Palmer Dabbelt | 62b0194 | 2018-08-04 10:23:19 +0200 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Copyright (C) 2012 Regents of the University of California |
| 4 | * Copyright (C) 2017 SiFive |
| 5 | */ |
| 6 | #include <linux/clocksource.h> |
| 7 | #include <linux/clockchips.h> |
| 8 | #include <linux/cpu.h> |
| 9 | #include <linux/delay.h> |
| 10 | #include <linux/irq.h> |
| 11 | #include <asm/sbi.h> |
| 12 | |
| 13 | /* |
| 14 | * All RISC-V systems have a timer attached to every hart. These timers can be |
| 15 | * read by the 'rdcycle' pseudo instruction, and can use the SBI to setup |
| 16 | * events. In order to abstract the architecture-specific timer reading and |
| 17 | * setting functions away from the clock event insertion code, we provide |
| 18 | * function pointers to the clockevent subsystem that perform two basic |
| 19 | * operations: rdtime() reads the timer on the current CPU, and |
| 20 | * next_event(delta) sets the next timer event to 'delta' cycles in the future. |
| 21 | * As the timers are inherently a per-cpu resource, these callbacks perform |
| 22 | * operations on the current hart. There is guaranteed to be exactly one timer |
| 23 | * per hart on all RISC-V systems. |
| 24 | */ |
| 25 | |
| 26 | static int riscv_clock_next_event(unsigned long delta, |
| 27 | struct clock_event_device *ce) |
| 28 | { |
| 29 | csr_set(sie, SIE_STIE); |
| 30 | sbi_set_timer(get_cycles64() + delta); |
| 31 | return 0; |
| 32 | } |
| 33 | |
| 34 | static DEFINE_PER_CPU(struct clock_event_device, riscv_clock_event) = { |
| 35 | .name = "riscv_timer_clockevent", |
| 36 | .features = CLOCK_EVT_FEAT_ONESHOT, |
| 37 | .rating = 100, |
| 38 | .set_next_event = riscv_clock_next_event, |
| 39 | }; |
| 40 | |
| 41 | /* |
| 42 | * It is guaranteed that all the timers across all the harts are synchronized |
| 43 | * within one tick of each other, so while this could technically go |
| 44 | * backwards when hopping between CPUs, practically it won't happen. |
| 45 | */ |
| 46 | static unsigned long long riscv_clocksource_rdtime(struct clocksource *cs) |
| 47 | { |
| 48 | return get_cycles64(); |
| 49 | } |
| 50 | |
| 51 | static DEFINE_PER_CPU(struct clocksource, riscv_clocksource) = { |
| 52 | .name = "riscv_clocksource", |
| 53 | .rating = 300, |
| 54 | .mask = CLOCKSOURCE_MASK(BITS_PER_LONG), |
| 55 | .flags = CLOCK_SOURCE_IS_CONTINUOUS, |
| 56 | .read = riscv_clocksource_rdtime, |
| 57 | }; |
| 58 | |
| 59 | static int riscv_timer_starting_cpu(unsigned int cpu) |
| 60 | { |
| 61 | struct clock_event_device *ce = per_cpu_ptr(&riscv_clock_event, cpu); |
| 62 | |
| 63 | ce->cpumask = cpumask_of(cpu); |
| 64 | clockevents_config_and_register(ce, riscv_timebase, 100, 0x7fffffff); |
| 65 | |
| 66 | csr_set(sie, SIE_STIE); |
| 67 | return 0; |
| 68 | } |
| 69 | |
| 70 | static int riscv_timer_dying_cpu(unsigned int cpu) |
| 71 | { |
| 72 | csr_clear(sie, SIE_STIE); |
| 73 | return 0; |
| 74 | } |
| 75 | |
| 76 | /* called directly from the low-level interrupt handler */ |
| 77 | void riscv_timer_interrupt(void) |
| 78 | { |
| 79 | struct clock_event_device *evdev = this_cpu_ptr(&riscv_clock_event); |
| 80 | |
| 81 | csr_clear(sie, SIE_STIE); |
| 82 | evdev->event_handler(evdev); |
| 83 | } |
| 84 | |
| 85 | static int __init riscv_timer_init_dt(struct device_node *n) |
| 86 | { |
| 87 | int cpu_id = riscv_of_processor_hart(n), error; |
| 88 | struct clocksource *cs; |
| 89 | |
| 90 | if (cpu_id != smp_processor_id()) |
| 91 | return 0; |
| 92 | |
| 93 | cs = per_cpu_ptr(&riscv_clocksource, cpu_id); |
| 94 | clocksource_register_hz(cs, riscv_timebase); |
| 95 | |
| 96 | error = cpuhp_setup_state(CPUHP_AP_RISCV_TIMER_STARTING, |
| 97 | "clockevents/riscv/timer:starting", |
| 98 | riscv_timer_starting_cpu, riscv_timer_dying_cpu); |
| 99 | if (error) |
| 100 | pr_err("RISCV timer register failed [%d] for cpu = [%d]\n", |
| 101 | error, cpu_id); |
| 102 | return error; |
| 103 | } |
| 104 | |
| 105 | TIMER_OF_DECLARE(riscv_timer, "riscv", riscv_timer_init_dt); |