 8) { |
| 124 | struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); |
| 125 | |
| 126 | spin_lock(&irq->irq_lock); |
| 127 | irq->pending = true; |
| 128 | if (irq->config == VGIC_CONFIG_LEVEL) |
| 129 | irq->soft_pending = true; |
| 130 | |
| 131 | vgic_queue_irq_unlock(vcpu->kvm, irq); |
| 132 | } |
| 133 | } |
| 134 | |
| 135 | void vgic_mmio_write_cpending(struct kvm_vcpu *vcpu, |
| 136 | gpa_t addr, unsigned int len, |
| 137 | unsigned long val) |
| 138 | { |
| 139 | u32 intid = VGIC_ADDR_TO_INTID(addr, 1); |
| 140 | int i; |
| 141 | |
| 142 | for_each_set_bit(i, &val, len * 8) { |
| 143 | struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); |
| 144 | |
| 145 | spin_lock(&irq->irq_lock); |
| 146 | |
| 147 | if (irq->config == VGIC_CONFIG_LEVEL) { |
| 148 | irq->soft_pending = false; |
| 149 | irq->pending = irq->line_level; |
| 150 | } else { |
| 151 | irq->pending = false; |
| 152 | } |
| 153 | |
| 154 | spin_unlock(&irq->irq_lock); |
| 155 | } |
| 156 | } |
| 157 | |
Andre Przywara | 69b6fe0 | 2015-12-01 12:40:58 +0000 | [diff] [blame^] | 158 | unsigned long vgic_mmio_read_active(struct kvm_vcpu *vcpu, |
| 159 | gpa_t addr, unsigned int len) |
| 160 | { |
| 161 | u32 intid = VGIC_ADDR_TO_INTID(addr, 1); |
| 162 | u32 value = 0; |
| 163 | int i; |
| 164 | |
| 165 | /* Loop over all IRQs affected by this read */ |
| 166 | for (i = 0; i < len * 8; i++) { |
| 167 | struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); |
| 168 | |
| 169 | if (irq->active) |
| 170 | value |= (1U << i); |
| 171 | } |
| 172 | |
| 173 | return value; |
| 174 | } |
| 175 | |
| 176 | void vgic_mmio_write_cactive(struct kvm_vcpu *vcpu, |
| 177 | gpa_t addr, unsigned int len, |
| 178 | unsigned long val) |
| 179 | { |
| 180 | u32 intid = VGIC_ADDR_TO_INTID(addr, 1); |
| 181 | int i; |
| 182 | |
| 183 | kvm_arm_halt_guest(vcpu->kvm); |
| 184 | for_each_set_bit(i, &val, len * 8) { |
| 185 | struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); |
| 186 | |
| 187 | spin_lock(&irq->irq_lock); |
| 188 | /* |
| 189 | * If this virtual IRQ was written into a list register, we |
| 190 | * have to make sure the CPU that runs the VCPU thread has |
| 191 | * synced back LR state to the struct vgic_irq. We can only |
| 192 | * know this for sure, when either this irq is not assigned to |
| 193 | * anyone's AP list anymore, or the VCPU thread is not |
| 194 | * running on any CPUs. |
| 195 | * |
| 196 | * In the opposite case, we know the VCPU thread may be on its |
| 197 | * way back from the guest and still has to sync back this |
| 198 | * IRQ, so we release and re-acquire the spin_lock to let the |
| 199 | * other thread sync back the IRQ. |
| 200 | */ |
| 201 | while (irq->vcpu && /* IRQ may have state in an LR somewhere */ |
| 202 | irq->vcpu->cpu != -1) /* VCPU thread is running */ |
| 203 | cond_resched_lock(&irq->irq_lock); |
| 204 | |
| 205 | irq->active = false; |
| 206 | spin_unlock(&irq->irq_lock); |
| 207 | } |
| 208 | kvm_arm_resume_guest(vcpu->kvm); |
| 209 | } |
| 210 | |
| 211 | void vgic_mmio_write_sactive(struct kvm_vcpu *vcpu, |
| 212 | gpa_t addr, unsigned int len, |
| 213 | unsigned long val) |
| 214 | { |
| 215 | u32 intid = VGIC_ADDR_TO_INTID(addr, 1); |
| 216 | int i; |
| 217 | |
| 218 | for_each_set_bit(i, &val, len * 8) { |
| 219 | struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); |
| 220 | |
| 221 | spin_lock(&irq->irq_lock); |
| 222 | |
| 223 | /* |
| 224 | * If the IRQ was already active or there is no target VCPU |
| 225 | * assigned at the moment, then just proceed. |
| 226 | */ |
| 227 | if (irq->active || !irq->target_vcpu) { |
| 228 | irq->active = true; |
| 229 | |
| 230 | spin_unlock(&irq->irq_lock); |
| 231 | continue; |
| 232 | } |
| 233 | |
| 234 | irq->active = true; |
| 235 | vgic_queue_irq_unlock(vcpu->kvm, irq); |
| 236 | } |
| 237 | } |
| 238 | |
Marc Zyngier | 4493b1c | 2016-04-26 11:06:12 +0100 | [diff] [blame] | 239 | static int match_region(const void *key, const void *elt) |
| 240 | { |
| 241 | const unsigned int offset = (unsigned long)key; |
| 242 | const struct vgic_register_region *region = elt; |
| 243 | |
| 244 | if (offset < region->reg_offset) |
| 245 | return -1; |
| 246 | |
| 247 | if (offset >= region->reg_offset + region->len) |
| 248 | return 1; |
| 249 | |
| 250 | return 0; |
| 251 | } |
| 252 | |
| 253 | /* Find the proper register handler entry given a certain address offset. */ |
| 254 | static const struct vgic_register_region * |
| 255 | vgic_find_mmio_region(const struct vgic_register_region *region, int nr_regions, |
| 256 | unsigned int offset) |
| 257 | { |
| 258 | return bsearch((void *)(uintptr_t)offset, region, nr_regions, |
| 259 | sizeof(region[0]), match_region); |
| 260 | } |
| 261 | |
| 262 | /* |
| 263 | * kvm_mmio_read_buf() returns a value in a format where it can be converted |
| 264 | * to a byte array and be directly observed as the guest wanted it to appear |
| 265 | * in memory if it had done the store itself, which is LE for the GIC, as the |
| 266 | * guest knows the GIC is always LE. |
| 267 | * |
| 268 | * We convert this value to the CPUs native format to deal with it as a data |
| 269 | * value. |
| 270 | */ |
| 271 | unsigned long vgic_data_mmio_bus_to_host(const void *val, unsigned int len) |
| 272 | { |
| 273 | unsigned long data = kvm_mmio_read_buf(val, len); |
| 274 | |
| 275 | switch (len) { |
| 276 | case 1: |
| 277 | return data; |
| 278 | case 2: |
| 279 | return le16_to_cpu(data); |
| 280 | case 4: |
| 281 | return le32_to_cpu(data); |
| 282 | default: |
| 283 | return le64_to_cpu(data); |
| 284 | } |
| 285 | } |
| 286 | |
| 287 | /* |
| 288 | * kvm_mmio_write_buf() expects a value in a format such that if converted to |
| 289 | * a byte array it is observed as the guest would see it if it could perform |
| 290 | * the load directly. Since the GIC is LE, and the guest knows this, the |
| 291 | * guest expects a value in little endian format. |
| 292 | * |
| 293 | * We convert the data value from the CPUs native format to LE so that the |
| 294 | * value is returned in the proper format. |
| 295 | */ |
| 296 | void vgic_data_host_to_mmio_bus(void *buf, unsigned int len, |
| 297 | unsigned long data) |
| 298 | { |
| 299 | switch (len) { |
| 300 | case 1: |
| 301 | break; |
| 302 | case 2: |
| 303 | data = cpu_to_le16(data); |
| 304 | break; |
| 305 | case 4: |
| 306 | data = cpu_to_le32(data); |
| 307 | break; |
| 308 | default: |
| 309 | data = cpu_to_le64(data); |
| 310 | } |
| 311 | |
| 312 | kvm_mmio_write_buf(buf, len, data); |
| 313 | } |
| 314 | |
| 315 | static |
| 316 | struct vgic_io_device *kvm_to_vgic_iodev(const struct kvm_io_device *dev) |
| 317 | { |
| 318 | return container_of(dev, struct vgic_io_device, dev); |
| 319 | } |
| 320 | |
| 321 | static bool check_region(const struct vgic_register_region *region, |
| 322 | gpa_t addr, int len) |
| 323 | { |
| 324 | if ((region->access_flags & VGIC_ACCESS_8bit) && len == 1) |
| 325 | return true; |
| 326 | if ((region->access_flags & VGIC_ACCESS_32bit) && |
| 327 | len == sizeof(u32) && !(addr & 3)) |
| 328 | return true; |
| 329 | if ((region->access_flags & VGIC_ACCESS_64bit) && |
| 330 | len == sizeof(u64) && !(addr & 7)) |
| 331 | return true; |
| 332 | |
| 333 | return false; |
| 334 | } |
| 335 | |
| 336 | static int dispatch_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev, |
| 337 | gpa_t addr, int len, void *val) |
| 338 | { |
| 339 | struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev); |
| 340 | const struct vgic_register_region *region; |
| 341 | struct kvm_vcpu *r_vcpu; |
| 342 | unsigned long data; |
| 343 | |
| 344 | region = vgic_find_mmio_region(iodev->regions, iodev->nr_regions, |
| 345 | addr - iodev->base_addr); |
| 346 | if (!region || !check_region(region, addr, len)) { |
| 347 | memset(val, 0, len); |
| 348 | return 0; |
| 349 | } |
| 350 | |
| 351 | r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu; |
| 352 | data = region->read(r_vcpu, addr, len); |
| 353 | vgic_data_host_to_mmio_bus(val, len, data); |
| 354 | return 0; |
| 355 | } |
| 356 | |
| 357 | static int dispatch_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev, |
| 358 | gpa_t addr, int len, const void *val) |
| 359 | { |
| 360 | struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev); |
| 361 | const struct vgic_register_region *region; |
| 362 | struct kvm_vcpu *r_vcpu; |
| 363 | unsigned long data = vgic_data_mmio_bus_to_host(val, len); |
| 364 | |
| 365 | region = vgic_find_mmio_region(iodev->regions, iodev->nr_regions, |
| 366 | addr - iodev->base_addr); |
| 367 | if (!region) |
| 368 | return 0; |
| 369 | |
| 370 | if (!check_region(region, addr, len)) |
| 371 | return 0; |
| 372 | |
| 373 | r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu; |
| 374 | region->write(r_vcpu, addr, len, data); |
| 375 | return 0; |
| 376 | } |
| 377 | |
| 378 | struct kvm_io_device_ops kvm_io_gic_ops = { |
| 379 | .read = dispatch_mmio_read, |
| 380 | .write = dispatch_mmio_write, |
| 381 | }; |
Andre Przywara | fb848db | 2016-04-26 21:32:49 +0100 | [diff] [blame] | 382 | |
| 383 | int vgic_register_dist_iodev(struct kvm *kvm, gpa_t dist_base_address, |
| 384 | enum vgic_type type) |
| 385 | { |
| 386 | struct vgic_io_device *io_device = &kvm->arch.vgic.dist_iodev; |
| 387 | int ret = 0; |
| 388 | unsigned int len; |
| 389 | |
| 390 | switch (type) { |
| 391 | case VGIC_V2: |
| 392 | len = vgic_v2_init_dist_iodev(io_device); |
| 393 | break; |
| 394 | default: |
| 395 | BUG_ON(1); |
| 396 | } |
| 397 | |
| 398 | io_device->base_addr = dist_base_address; |
| 399 | io_device->redist_vcpu = NULL; |
| 400 | |
| 401 | mutex_lock(&kvm->slots_lock); |
| 402 | ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, dist_base_address, |
| 403 | len, &io_device->dev); |
| 404 | mutex_unlock(&kvm->slots_lock); |
| 405 | |
| 406 | return ret; |
| 407 | } |