blob: eaed14aac6aa59592e201b91eff05e0ccb6a8ba6 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * Kernel support for the ptrace() and syscall tracing interfaces.
3 *
4 * Copyright (C) 1999-2005 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 *
7 * Derived from the x86 and Alpha versions.
8 */
9#include <linux/config.h>
10#include <linux/kernel.h>
11#include <linux/sched.h>
12#include <linux/slab.h>
13#include <linux/mm.h>
14#include <linux/errno.h>
15#include <linux/ptrace.h>
16#include <linux/smp_lock.h>
17#include <linux/user.h>
18#include <linux/security.h>
19#include <linux/audit.h>
Jesper Juhl7ed20e12005-05-01 08:59:14 -070020#include <linux/signal.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070021
22#include <asm/pgtable.h>
23#include <asm/processor.h>
24#include <asm/ptrace_offsets.h>
25#include <asm/rse.h>
26#include <asm/system.h>
27#include <asm/uaccess.h>
28#include <asm/unwind.h>
29#ifdef CONFIG_PERFMON
30#include <asm/perfmon.h>
31#endif
32
33#include "entry.h"
34
35/*
36 * Bits in the PSR that we allow ptrace() to change:
37 * be, up, ac, mfl, mfh (the user mask; five bits total)
38 * db (debug breakpoint fault; one bit)
39 * id (instruction debug fault disable; one bit)
40 * dd (data debug fault disable; one bit)
41 * ri (restart instruction; two bits)
42 * is (instruction set; one bit)
43 */
44#define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS \
45 | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
46
47#define MASK(nbits) ((1UL << (nbits)) - 1) /* mask with NBITS bits set */
48#define PFM_MASK MASK(38)
49
50#define PTRACE_DEBUG 0
51
52#if PTRACE_DEBUG
53# define dprintk(format...) printk(format)
54# define inline
55#else
56# define dprintk(format...)
57#endif
58
59/* Return TRUE if PT was created due to kernel-entry via a system-call. */
60
61static inline int
62in_syscall (struct pt_regs *pt)
63{
64 return (long) pt->cr_ifs >= 0;
65}
66
67/*
68 * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
69 * bitset where bit i is set iff the NaT bit of register i is set.
70 */
71unsigned long
72ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat)
73{
74# define GET_BITS(first, last, unat) \
75 ({ \
76 unsigned long bit = ia64_unat_pos(&pt->r##first); \
77 unsigned long nbits = (last - first + 1); \
78 unsigned long mask = MASK(nbits) << first; \
79 unsigned long dist; \
80 if (bit < first) \
81 dist = 64 + bit - first; \
82 else \
83 dist = bit - first; \
84 ia64_rotr(unat, dist) & mask; \
85 })
86 unsigned long val;
87
88 /*
89 * Registers that are stored consecutively in struct pt_regs
90 * can be handled in parallel. If the register order in
91 * struct_pt_regs changes, this code MUST be updated.
92 */
93 val = GET_BITS( 1, 1, scratch_unat);
94 val |= GET_BITS( 2, 3, scratch_unat);
95 val |= GET_BITS(12, 13, scratch_unat);
96 val |= GET_BITS(14, 14, scratch_unat);
97 val |= GET_BITS(15, 15, scratch_unat);
98 val |= GET_BITS( 8, 11, scratch_unat);
99 val |= GET_BITS(16, 31, scratch_unat);
100 return val;
101
102# undef GET_BITS
103}
104
105/*
106 * Set the NaT bits for the scratch registers according to NAT and
107 * return the resulting unat (assuming the scratch registers are
108 * stored in PT).
109 */
110unsigned long
111ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat)
112{
113# define PUT_BITS(first, last, nat) \
114 ({ \
115 unsigned long bit = ia64_unat_pos(&pt->r##first); \
116 unsigned long nbits = (last - first + 1); \
117 unsigned long mask = MASK(nbits) << first; \
118 long dist; \
119 if (bit < first) \
120 dist = 64 + bit - first; \
121 else \
122 dist = bit - first; \
123 ia64_rotl(nat & mask, dist); \
124 })
125 unsigned long scratch_unat;
126
127 /*
128 * Registers that are stored consecutively in struct pt_regs
129 * can be handled in parallel. If the register order in
130 * struct_pt_regs changes, this code MUST be updated.
131 */
132 scratch_unat = PUT_BITS( 1, 1, nat);
133 scratch_unat |= PUT_BITS( 2, 3, nat);
134 scratch_unat |= PUT_BITS(12, 13, nat);
135 scratch_unat |= PUT_BITS(14, 14, nat);
136 scratch_unat |= PUT_BITS(15, 15, nat);
137 scratch_unat |= PUT_BITS( 8, 11, nat);
138 scratch_unat |= PUT_BITS(16, 31, nat);
139
140 return scratch_unat;
141
142# undef PUT_BITS
143}
144
145#define IA64_MLX_TEMPLATE 0x2
146#define IA64_MOVL_OPCODE 6
147
148void
149ia64_increment_ip (struct pt_regs *regs)
150{
151 unsigned long w0, ri = ia64_psr(regs)->ri + 1;
152
153 if (ri > 2) {
154 ri = 0;
155 regs->cr_iip += 16;
156 } else if (ri == 2) {
157 get_user(w0, (char __user *) regs->cr_iip + 0);
158 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
159 /*
160 * rfi'ing to slot 2 of an MLX bundle causes
161 * an illegal operation fault. We don't want
162 * that to happen...
163 */
164 ri = 0;
165 regs->cr_iip += 16;
166 }
167 }
168 ia64_psr(regs)->ri = ri;
169}
170
171void
172ia64_decrement_ip (struct pt_regs *regs)
173{
174 unsigned long w0, ri = ia64_psr(regs)->ri - 1;
175
176 if (ia64_psr(regs)->ri == 0) {
177 regs->cr_iip -= 16;
178 ri = 2;
179 get_user(w0, (char __user *) regs->cr_iip + 0);
180 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
181 /*
182 * rfi'ing to slot 2 of an MLX bundle causes
183 * an illegal operation fault. We don't want
184 * that to happen...
185 */
186 ri = 1;
187 }
188 }
189 ia64_psr(regs)->ri = ri;
190}
191
192/*
193 * This routine is used to read an rnat bits that are stored on the
194 * kernel backing store. Since, in general, the alignment of the user
195 * and kernel are different, this is not completely trivial. In
196 * essence, we need to construct the user RNAT based on up to two
197 * kernel RNAT values and/or the RNAT value saved in the child's
198 * pt_regs.
199 *
200 * user rbs
201 *
202 * +--------+ <-- lowest address
203 * | slot62 |
204 * +--------+
205 * | rnat | 0x....1f8
206 * +--------+
207 * | slot00 | \
208 * +--------+ |
209 * | slot01 | > child_regs->ar_rnat
210 * +--------+ |
211 * | slot02 | / kernel rbs
212 * +--------+ +--------+
213 * <- child_regs->ar_bspstore | slot61 | <-- krbs
214 * +- - - - + +--------+
215 * | slot62 |
216 * +- - - - + +--------+
217 * | rnat |
218 * +- - - - + +--------+
219 * vrnat | slot00 |
220 * +- - - - + +--------+
221 * = =
222 * +--------+
223 * | slot00 | \
224 * +--------+ |
225 * | slot01 | > child_stack->ar_rnat
226 * +--------+ |
227 * | slot02 | /
228 * +--------+
229 * <--- child_stack->ar_bspstore
230 *
231 * The way to think of this code is as follows: bit 0 in the user rnat
232 * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
233 * value. The kernel rnat value holding this bit is stored in
234 * variable rnat0. rnat1 is loaded with the kernel rnat value that
235 * form the upper bits of the user rnat value.
236 *
237 * Boundary cases:
238 *
239 * o when reading the rnat "below" the first rnat slot on the kernel
240 * backing store, rnat0/rnat1 are set to 0 and the low order bits are
241 * merged in from pt->ar_rnat.
242 *
243 * o when reading the rnat "above" the last rnat slot on the kernel
244 * backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
245 */
246static unsigned long
247get_rnat (struct task_struct *task, struct switch_stack *sw,
248 unsigned long *krbs, unsigned long *urnat_addr,
249 unsigned long *urbs_end)
250{
251 unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr;
252 unsigned long umask = 0, mask, m;
253 unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
254 long num_regs, nbits;
255 struct pt_regs *pt;
256
Al Viro64505782006-01-12 01:06:06 -0800257 pt = task_pt_regs(task);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700258 kbsp = (unsigned long *) sw->ar_bspstore;
259 ubspstore = (unsigned long *) pt->ar_bspstore;
260
261 if (urbs_end < urnat_addr)
262 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end);
263 else
264 nbits = 63;
265 mask = MASK(nbits);
266 /*
267 * First, figure out which bit number slot 0 in user-land maps
268 * to in the kernel rnat. Do this by figuring out how many
269 * register slots we're beyond the user's backingstore and
270 * then computing the equivalent address in kernel space.
271 */
272 num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
273 slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
274 shift = ia64_rse_slot_num(slot0_kaddr);
275 rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
276 rnat0_kaddr = rnat1_kaddr - 64;
277
278 if (ubspstore + 63 > urnat_addr) {
279 /* some bits need to be merged in from pt->ar_rnat */
280 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
281 urnat = (pt->ar_rnat & umask);
282 mask &= ~umask;
283 if (!mask)
284 return urnat;
285 }
286
287 m = mask << shift;
288 if (rnat0_kaddr >= kbsp)
289 rnat0 = sw->ar_rnat;
290 else if (rnat0_kaddr > krbs)
291 rnat0 = *rnat0_kaddr;
292 urnat |= (rnat0 & m) >> shift;
293
294 m = mask >> (63 - shift);
295 if (rnat1_kaddr >= kbsp)
296 rnat1 = sw->ar_rnat;
297 else if (rnat1_kaddr > krbs)
298 rnat1 = *rnat1_kaddr;
299 urnat |= (rnat1 & m) << (63 - shift);
300 return urnat;
301}
302
303/*
304 * The reverse of get_rnat.
305 */
306static void
307put_rnat (struct task_struct *task, struct switch_stack *sw,
308 unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat,
309 unsigned long *urbs_end)
310{
311 unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m;
312 unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
313 long num_regs, nbits;
314 struct pt_regs *pt;
315 unsigned long cfm, *urbs_kargs;
316
Al Viro64505782006-01-12 01:06:06 -0800317 pt = task_pt_regs(task);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700318 kbsp = (unsigned long *) sw->ar_bspstore;
319 ubspstore = (unsigned long *) pt->ar_bspstore;
320
321 urbs_kargs = urbs_end;
322 if (in_syscall(pt)) {
323 /*
324 * If entered via syscall, don't allow user to set rnat bits
325 * for syscall args.
326 */
327 cfm = pt->cr_ifs;
328 urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f));
329 }
330
331 if (urbs_kargs >= urnat_addr)
332 nbits = 63;
333 else {
334 if ((urnat_addr - 63) >= urbs_kargs)
335 return;
336 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs);
337 }
338 mask = MASK(nbits);
339
340 /*
341 * First, figure out which bit number slot 0 in user-land maps
342 * to in the kernel rnat. Do this by figuring out how many
343 * register slots we're beyond the user's backingstore and
344 * then computing the equivalent address in kernel space.
345 */
346 num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
347 slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
348 shift = ia64_rse_slot_num(slot0_kaddr);
349 rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
350 rnat0_kaddr = rnat1_kaddr - 64;
351
352 if (ubspstore + 63 > urnat_addr) {
353 /* some bits need to be place in pt->ar_rnat: */
354 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
355 pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask);
356 mask &= ~umask;
357 if (!mask)
358 return;
359 }
360 /*
361 * Note: Section 11.1 of the EAS guarantees that bit 63 of an
362 * rnat slot is ignored. so we don't have to clear it here.
363 */
364 rnat0 = (urnat << shift);
365 m = mask << shift;
366 if (rnat0_kaddr >= kbsp)
367 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m);
368 else if (rnat0_kaddr > krbs)
369 *rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m));
370
371 rnat1 = (urnat >> (63 - shift));
372 m = mask >> (63 - shift);
373 if (rnat1_kaddr >= kbsp)
374 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m);
375 else if (rnat1_kaddr > krbs)
376 *rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m));
377}
378
379static inline int
380on_kernel_rbs (unsigned long addr, unsigned long bspstore,
381 unsigned long urbs_end)
382{
383 unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *)
384 urbs_end);
385 return (addr >= bspstore && addr <= (unsigned long) rnat_addr);
386}
387
388/*
389 * Read a word from the user-level backing store of task CHILD. ADDR
390 * is the user-level address to read the word from, VAL a pointer to
391 * the return value, and USER_BSP gives the end of the user-level
392 * backing store (i.e., it's the address that would be in ar.bsp after
393 * the user executed a "cover" instruction).
394 *
395 * This routine takes care of accessing the kernel register backing
396 * store for those registers that got spilled there. It also takes
397 * care of calculating the appropriate RNaT collection words.
398 */
399long
400ia64_peek (struct task_struct *child, struct switch_stack *child_stack,
401 unsigned long user_rbs_end, unsigned long addr, long *val)
402{
403 unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr;
404 struct pt_regs *child_regs;
405 size_t copied;
406 long ret;
407
408 urbs_end = (long *) user_rbs_end;
409 laddr = (unsigned long *) addr;
Al Viro64505782006-01-12 01:06:06 -0800410 child_regs = task_pt_regs(child);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700411 bspstore = (unsigned long *) child_regs->ar_bspstore;
412 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
413 if (on_kernel_rbs(addr, (unsigned long) bspstore,
414 (unsigned long) urbs_end))
415 {
416 /*
417 * Attempt to read the RBS in an area that's actually
418 * on the kernel RBS => read the corresponding bits in
419 * the kernel RBS.
420 */
421 rnat_addr = ia64_rse_rnat_addr(laddr);
422 ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end);
423
424 if (laddr == rnat_addr) {
425 /* return NaT collection word itself */
426 *val = ret;
427 return 0;
428 }
429
430 if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) {
431 /*
432 * It is implementation dependent whether the
433 * data portion of a NaT value gets saved on a
434 * st8.spill or RSE spill (e.g., see EAS 2.6,
435 * 4.4.4.6 Register Spill and Fill). To get
436 * consistent behavior across all possible
437 * IA-64 implementations, we return zero in
438 * this case.
439 */
440 *val = 0;
441 return 0;
442 }
443
444 if (laddr < urbs_end) {
445 /*
446 * The desired word is on the kernel RBS and
447 * is not a NaT.
448 */
449 regnum = ia64_rse_num_regs(bspstore, laddr);
450 *val = *ia64_rse_skip_regs(krbs, regnum);
451 return 0;
452 }
453 }
454 copied = access_process_vm(child, addr, &ret, sizeof(ret), 0);
455 if (copied != sizeof(ret))
456 return -EIO;
457 *val = ret;
458 return 0;
459}
460
461long
462ia64_poke (struct task_struct *child, struct switch_stack *child_stack,
463 unsigned long user_rbs_end, unsigned long addr, long val)
464{
465 unsigned long *bspstore, *krbs, regnum, *laddr;
466 unsigned long *urbs_end = (long *) user_rbs_end;
467 struct pt_regs *child_regs;
468
469 laddr = (unsigned long *) addr;
Al Viro64505782006-01-12 01:06:06 -0800470 child_regs = task_pt_regs(child);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700471 bspstore = (unsigned long *) child_regs->ar_bspstore;
472 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
473 if (on_kernel_rbs(addr, (unsigned long) bspstore,
474 (unsigned long) urbs_end))
475 {
476 /*
477 * Attempt to write the RBS in an area that's actually
478 * on the kernel RBS => write the corresponding bits
479 * in the kernel RBS.
480 */
481 if (ia64_rse_is_rnat_slot(laddr))
482 put_rnat(child, child_stack, krbs, laddr, val,
483 urbs_end);
484 else {
485 if (laddr < urbs_end) {
486 regnum = ia64_rse_num_regs(bspstore, laddr);
487 *ia64_rse_skip_regs(krbs, regnum) = val;
488 }
489 }
490 } else if (access_process_vm(child, addr, &val, sizeof(val), 1)
491 != sizeof(val))
492 return -EIO;
493 return 0;
494}
495
496/*
497 * Calculate the address of the end of the user-level register backing
498 * store. This is the address that would have been stored in ar.bsp
499 * if the user had executed a "cover" instruction right before
500 * entering the kernel. If CFMP is not NULL, it is used to return the
501 * "current frame mask" that was active at the time the kernel was
502 * entered.
503 */
504unsigned long
505ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt,
506 unsigned long *cfmp)
507{
508 unsigned long *krbs, *bspstore, cfm = pt->cr_ifs;
509 long ndirty;
510
511 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
512 bspstore = (unsigned long *) pt->ar_bspstore;
513 ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
514
515 if (in_syscall(pt))
516 ndirty += (cfm & 0x7f);
517 else
518 cfm &= ~(1UL << 63); /* clear valid bit */
519
520 if (cfmp)
521 *cfmp = cfm;
522 return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty);
523}
524
525/*
526 * Synchronize (i.e, write) the RSE backing store living in kernel
527 * space to the VM of the CHILD task. SW and PT are the pointers to
528 * the switch_stack and pt_regs structures, respectively.
529 * USER_RBS_END is the user-level address at which the backing store
530 * ends.
531 */
532long
533ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw,
534 unsigned long user_rbs_start, unsigned long user_rbs_end)
535{
536 unsigned long addr, val;
537 long ret;
538
539 /* now copy word for word from kernel rbs to user rbs: */
540 for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
541 ret = ia64_peek(child, sw, user_rbs_end, addr, &val);
542 if (ret < 0)
543 return ret;
544 if (access_process_vm(child, addr, &val, sizeof(val), 1)
545 != sizeof(val))
546 return -EIO;
547 }
548 return 0;
549}
550
551static inline int
552thread_matches (struct task_struct *thread, unsigned long addr)
553{
554 unsigned long thread_rbs_end;
555 struct pt_regs *thread_regs;
556
557 if (ptrace_check_attach(thread, 0) < 0)
558 /*
559 * If the thread is not in an attachable state, we'll
560 * ignore it. The net effect is that if ADDR happens
561 * to overlap with the portion of the thread's
562 * register backing store that is currently residing
563 * on the thread's kernel stack, then ptrace() may end
564 * up accessing a stale value. But if the thread
565 * isn't stopped, that's a problem anyhow, so we're
566 * doing as well as we can...
567 */
568 return 0;
569
Al Viro64505782006-01-12 01:06:06 -0800570 thread_regs = task_pt_regs(thread);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700571 thread_rbs_end = ia64_get_user_rbs_end(thread, thread_regs, NULL);
572 if (!on_kernel_rbs(addr, thread_regs->ar_bspstore, thread_rbs_end))
573 return 0;
574
575 return 1; /* looks like we've got a winner */
576}
577
578/*
579 * GDB apparently wants to be able to read the register-backing store
580 * of any thread when attached to a given process. If we are peeking
581 * or poking an address that happens to reside in the kernel-backing
582 * store of another thread, we need to attach to that thread, because
583 * otherwise we end up accessing stale data.
584 *
585 * task_list_lock must be read-locked before calling this routine!
586 */
587static struct task_struct *
588find_thread_for_addr (struct task_struct *child, unsigned long addr)
589{
Tony Luck0e1f6062005-10-28 15:52:13 -0700590 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700591 struct mm_struct *mm;
Cliff Wickman4ac00682005-10-27 10:29:08 -0500592 struct list_head *this, *next;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700593 int mm_users;
594
595 if (!(mm = get_task_mm(child)))
596 return child;
597
598 /* -1 because of our get_task_mm(): */
599 mm_users = atomic_read(&mm->mm_users) - 1;
600 if (mm_users <= 1)
601 goto out; /* not multi-threaded */
602
603 /*
Cliff Wickman4ac00682005-10-27 10:29:08 -0500604 * Traverse the current process' children list. Every task that
605 * one attaches to becomes a child. And it is only attached children
606 * of the debugger that are of interest (ptrace_check_attach checks
607 * for this).
Linus Torvalds1da177e2005-04-16 15:20:36 -0700608 */
Cliff Wickman4ac00682005-10-27 10:29:08 -0500609 list_for_each_safe(this, next, &current->children) {
610 p = list_entry(this, struct task_struct, sibling);
611 if (p->mm != mm)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700612 continue;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700613 if (thread_matches(p, addr)) {
614 child = p;
615 goto out;
616 }
Cliff Wickman4ac00682005-10-27 10:29:08 -0500617 }
618
Linus Torvalds1da177e2005-04-16 15:20:36 -0700619 out:
620 mmput(mm);
621 return child;
622}
623
624/*
625 * Write f32-f127 back to task->thread.fph if it has been modified.
626 */
627inline void
628ia64_flush_fph (struct task_struct *task)
629{
Al Viro64505782006-01-12 01:06:06 -0800630 struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700631
Peter Chubb05062d92005-06-08 15:50:20 -0700632 /*
633 * Prevent migrating this task while
634 * we're fiddling with the FPU state
635 */
636 preempt_disable();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700637 if (ia64_is_local_fpu_owner(task) && psr->mfh) {
638 psr->mfh = 0;
639 task->thread.flags |= IA64_THREAD_FPH_VALID;
640 ia64_save_fpu(&task->thread.fph[0]);
641 }
Peter Chubb05062d92005-06-08 15:50:20 -0700642 preempt_enable();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700643}
644
645/*
646 * Sync the fph state of the task so that it can be manipulated
647 * through thread.fph. If necessary, f32-f127 are written back to
648 * thread.fph or, if the fph state hasn't been used before, thread.fph
649 * is cleared to zeroes. Also, access to f32-f127 is disabled to
650 * ensure that the task picks up the state from thread.fph when it
651 * executes again.
652 */
653void
654ia64_sync_fph (struct task_struct *task)
655{
Al Viro64505782006-01-12 01:06:06 -0800656 struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700657
658 ia64_flush_fph(task);
659 if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) {
660 task->thread.flags |= IA64_THREAD_FPH_VALID;
661 memset(&task->thread.fph, 0, sizeof(task->thread.fph));
662 }
663 ia64_drop_fpu(task);
664 psr->dfh = 1;
665}
666
667static int
668access_fr (struct unw_frame_info *info, int regnum, int hi,
669 unsigned long *data, int write_access)
670{
671 struct ia64_fpreg fpval;
672 int ret;
673
674 ret = unw_get_fr(info, regnum, &fpval);
675 if (ret < 0)
676 return ret;
677
678 if (write_access) {
679 fpval.u.bits[hi] = *data;
680 ret = unw_set_fr(info, regnum, fpval);
681 } else
682 *data = fpval.u.bits[hi];
683 return ret;
684}
685
686/*
687 * Change the machine-state of CHILD such that it will return via the normal
688 * kernel exit-path, rather than the syscall-exit path.
689 */
690static void
691convert_to_non_syscall (struct task_struct *child, struct pt_regs *pt,
692 unsigned long cfm)
693{
694 struct unw_frame_info info, prev_info;
David Mosberger-Tang02a017a2005-05-10 11:35:00 -0700695 unsigned long ip, sp, pr;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700696
697 unw_init_from_blocked_task(&info, child);
698 while (1) {
699 prev_info = info;
700 if (unw_unwind(&info) < 0)
701 return;
David Mosberger-Tang02a017a2005-05-10 11:35:00 -0700702
703 unw_get_sp(&info, &sp);
704 if ((long)((unsigned long)child + IA64_STK_OFFSET - sp)
705 < IA64_PT_REGS_SIZE) {
706 dprintk("ptrace.%s: ran off the top of the kernel "
707 "stack\n", __FUNCTION__);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700708 return;
David Mosberger-Tang02a017a2005-05-10 11:35:00 -0700709 }
710 if (unw_get_pr (&prev_info, &pr) < 0) {
711 unw_get_rp(&prev_info, &ip);
712 dprintk("ptrace.%s: failed to read "
713 "predicate register (ip=0x%lx)\n",
714 __FUNCTION__, ip);
715 return;
716 }
717 if (unw_is_intr_frame(&info)
718 && (pr & (1UL << PRED_USER_STACK)))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700719 break;
720 }
721
David Mosberger-Tang7f9eaed2005-05-10 12:49:00 -0700722 /*
723 * Note: at the time of this call, the target task is blocked
724 * in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL
725 * (aka, "pLvSys") we redirect execution from
726 * .work_pending_syscall_end to .work_processed_kernel.
727 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700728 unw_get_pr(&prev_info, &pr);
David Mosberger-Tang7f9eaed2005-05-10 12:49:00 -0700729 pr &= ~((1UL << PRED_SYSCALL) | (1UL << PRED_LEAVE_SYSCALL));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700730 pr |= (1UL << PRED_NON_SYSCALL);
731 unw_set_pr(&prev_info, pr);
732
733 pt->cr_ifs = (1UL << 63) | cfm;
David Mosberger-Tang7f9eaed2005-05-10 12:49:00 -0700734 /*
735 * Clear the memory that is NOT written on syscall-entry to
736 * ensure we do not leak kernel-state to user when execution
737 * resumes.
738 */
739 pt->r2 = 0;
740 pt->r3 = 0;
741 pt->r14 = 0;
742 memset(&pt->r16, 0, 16*8); /* clear r16-r31 */
743 memset(&pt->f6, 0, 6*16); /* clear f6-f11 */
744 pt->b7 = 0;
745 pt->ar_ccv = 0;
746 pt->ar_csd = 0;
747 pt->ar_ssd = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700748}
749
750static int
751access_nat_bits (struct task_struct *child, struct pt_regs *pt,
752 struct unw_frame_info *info,
753 unsigned long *data, int write_access)
754{
755 unsigned long regnum, nat_bits, scratch_unat, dummy = 0;
756 char nat = 0;
757
758 if (write_access) {
759 nat_bits = *data;
760 scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits);
761 if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) {
762 dprintk("ptrace: failed to set ar.unat\n");
763 return -1;
764 }
765 for (regnum = 4; regnum <= 7; ++regnum) {
766 unw_get_gr(info, regnum, &dummy, &nat);
767 unw_set_gr(info, regnum, dummy,
768 (nat_bits >> regnum) & 1);
769 }
770 } else {
771 if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) {
772 dprintk("ptrace: failed to read ar.unat\n");
773 return -1;
774 }
775 nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat);
776 for (regnum = 4; regnum <= 7; ++regnum) {
777 unw_get_gr(info, regnum, &dummy, &nat);
778 nat_bits |= (nat != 0) << regnum;
779 }
780 *data = nat_bits;
781 }
782 return 0;
783}
784
785static int
786access_uarea (struct task_struct *child, unsigned long addr,
787 unsigned long *data, int write_access)
788{
789 unsigned long *ptr, regnum, urbs_end, rnat_addr, cfm;
790 struct switch_stack *sw;
791 struct pt_regs *pt;
792# define pt_reg_addr(pt, reg) ((void *) \
793 ((unsigned long) (pt) \
794 + offsetof(struct pt_regs, reg)))
795
796
Al Viro64505782006-01-12 01:06:06 -0800797 pt = task_pt_regs(child);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700798 sw = (struct switch_stack *) (child->thread.ksp + 16);
799
800 if ((addr & 0x7) != 0) {
801 dprintk("ptrace: unaligned register address 0x%lx\n", addr);
802 return -1;
803 }
804
805 if (addr < PT_F127 + 16) {
806 /* accessing fph */
807 if (write_access)
808 ia64_sync_fph(child);
809 else
810 ia64_flush_fph(child);
811 ptr = (unsigned long *)
812 ((unsigned long) &child->thread.fph + addr);
813 } else if ((addr >= PT_F10) && (addr < PT_F11 + 16)) {
814 /* scratch registers untouched by kernel (saved in pt_regs) */
815 ptr = pt_reg_addr(pt, f10) + (addr - PT_F10);
816 } else if (addr >= PT_F12 && addr < PT_F15 + 16) {
817 /*
818 * Scratch registers untouched by kernel (saved in
819 * switch_stack).
820 */
821 ptr = (unsigned long *) ((long) sw
822 + (addr - PT_NAT_BITS - 32));
823 } else if (addr < PT_AR_LC + 8) {
824 /* preserved state: */
825 struct unw_frame_info info;
826 char nat = 0;
827 int ret;
828
829 unw_init_from_blocked_task(&info, child);
830 if (unw_unwind_to_user(&info) < 0)
831 return -1;
832
833 switch (addr) {
834 case PT_NAT_BITS:
835 return access_nat_bits(child, pt, &info,
836 data, write_access);
837
838 case PT_R4: case PT_R5: case PT_R6: case PT_R7:
839 if (write_access) {
840 /* read NaT bit first: */
841 unsigned long dummy;
842
843 ret = unw_get_gr(&info, (addr - PT_R4)/8 + 4,
844 &dummy, &nat);
845 if (ret < 0)
846 return ret;
847 }
848 return unw_access_gr(&info, (addr - PT_R4)/8 + 4, data,
849 &nat, write_access);
850
851 case PT_B1: case PT_B2: case PT_B3:
852 case PT_B4: case PT_B5:
853 return unw_access_br(&info, (addr - PT_B1)/8 + 1, data,
854 write_access);
855
856 case PT_AR_EC:
857 return unw_access_ar(&info, UNW_AR_EC, data,
858 write_access);
859
860 case PT_AR_LC:
861 return unw_access_ar(&info, UNW_AR_LC, data,
862 write_access);
863
864 default:
865 if (addr >= PT_F2 && addr < PT_F5 + 16)
866 return access_fr(&info, (addr - PT_F2)/16 + 2,
867 (addr & 8) != 0, data,
868 write_access);
869 else if (addr >= PT_F16 && addr < PT_F31 + 16)
870 return access_fr(&info,
871 (addr - PT_F16)/16 + 16,
872 (addr & 8) != 0,
873 data, write_access);
874 else {
875 dprintk("ptrace: rejecting access to register "
876 "address 0x%lx\n", addr);
877 return -1;
878 }
879 }
880 } else if (addr < PT_F9+16) {
881 /* scratch state */
882 switch (addr) {
883 case PT_AR_BSP:
884 /*
885 * By convention, we use PT_AR_BSP to refer to
886 * the end of the user-level backing store.
887 * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
888 * to get the real value of ar.bsp at the time
889 * the kernel was entered.
890 *
891 * Furthermore, when changing the contents of
892 * PT_AR_BSP (or PT_CFM) we MUST copy any
893 * users-level stacked registers that are
894 * stored on the kernel stack back to
895 * user-space because otherwise, we might end
896 * up clobbering kernel stacked registers.
897 * Also, if this happens while the task is
898 * blocked in a system call, which convert the
899 * state such that the non-system-call exit
900 * path is used. This ensures that the proper
901 * state will be picked up when resuming
902 * execution. However, it *also* means that
903 * once we write PT_AR_BSP/PT_CFM, it won't be
904 * possible to modify the syscall arguments of
905 * the pending system call any longer. This
906 * shouldn't be an issue because modifying
907 * PT_AR_BSP/PT_CFM generally implies that
908 * we're either abandoning the pending system
909 * call or that we defer it's re-execution
910 * (e.g., due to GDB doing an inferior
911 * function call).
912 */
913 urbs_end = ia64_get_user_rbs_end(child, pt, &cfm);
914 if (write_access) {
915 if (*data != urbs_end) {
916 if (ia64_sync_user_rbs(child, sw,
917 pt->ar_bspstore,
918 urbs_end) < 0)
919 return -1;
920 if (in_syscall(pt))
921 convert_to_non_syscall(child,
922 pt,
923 cfm);
924 /*
925 * Simulate user-level write
926 * of ar.bsp:
927 */
928 pt->loadrs = 0;
929 pt->ar_bspstore = *data;
930 }
931 } else
932 *data = urbs_end;
933 return 0;
934
935 case PT_CFM:
936 urbs_end = ia64_get_user_rbs_end(child, pt, &cfm);
937 if (write_access) {
938 if (((cfm ^ *data) & PFM_MASK) != 0) {
939 if (ia64_sync_user_rbs(child, sw,
940 pt->ar_bspstore,
941 urbs_end) < 0)
942 return -1;
943 if (in_syscall(pt))
944 convert_to_non_syscall(child,
945 pt,
946 cfm);
947 pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK)
948 | (*data & PFM_MASK));
949 }
950 } else
951 *data = cfm;
952 return 0;
953
954 case PT_CR_IPSR:
955 if (write_access)
956 pt->cr_ipsr = ((*data & IPSR_MASK)
957 | (pt->cr_ipsr & ~IPSR_MASK));
958 else
959 *data = (pt->cr_ipsr & IPSR_MASK);
960 return 0;
961
Matthew Chapman4ea78722005-06-21 16:19:20 -0700962 case PT_AR_RSC:
963 if (write_access)
964 pt->ar_rsc = *data | (3 << 2); /* force PL3 */
965 else
966 *data = pt->ar_rsc;
967 return 0;
968
Linus Torvalds1da177e2005-04-16 15:20:36 -0700969 case PT_AR_RNAT:
970 urbs_end = ia64_get_user_rbs_end(child, pt, NULL);
971 rnat_addr = (long) ia64_rse_rnat_addr((long *)
972 urbs_end);
973 if (write_access)
974 return ia64_poke(child, sw, urbs_end,
975 rnat_addr, *data);
976 else
977 return ia64_peek(child, sw, urbs_end,
978 rnat_addr, data);
979
980 case PT_R1:
981 ptr = pt_reg_addr(pt, r1);
982 break;
983 case PT_R2: case PT_R3:
984 ptr = pt_reg_addr(pt, r2) + (addr - PT_R2);
985 break;
986 case PT_R8: case PT_R9: case PT_R10: case PT_R11:
987 ptr = pt_reg_addr(pt, r8) + (addr - PT_R8);
988 break;
989 case PT_R12: case PT_R13:
990 ptr = pt_reg_addr(pt, r12) + (addr - PT_R12);
991 break;
992 case PT_R14:
993 ptr = pt_reg_addr(pt, r14);
994 break;
995 case PT_R15:
996 ptr = pt_reg_addr(pt, r15);
997 break;
998 case PT_R16: case PT_R17: case PT_R18: case PT_R19:
999 case PT_R20: case PT_R21: case PT_R22: case PT_R23:
1000 case PT_R24: case PT_R25: case PT_R26: case PT_R27:
1001 case PT_R28: case PT_R29: case PT_R30: case PT_R31:
1002 ptr = pt_reg_addr(pt, r16) + (addr - PT_R16);
1003 break;
1004 case PT_B0:
1005 ptr = pt_reg_addr(pt, b0);
1006 break;
1007 case PT_B6:
1008 ptr = pt_reg_addr(pt, b6);
1009 break;
1010 case PT_B7:
1011 ptr = pt_reg_addr(pt, b7);
1012 break;
1013 case PT_F6: case PT_F6+8: case PT_F7: case PT_F7+8:
1014 case PT_F8: case PT_F8+8: case PT_F9: case PT_F9+8:
1015 ptr = pt_reg_addr(pt, f6) + (addr - PT_F6);
1016 break;
1017 case PT_AR_BSPSTORE:
1018 ptr = pt_reg_addr(pt, ar_bspstore);
1019 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001020 case PT_AR_UNAT:
1021 ptr = pt_reg_addr(pt, ar_unat);
1022 break;
1023 case PT_AR_PFS:
1024 ptr = pt_reg_addr(pt, ar_pfs);
1025 break;
1026 case PT_AR_CCV:
1027 ptr = pt_reg_addr(pt, ar_ccv);
1028 break;
1029 case PT_AR_FPSR:
1030 ptr = pt_reg_addr(pt, ar_fpsr);
1031 break;
1032 case PT_CR_IIP:
1033 ptr = pt_reg_addr(pt, cr_iip);
1034 break;
1035 case PT_PR:
1036 ptr = pt_reg_addr(pt, pr);
1037 break;
1038 /* scratch register */
1039
1040 default:
1041 /* disallow accessing anything else... */
1042 dprintk("ptrace: rejecting access to register "
1043 "address 0x%lx\n", addr);
1044 return -1;
1045 }
1046 } else if (addr <= PT_AR_SSD) {
1047 ptr = pt_reg_addr(pt, ar_csd) + (addr - PT_AR_CSD);
1048 } else {
1049 /* access debug registers */
1050
1051 if (addr >= PT_IBR) {
1052 regnum = (addr - PT_IBR) >> 3;
1053 ptr = &child->thread.ibr[0];
1054 } else {
1055 regnum = (addr - PT_DBR) >> 3;
1056 ptr = &child->thread.dbr[0];
1057 }
1058
1059 if (regnum >= 8) {
1060 dprintk("ptrace: rejecting access to register "
1061 "address 0x%lx\n", addr);
1062 return -1;
1063 }
1064#ifdef CONFIG_PERFMON
1065 /*
1066 * Check if debug registers are used by perfmon. This
1067 * test must be done once we know that we can do the
1068 * operation, i.e. the arguments are all valid, but
1069 * before we start modifying the state.
1070 *
1071 * Perfmon needs to keep a count of how many processes
1072 * are trying to modify the debug registers for system
1073 * wide monitoring sessions.
1074 *
1075 * We also include read access here, because they may
1076 * cause the PMU-installed debug register state
1077 * (dbr[], ibr[]) to be reset. The two arrays are also
1078 * used by perfmon, but we do not use
1079 * IA64_THREAD_DBG_VALID. The registers are restored
1080 * by the PMU context switch code.
1081 */
1082 if (pfm_use_debug_registers(child)) return -1;
1083#endif
1084
1085 if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
1086 child->thread.flags |= IA64_THREAD_DBG_VALID;
1087 memset(child->thread.dbr, 0,
1088 sizeof(child->thread.dbr));
1089 memset(child->thread.ibr, 0,
1090 sizeof(child->thread.ibr));
1091 }
1092
1093 ptr += regnum;
1094
1095 if ((regnum & 1) && write_access) {
1096 /* don't let the user set kernel-level breakpoints: */
1097 *ptr = *data & ~(7UL << 56);
1098 return 0;
1099 }
1100 }
1101 if (write_access)
1102 *ptr = *data;
1103 else
1104 *data = *ptr;
1105 return 0;
1106}
1107
1108static long
1109ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
1110{
1111 unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val;
1112 struct unw_frame_info info;
1113 struct ia64_fpreg fpval;
1114 struct switch_stack *sw;
1115 struct pt_regs *pt;
1116 long ret, retval = 0;
1117 char nat = 0;
1118 int i;
1119
1120 if (!access_ok(VERIFY_WRITE, ppr, sizeof(struct pt_all_user_regs)))
1121 return -EIO;
1122
Al Viro64505782006-01-12 01:06:06 -08001123 pt = task_pt_regs(child);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001124 sw = (struct switch_stack *) (child->thread.ksp + 16);
1125 unw_init_from_blocked_task(&info, child);
1126 if (unw_unwind_to_user(&info) < 0) {
1127 return -EIO;
1128 }
1129
1130 if (((unsigned long) ppr & 0x7) != 0) {
1131 dprintk("ptrace:unaligned register address %p\n", ppr);
1132 return -EIO;
1133 }
1134
1135 if (access_uarea(child, PT_CR_IPSR, &psr, 0) < 0
1136 || access_uarea(child, PT_AR_EC, &ec, 0) < 0
1137 || access_uarea(child, PT_AR_LC, &lc, 0) < 0
1138 || access_uarea(child, PT_AR_RNAT, &rnat, 0) < 0
1139 || access_uarea(child, PT_AR_BSP, &bsp, 0) < 0
1140 || access_uarea(child, PT_CFM, &cfm, 0)
1141 || access_uarea(child, PT_NAT_BITS, &nat_bits, 0))
1142 return -EIO;
1143
1144 /* control regs */
1145
1146 retval |= __put_user(pt->cr_iip, &ppr->cr_iip);
1147 retval |= __put_user(psr, &ppr->cr_ipsr);
1148
1149 /* app regs */
1150
1151 retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
1152 retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
1153 retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
1154 retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
1155 retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
1156 retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
1157
1158 retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]);
1159 retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]);
1160 retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]);
1161 retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]);
1162 retval |= __put_user(cfm, &ppr->cfm);
1163
1164 /* gr1-gr3 */
1165
1166 retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long));
1167 retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2);
1168
1169 /* gr4-gr7 */
1170
1171 for (i = 4; i < 8; i++) {
1172 if (unw_access_gr(&info, i, &val, &nat, 0) < 0)
1173 return -EIO;
1174 retval |= __put_user(val, &ppr->gr[i]);
1175 }
1176
1177 /* gr8-gr11 */
1178
1179 retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4);
1180
1181 /* gr12-gr15 */
1182
1183 retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2);
1184 retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long));
1185 retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long));
1186
1187 /* gr16-gr31 */
1188
1189 retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16);
1190
1191 /* b0 */
1192
1193 retval |= __put_user(pt->b0, &ppr->br[0]);
1194
1195 /* b1-b5 */
1196
1197 for (i = 1; i < 6; i++) {
1198 if (unw_access_br(&info, i, &val, 0) < 0)
1199 return -EIO;
1200 __put_user(val, &ppr->br[i]);
1201 }
1202
1203 /* b6-b7 */
1204
1205 retval |= __put_user(pt->b6, &ppr->br[6]);
1206 retval |= __put_user(pt->b7, &ppr->br[7]);
1207
1208 /* fr2-fr5 */
1209
1210 for (i = 2; i < 6; i++) {
1211 if (unw_get_fr(&info, i, &fpval) < 0)
1212 return -EIO;
1213 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
1214 }
1215
1216 /* fr6-fr11 */
1217
1218 retval |= __copy_to_user(&ppr->fr[6], &pt->f6,
1219 sizeof(struct ia64_fpreg) * 6);
1220
1221 /* fp scratch regs(12-15) */
1222
1223 retval |= __copy_to_user(&ppr->fr[12], &sw->f12,
1224 sizeof(struct ia64_fpreg) * 4);
1225
1226 /* fr16-fr31 */
1227
1228 for (i = 16; i < 32; i++) {
1229 if (unw_get_fr(&info, i, &fpval) < 0)
1230 return -EIO;
1231 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
1232 }
1233
1234 /* fph */
1235
1236 ia64_flush_fph(child);
1237 retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph,
1238 sizeof(ppr->fr[32]) * 96);
1239
1240 /* preds */
1241
1242 retval |= __put_user(pt->pr, &ppr->pr);
1243
1244 /* nat bits */
1245
1246 retval |= __put_user(nat_bits, &ppr->nat);
1247
1248 ret = retval ? -EIO : 0;
1249 return ret;
1250}
1251
1252static long
1253ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
1254{
Matthew Chapman4ea78722005-06-21 16:19:20 -07001255 unsigned long psr, rsc, ec, lc, rnat, bsp, cfm, nat_bits, val = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001256 struct unw_frame_info info;
1257 struct switch_stack *sw;
1258 struct ia64_fpreg fpval;
1259 struct pt_regs *pt;
1260 long ret, retval = 0;
1261 int i;
1262
1263 memset(&fpval, 0, sizeof(fpval));
1264
1265 if (!access_ok(VERIFY_READ, ppr, sizeof(struct pt_all_user_regs)))
1266 return -EIO;
1267
Al Viro64505782006-01-12 01:06:06 -08001268 pt = task_pt_regs(child);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001269 sw = (struct switch_stack *) (child->thread.ksp + 16);
1270 unw_init_from_blocked_task(&info, child);
1271 if (unw_unwind_to_user(&info) < 0) {
1272 return -EIO;
1273 }
1274
1275 if (((unsigned long) ppr & 0x7) != 0) {
1276 dprintk("ptrace:unaligned register address %p\n", ppr);
1277 return -EIO;
1278 }
1279
1280 /* control regs */
1281
1282 retval |= __get_user(pt->cr_iip, &ppr->cr_iip);
1283 retval |= __get_user(psr, &ppr->cr_ipsr);
1284
1285 /* app regs */
1286
1287 retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
Matthew Chapman4ea78722005-06-21 16:19:20 -07001288 retval |= __get_user(rsc, &ppr->ar[PT_AUR_RSC]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001289 retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
1290 retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
1291 retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
1292 retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
1293
1294 retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]);
1295 retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]);
1296 retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]);
1297 retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]);
1298 retval |= __get_user(cfm, &ppr->cfm);
1299
1300 /* gr1-gr3 */
1301
1302 retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long));
1303 retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2);
1304
1305 /* gr4-gr7 */
1306
1307 for (i = 4; i < 8; i++) {
1308 retval |= __get_user(val, &ppr->gr[i]);
1309 /* NaT bit will be set via PT_NAT_BITS: */
1310 if (unw_set_gr(&info, i, val, 0) < 0)
1311 return -EIO;
1312 }
1313
1314 /* gr8-gr11 */
1315
1316 retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4);
1317
1318 /* gr12-gr15 */
1319
1320 retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2);
1321 retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long));
1322 retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long));
1323
1324 /* gr16-gr31 */
1325
1326 retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16);
1327
1328 /* b0 */
1329
1330 retval |= __get_user(pt->b0, &ppr->br[0]);
1331
1332 /* b1-b5 */
1333
1334 for (i = 1; i < 6; i++) {
1335 retval |= __get_user(val, &ppr->br[i]);
1336 unw_set_br(&info, i, val);
1337 }
1338
1339 /* b6-b7 */
1340
1341 retval |= __get_user(pt->b6, &ppr->br[6]);
1342 retval |= __get_user(pt->b7, &ppr->br[7]);
1343
1344 /* fr2-fr5 */
1345
1346 for (i = 2; i < 6; i++) {
1347 retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval));
1348 if (unw_set_fr(&info, i, fpval) < 0)
1349 return -EIO;
1350 }
1351
1352 /* fr6-fr11 */
1353
1354 retval |= __copy_from_user(&pt->f6, &ppr->fr[6],
1355 sizeof(ppr->fr[6]) * 6);
1356
1357 /* fp scratch regs(12-15) */
1358
1359 retval |= __copy_from_user(&sw->f12, &ppr->fr[12],
1360 sizeof(ppr->fr[12]) * 4);
1361
1362 /* fr16-fr31 */
1363
1364 for (i = 16; i < 32; i++) {
1365 retval |= __copy_from_user(&fpval, &ppr->fr[i],
1366 sizeof(fpval));
1367 if (unw_set_fr(&info, i, fpval) < 0)
1368 return -EIO;
1369 }
1370
1371 /* fph */
1372
1373 ia64_sync_fph(child);
1374 retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32],
1375 sizeof(ppr->fr[32]) * 96);
1376
1377 /* preds */
1378
1379 retval |= __get_user(pt->pr, &ppr->pr);
1380
1381 /* nat bits */
1382
1383 retval |= __get_user(nat_bits, &ppr->nat);
1384
1385 retval |= access_uarea(child, PT_CR_IPSR, &psr, 1);
Matthew Chapman4ea78722005-06-21 16:19:20 -07001386 retval |= access_uarea(child, PT_AR_RSC, &rsc, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001387 retval |= access_uarea(child, PT_AR_EC, &ec, 1);
1388 retval |= access_uarea(child, PT_AR_LC, &lc, 1);
1389 retval |= access_uarea(child, PT_AR_RNAT, &rnat, 1);
1390 retval |= access_uarea(child, PT_AR_BSP, &bsp, 1);
1391 retval |= access_uarea(child, PT_CFM, &cfm, 1);
1392 retval |= access_uarea(child, PT_NAT_BITS, &nat_bits, 1);
1393
1394 ret = retval ? -EIO : 0;
1395 return ret;
1396}
1397
1398/*
1399 * Called by kernel/ptrace.c when detaching..
1400 *
1401 * Make sure the single step bit is not set.
1402 */
1403void
1404ptrace_disable (struct task_struct *child)
1405{
Al Viro64505782006-01-12 01:06:06 -08001406 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001407
1408 /* make sure the single step/taken-branch trap bits are not set: */
1409 child_psr->ss = 0;
1410 child_psr->tb = 0;
1411}
1412
1413asmlinkage long
1414sys_ptrace (long request, pid_t pid, unsigned long addr, unsigned long data)
1415{
1416 struct pt_regs *pt;
1417 unsigned long urbs_end, peek_or_poke;
1418 struct task_struct *child;
1419 struct switch_stack *sw;
1420 long ret;
1421
1422 lock_kernel();
1423 ret = -EPERM;
1424 if (request == PTRACE_TRACEME) {
Christoph Hellwig6b9c7ed82006-01-08 01:02:33 -08001425 ret = ptrace_traceme();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001426 goto out;
1427 }
1428
1429 peek_or_poke = (request == PTRACE_PEEKTEXT
1430 || request == PTRACE_PEEKDATA
1431 || request == PTRACE_POKETEXT
1432 || request == PTRACE_POKEDATA);
1433 ret = -ESRCH;
1434 read_lock(&tasklist_lock);
1435 {
1436 child = find_task_by_pid(pid);
1437 if (child) {
1438 if (peek_or_poke)
1439 child = find_thread_for_addr(child, addr);
1440 get_task_struct(child);
1441 }
1442 }
1443 read_unlock(&tasklist_lock);
1444 if (!child)
1445 goto out;
1446 ret = -EPERM;
1447 if (pid == 1) /* no messing around with init! */
1448 goto out_tsk;
1449
1450 if (request == PTRACE_ATTACH) {
1451 ret = ptrace_attach(child);
1452 goto out_tsk;
1453 }
1454
1455 ret = ptrace_check_attach(child, request == PTRACE_KILL);
1456 if (ret < 0)
1457 goto out_tsk;
1458
Al Viro64505782006-01-12 01:06:06 -08001459 pt = task_pt_regs(child);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001460 sw = (struct switch_stack *) (child->thread.ksp + 16);
1461
1462 switch (request) {
1463 case PTRACE_PEEKTEXT:
1464 case PTRACE_PEEKDATA:
1465 /* read word at location addr */
1466 urbs_end = ia64_get_user_rbs_end(child, pt, NULL);
1467 ret = ia64_peek(child, sw, urbs_end, addr, &data);
1468 if (ret == 0) {
1469 ret = data;
1470 /* ensure "ret" is not mistaken as an error code: */
1471 force_successful_syscall_return();
1472 }
1473 goto out_tsk;
1474
1475 case PTRACE_POKETEXT:
1476 case PTRACE_POKEDATA:
1477 /* write the word at location addr */
1478 urbs_end = ia64_get_user_rbs_end(child, pt, NULL);
1479 ret = ia64_poke(child, sw, urbs_end, addr, data);
1480 goto out_tsk;
1481
1482 case PTRACE_PEEKUSR:
1483 /* read the word at addr in the USER area */
1484 if (access_uarea(child, addr, &data, 0) < 0) {
1485 ret = -EIO;
1486 goto out_tsk;
1487 }
1488 ret = data;
1489 /* ensure "ret" is not mistaken as an error code */
1490 force_successful_syscall_return();
1491 goto out_tsk;
1492
1493 case PTRACE_POKEUSR:
1494 /* write the word at addr in the USER area */
1495 if (access_uarea(child, addr, &data, 1) < 0) {
1496 ret = -EIO;
1497 goto out_tsk;
1498 }
1499 ret = 0;
1500 goto out_tsk;
1501
1502 case PTRACE_OLD_GETSIGINFO:
1503 /* for backwards-compatibility */
1504 ret = ptrace_request(child, PTRACE_GETSIGINFO, addr, data);
1505 goto out_tsk;
1506
1507 case PTRACE_OLD_SETSIGINFO:
1508 /* for backwards-compatibility */
1509 ret = ptrace_request(child, PTRACE_SETSIGINFO, addr, data);
1510 goto out_tsk;
1511
1512 case PTRACE_SYSCALL:
1513 /* continue and stop at next (return from) syscall */
1514 case PTRACE_CONT:
1515 /* restart after signal. */
1516 ret = -EIO;
Jesper Juhl7ed20e12005-05-01 08:59:14 -07001517 if (!valid_signal(data))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001518 goto out_tsk;
1519 if (request == PTRACE_SYSCALL)
1520 set_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
1521 else
1522 clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
1523 child->exit_code = data;
1524
1525 /*
1526 * Make sure the single step/taken-branch trap bits
1527 * are not set:
1528 */
1529 ia64_psr(pt)->ss = 0;
1530 ia64_psr(pt)->tb = 0;
1531
1532 wake_up_process(child);
1533 ret = 0;
1534 goto out_tsk;
1535
1536 case PTRACE_KILL:
1537 /*
1538 * Make the child exit. Best I can do is send it a
1539 * sigkill. Perhaps it should be put in the status
1540 * that it wants to exit.
1541 */
1542 if (child->exit_state == EXIT_ZOMBIE)
1543 /* already dead */
1544 goto out_tsk;
1545 child->exit_code = SIGKILL;
1546
1547 ptrace_disable(child);
1548 wake_up_process(child);
1549 ret = 0;
1550 goto out_tsk;
1551
1552 case PTRACE_SINGLESTEP:
1553 /* let child execute for one instruction */
1554 case PTRACE_SINGLEBLOCK:
1555 ret = -EIO;
Jesper Juhl7ed20e12005-05-01 08:59:14 -07001556 if (!valid_signal(data))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001557 goto out_tsk;
1558
1559 clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
1560 if (request == PTRACE_SINGLESTEP) {
1561 ia64_psr(pt)->ss = 1;
1562 } else {
1563 ia64_psr(pt)->tb = 1;
1564 }
1565 child->exit_code = data;
1566
1567 /* give it a chance to run. */
1568 wake_up_process(child);
1569 ret = 0;
1570 goto out_tsk;
1571
1572 case PTRACE_DETACH:
1573 /* detach a process that was attached. */
1574 ret = ptrace_detach(child, data);
1575 goto out_tsk;
1576
1577 case PTRACE_GETREGS:
1578 ret = ptrace_getregs(child,
1579 (struct pt_all_user_regs __user *) data);
1580 goto out_tsk;
1581
1582 case PTRACE_SETREGS:
1583 ret = ptrace_setregs(child,
1584 (struct pt_all_user_regs __user *) data);
1585 goto out_tsk;
1586
1587 default:
1588 ret = ptrace_request(child, request, addr, data);
1589 goto out_tsk;
1590 }
1591 out_tsk:
1592 put_task_struct(child);
1593 out:
1594 unlock_kernel();
1595 return ret;
1596}
1597
1598
1599void
1600syscall_trace (void)
1601{
1602 if (!test_thread_flag(TIF_SYSCALL_TRACE))
1603 return;
1604 if (!(current->ptrace & PT_PTRACED))
1605 return;
1606 /*
1607 * The 0x80 provides a way for the tracing parent to
1608 * distinguish between a syscall stop and SIGTRAP delivery.
1609 */
1610 ptrace_notify(SIGTRAP
1611 | ((current->ptrace & PT_TRACESYSGOOD) ? 0x80 : 0));
1612
1613 /*
1614 * This isn't the same as continuing with a signal, but it
1615 * will do for normal use. strace only continues with a
1616 * signal if the stopping signal is not SIGTRAP. -brl
1617 */
1618 if (current->exit_code) {
1619 send_sig(current->exit_code, current, 1);
1620 current->exit_code = 0;
1621 }
1622}
1623
1624/* "asmlinkage" so the input arguments are preserved... */
1625
1626asmlinkage void
1627syscall_trace_enter (long arg0, long arg1, long arg2, long arg3,
1628 long arg4, long arg5, long arg6, long arg7,
1629 struct pt_regs regs)
1630{
2fd6f582005-04-29 16:08:28 +01001631 if (test_thread_flag(TIF_SYSCALL_TRACE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001632 && (current->ptrace & PT_PTRACED))
1633 syscall_trace();
2fd6f582005-04-29 16:08:28 +01001634
1635 if (unlikely(current->audit_context)) {
1636 long syscall;
1637 int arch;
1638
1639 if (IS_IA32_PROCESS(&regs)) {
1640 syscall = regs.r1;
1641 arch = AUDIT_ARCH_I386;
1642 } else {
1643 syscall = regs.r15;
1644 arch = AUDIT_ARCH_IA64;
1645 }
1646
1647 audit_syscall_entry(current, arch, syscall, arg0, arg1, arg2, arg3);
1648 }
1649
Linus Torvalds1da177e2005-04-16 15:20:36 -07001650}
1651
1652/* "asmlinkage" so the input arguments are preserved... */
1653
1654asmlinkage void
1655syscall_trace_leave (long arg0, long arg1, long arg2, long arg3,
1656 long arg4, long arg5, long arg6, long arg7,
1657 struct pt_regs regs)
1658{
1659 if (unlikely(current->audit_context))
2fd6f582005-04-29 16:08:28 +01001660 audit_syscall_exit(current, AUDITSC_RESULT(regs.r10), regs.r8);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001661
1662 if (test_thread_flag(TIF_SYSCALL_TRACE)
1663 && (current->ptrace & PT_PTRACED))
1664 syscall_trace();
1665}