blob: 98694a1add4383a762184194dd494db3f7142e57 [file] [log] [blame]
Mark Fashehccd979b2005-12-15 14:31:24 -08001/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * alloc.c
5 *
6 * Extent allocs and frees
7 *
8 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
24 */
25
26#include <linux/fs.h>
27#include <linux/types.h>
28#include <linux/slab.h>
29#include <linux/highmem.h>
Mark Fasheh60b11392007-02-16 11:46:50 -080030#include <linux/swap.h>
Mark Fashehccd979b2005-12-15 14:31:24 -080031
32#define MLOG_MASK_PREFIX ML_DISK_ALLOC
33#include <cluster/masklog.h>
34
35#include "ocfs2.h"
36
37#include "alloc.h"
Mark Fasheh60b11392007-02-16 11:46:50 -080038#include "aops.h"
Mark Fashehccd979b2005-12-15 14:31:24 -080039#include "dlmglue.h"
40#include "extent_map.h"
41#include "inode.h"
42#include "journal.h"
43#include "localalloc.h"
44#include "suballoc.h"
45#include "sysfile.h"
46#include "file.h"
47#include "super.h"
48#include "uptodate.h"
49
50#include "buffer_head_io.h"
51
Mark Fashehccd979b2005-12-15 14:31:24 -080052static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc);
53
Mark Fashehdcd05382007-01-16 11:32:23 -080054/*
55 * Structures which describe a path through a btree, and functions to
56 * manipulate them.
57 *
58 * The idea here is to be as generic as possible with the tree
59 * manipulation code.
60 */
61struct ocfs2_path_item {
62 struct buffer_head *bh;
63 struct ocfs2_extent_list *el;
64};
65
66#define OCFS2_MAX_PATH_DEPTH 5
67
68struct ocfs2_path {
69 int p_tree_depth;
70 struct ocfs2_path_item p_node[OCFS2_MAX_PATH_DEPTH];
71};
72
73#define path_root_bh(_path) ((_path)->p_node[0].bh)
74#define path_root_el(_path) ((_path)->p_node[0].el)
75#define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh)
76#define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el)
77#define path_num_items(_path) ((_path)->p_tree_depth + 1)
78
79/*
80 * Reset the actual path elements so that we can re-use the structure
81 * to build another path. Generally, this involves freeing the buffer
82 * heads.
83 */
84static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
85{
86 int i, start = 0, depth = 0;
87 struct ocfs2_path_item *node;
88
89 if (keep_root)
90 start = 1;
91
92 for(i = start; i < path_num_items(path); i++) {
93 node = &path->p_node[i];
94
95 brelse(node->bh);
96 node->bh = NULL;
97 node->el = NULL;
98 }
99
100 /*
101 * Tree depth may change during truncate, or insert. If we're
102 * keeping the root extent list, then make sure that our path
103 * structure reflects the proper depth.
104 */
105 if (keep_root)
106 depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
107
108 path->p_tree_depth = depth;
109}
110
111static void ocfs2_free_path(struct ocfs2_path *path)
112{
113 if (path) {
114 ocfs2_reinit_path(path, 0);
115 kfree(path);
116 }
117}
118
119/*
120 * Make the *dest path the same as src and re-initialize src path to
121 * have a root only.
122 */
123static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
124{
125 int i;
126
127 BUG_ON(path_root_bh(dest) != path_root_bh(src));
128
129 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
130 brelse(dest->p_node[i].bh);
131
132 dest->p_node[i].bh = src->p_node[i].bh;
133 dest->p_node[i].el = src->p_node[i].el;
134
135 src->p_node[i].bh = NULL;
136 src->p_node[i].el = NULL;
137 }
138}
139
140/*
141 * Insert an extent block at given index.
142 *
143 * This will not take an additional reference on eb_bh.
144 */
145static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
146 struct buffer_head *eb_bh)
147{
148 struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
149
150 /*
151 * Right now, no root bh is an extent block, so this helps
152 * catch code errors with dinode trees. The assertion can be
153 * safely removed if we ever need to insert extent block
154 * structures at the root.
155 */
156 BUG_ON(index == 0);
157
158 path->p_node[index].bh = eb_bh;
159 path->p_node[index].el = &eb->h_list;
160}
161
162static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
163 struct ocfs2_extent_list *root_el)
164{
165 struct ocfs2_path *path;
166
167 BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
168
169 path = kzalloc(sizeof(*path), GFP_NOFS);
170 if (path) {
171 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
172 get_bh(root_bh);
173 path_root_bh(path) = root_bh;
174 path_root_el(path) = root_el;
175 }
176
177 return path;
178}
179
180/*
181 * Allocate and initialize a new path based on a disk inode tree.
182 */
183static struct ocfs2_path *ocfs2_new_inode_path(struct buffer_head *di_bh)
184{
185 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
186 struct ocfs2_extent_list *el = &di->id2.i_list;
187
188 return ocfs2_new_path(di_bh, el);
189}
190
191/*
192 * Convenience function to journal all components in a path.
193 */
194static int ocfs2_journal_access_path(struct inode *inode, handle_t *handle,
195 struct ocfs2_path *path)
196{
197 int i, ret = 0;
198
199 if (!path)
200 goto out;
201
202 for(i = 0; i < path_num_items(path); i++) {
203 ret = ocfs2_journal_access(handle, inode, path->p_node[i].bh,
204 OCFS2_JOURNAL_ACCESS_WRITE);
205 if (ret < 0) {
206 mlog_errno(ret);
207 goto out;
208 }
209 }
210
211out:
212 return ret;
213}
214
215enum ocfs2_contig_type {
216 CONTIG_NONE = 0,
217 CONTIG_LEFT,
218 CONTIG_RIGHT
219};
220
221static int ocfs2_block_extent_contig(struct super_block *sb,
222 struct ocfs2_extent_rec *ext,
223 u64 blkno)
Mark Fashehccd979b2005-12-15 14:31:24 -0800224{
225 return blkno == (le64_to_cpu(ext->e_blkno) +
Mark Fashehdcd05382007-01-16 11:32:23 -0800226 ocfs2_clusters_to_blocks(sb,
Mark Fashehccd979b2005-12-15 14:31:24 -0800227 le32_to_cpu(ext->e_clusters)));
228}
229
Mark Fashehdcd05382007-01-16 11:32:23 -0800230static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
231 struct ocfs2_extent_rec *right)
232{
233 return (le32_to_cpu(left->e_cpos) + le32_to_cpu(left->e_clusters) ==
234 le32_to_cpu(right->e_cpos));
235}
236
237static enum ocfs2_contig_type
238 ocfs2_extent_contig(struct inode *inode,
239 struct ocfs2_extent_rec *ext,
240 struct ocfs2_extent_rec *insert_rec)
241{
242 u64 blkno = le64_to_cpu(insert_rec->e_blkno);
243
244 if (ocfs2_extents_adjacent(ext, insert_rec) &&
245 ocfs2_block_extent_contig(inode->i_sb, ext, blkno))
246 return CONTIG_RIGHT;
247
248 blkno = le64_to_cpu(ext->e_blkno);
249 if (ocfs2_extents_adjacent(insert_rec, ext) &&
250 ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno))
251 return CONTIG_LEFT;
252
253 return CONTIG_NONE;
254}
255
256/*
257 * NOTE: We can have pretty much any combination of contiguousness and
258 * appending.
259 *
260 * The usefulness of APPEND_TAIL is more in that it lets us know that
261 * we'll have to update the path to that leaf.
262 */
263enum ocfs2_append_type {
264 APPEND_NONE = 0,
265 APPEND_TAIL,
266};
267
268struct ocfs2_insert_type {
269 enum ocfs2_append_type ins_appending;
270 enum ocfs2_contig_type ins_contig;
271 int ins_contig_index;
272 int ins_free_records;
273 int ins_tree_depth;
274};
275
Mark Fashehccd979b2005-12-15 14:31:24 -0800276/*
277 * How many free extents have we got before we need more meta data?
278 */
279int ocfs2_num_free_extents(struct ocfs2_super *osb,
280 struct inode *inode,
281 struct ocfs2_dinode *fe)
282{
283 int retval;
284 struct ocfs2_extent_list *el;
285 struct ocfs2_extent_block *eb;
286 struct buffer_head *eb_bh = NULL;
287
288 mlog_entry_void();
289
290 if (!OCFS2_IS_VALID_DINODE(fe)) {
291 OCFS2_RO_ON_INVALID_DINODE(inode->i_sb, fe);
292 retval = -EIO;
293 goto bail;
294 }
295
296 if (fe->i_last_eb_blk) {
297 retval = ocfs2_read_block(osb, le64_to_cpu(fe->i_last_eb_blk),
298 &eb_bh, OCFS2_BH_CACHED, inode);
299 if (retval < 0) {
300 mlog_errno(retval);
301 goto bail;
302 }
303 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
304 el = &eb->h_list;
305 } else
306 el = &fe->id2.i_list;
307
308 BUG_ON(el->l_tree_depth != 0);
309
310 retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
311bail:
312 if (eb_bh)
313 brelse(eb_bh);
314
315 mlog_exit(retval);
316 return retval;
317}
318
319/* expects array to already be allocated
320 *
321 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
322 * l_count for you
323 */
324static int ocfs2_create_new_meta_bhs(struct ocfs2_super *osb,
Mark Fasheh1fabe142006-10-09 18:11:45 -0700325 handle_t *handle,
Mark Fashehccd979b2005-12-15 14:31:24 -0800326 struct inode *inode,
327 int wanted,
328 struct ocfs2_alloc_context *meta_ac,
329 struct buffer_head *bhs[])
330{
331 int count, status, i;
332 u16 suballoc_bit_start;
333 u32 num_got;
334 u64 first_blkno;
335 struct ocfs2_extent_block *eb;
336
337 mlog_entry_void();
338
339 count = 0;
340 while (count < wanted) {
341 status = ocfs2_claim_metadata(osb,
342 handle,
343 meta_ac,
344 wanted - count,
345 &suballoc_bit_start,
346 &num_got,
347 &first_blkno);
348 if (status < 0) {
349 mlog_errno(status);
350 goto bail;
351 }
352
353 for(i = count; i < (num_got + count); i++) {
354 bhs[i] = sb_getblk(osb->sb, first_blkno);
355 if (bhs[i] == NULL) {
356 status = -EIO;
357 mlog_errno(status);
358 goto bail;
359 }
360 ocfs2_set_new_buffer_uptodate(inode, bhs[i]);
361
362 status = ocfs2_journal_access(handle, inode, bhs[i],
363 OCFS2_JOURNAL_ACCESS_CREATE);
364 if (status < 0) {
365 mlog_errno(status);
366 goto bail;
367 }
368
369 memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
370 eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
371 /* Ok, setup the minimal stuff here. */
372 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
373 eb->h_blkno = cpu_to_le64(first_blkno);
374 eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
375
376#ifndef OCFS2_USE_ALL_METADATA_SUBALLOCATORS
377 /* we always use slot zero's suballocator */
378 eb->h_suballoc_slot = 0;
379#else
380 eb->h_suballoc_slot = cpu_to_le16(osb->slot_num);
381#endif
382 eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
383 eb->h_list.l_count =
384 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
385
386 suballoc_bit_start++;
387 first_blkno++;
388
389 /* We'll also be dirtied by the caller, so
390 * this isn't absolutely necessary. */
391 status = ocfs2_journal_dirty(handle, bhs[i]);
392 if (status < 0) {
393 mlog_errno(status);
394 goto bail;
395 }
396 }
397
398 count += num_got;
399 }
400
401 status = 0;
402bail:
403 if (status < 0) {
404 for(i = 0; i < wanted; i++) {
405 if (bhs[i])
406 brelse(bhs[i]);
407 bhs[i] = NULL;
408 }
409 }
410 mlog_exit(status);
411 return status;
412}
413
414/*
Mark Fashehdcd05382007-01-16 11:32:23 -0800415 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
416 *
417 * Returns the sum of the rightmost extent rec logical offset and
418 * cluster count.
419 *
420 * ocfs2_add_branch() uses this to determine what logical cluster
421 * value should be populated into the leftmost new branch records.
422 *
423 * ocfs2_shift_tree_depth() uses this to determine the # clusters
424 * value for the new topmost tree record.
425 */
426static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list *el)
427{
428 int i;
429
430 i = le16_to_cpu(el->l_next_free_rec) - 1;
431
432 return le32_to_cpu(el->l_recs[i].e_cpos) +
433 le32_to_cpu(el->l_recs[i].e_clusters);
434}
435
436/*
Mark Fashehccd979b2005-12-15 14:31:24 -0800437 * Add an entire tree branch to our inode. eb_bh is the extent block
438 * to start at, if we don't want to start the branch at the dinode
439 * structure.
440 *
441 * last_eb_bh is required as we have to update it's next_leaf pointer
442 * for the new last extent block.
443 *
444 * the new branch will be 'empty' in the sense that every block will
445 * contain a single record with e_clusters == 0.
446 */
447static int ocfs2_add_branch(struct ocfs2_super *osb,
Mark Fasheh1fabe142006-10-09 18:11:45 -0700448 handle_t *handle,
Mark Fashehccd979b2005-12-15 14:31:24 -0800449 struct inode *inode,
450 struct buffer_head *fe_bh,
451 struct buffer_head *eb_bh,
452 struct buffer_head *last_eb_bh,
453 struct ocfs2_alloc_context *meta_ac)
454{
455 int status, new_blocks, i;
456 u64 next_blkno, new_last_eb_blk;
457 struct buffer_head *bh;
458 struct buffer_head **new_eb_bhs = NULL;
459 struct ocfs2_dinode *fe;
460 struct ocfs2_extent_block *eb;
461 struct ocfs2_extent_list *eb_el;
462 struct ocfs2_extent_list *el;
Mark Fashehdcd05382007-01-16 11:32:23 -0800463 u32 new_cpos;
Mark Fashehccd979b2005-12-15 14:31:24 -0800464
465 mlog_entry_void();
466
467 BUG_ON(!last_eb_bh);
468
469 fe = (struct ocfs2_dinode *) fe_bh->b_data;
470
471 if (eb_bh) {
472 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
473 el = &eb->h_list;
474 } else
475 el = &fe->id2.i_list;
476
477 /* we never add a branch to a leaf. */
478 BUG_ON(!el->l_tree_depth);
479
480 new_blocks = le16_to_cpu(el->l_tree_depth);
481
482 /* allocate the number of new eb blocks we need */
483 new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
484 GFP_KERNEL);
485 if (!new_eb_bhs) {
486 status = -ENOMEM;
487 mlog_errno(status);
488 goto bail;
489 }
490
491 status = ocfs2_create_new_meta_bhs(osb, handle, inode, new_blocks,
492 meta_ac, new_eb_bhs);
493 if (status < 0) {
494 mlog_errno(status);
495 goto bail;
496 }
497
Mark Fashehdcd05382007-01-16 11:32:23 -0800498 eb = (struct ocfs2_extent_block *)last_eb_bh->b_data;
499 new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
500
Mark Fashehccd979b2005-12-15 14:31:24 -0800501 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
502 * linked with the rest of the tree.
503 * conversly, new_eb_bhs[0] is the new bottommost leaf.
504 *
505 * when we leave the loop, new_last_eb_blk will point to the
506 * newest leaf, and next_blkno will point to the topmost extent
507 * block. */
508 next_blkno = new_last_eb_blk = 0;
509 for(i = 0; i < new_blocks; i++) {
510 bh = new_eb_bhs[i];
511 eb = (struct ocfs2_extent_block *) bh->b_data;
512 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
513 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
514 status = -EIO;
515 goto bail;
516 }
517 eb_el = &eb->h_list;
518
519 status = ocfs2_journal_access(handle, inode, bh,
520 OCFS2_JOURNAL_ACCESS_CREATE);
521 if (status < 0) {
522 mlog_errno(status);
523 goto bail;
524 }
525
526 eb->h_next_leaf_blk = 0;
527 eb_el->l_tree_depth = cpu_to_le16(i);
528 eb_el->l_next_free_rec = cpu_to_le16(1);
Mark Fashehdcd05382007-01-16 11:32:23 -0800529 /*
530 * This actually counts as an empty extent as
531 * c_clusters == 0
532 */
533 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
Mark Fashehccd979b2005-12-15 14:31:24 -0800534 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
535 eb_el->l_recs[0].e_clusters = cpu_to_le32(0);
536 if (!eb_el->l_tree_depth)
537 new_last_eb_blk = le64_to_cpu(eb->h_blkno);
538
539 status = ocfs2_journal_dirty(handle, bh);
540 if (status < 0) {
541 mlog_errno(status);
542 goto bail;
543 }
544
545 next_blkno = le64_to_cpu(eb->h_blkno);
546 }
547
548 /* This is a bit hairy. We want to update up to three blocks
549 * here without leaving any of them in an inconsistent state
550 * in case of error. We don't have to worry about
551 * journal_dirty erroring as it won't unless we've aborted the
552 * handle (in which case we would never be here) so reserving
553 * the write with journal_access is all we need to do. */
554 status = ocfs2_journal_access(handle, inode, last_eb_bh,
555 OCFS2_JOURNAL_ACCESS_WRITE);
556 if (status < 0) {
557 mlog_errno(status);
558 goto bail;
559 }
560 status = ocfs2_journal_access(handle, inode, fe_bh,
561 OCFS2_JOURNAL_ACCESS_WRITE);
562 if (status < 0) {
563 mlog_errno(status);
564 goto bail;
565 }
566 if (eb_bh) {
567 status = ocfs2_journal_access(handle, inode, eb_bh,
568 OCFS2_JOURNAL_ACCESS_WRITE);
569 if (status < 0) {
570 mlog_errno(status);
571 goto bail;
572 }
573 }
574
575 /* Link the new branch into the rest of the tree (el will
576 * either be on the fe, or the extent block passed in. */
577 i = le16_to_cpu(el->l_next_free_rec);
578 el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
Mark Fashehdcd05382007-01-16 11:32:23 -0800579 el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
Mark Fashehccd979b2005-12-15 14:31:24 -0800580 el->l_recs[i].e_clusters = 0;
581 le16_add_cpu(&el->l_next_free_rec, 1);
582
583 /* fe needs a new last extent block pointer, as does the
584 * next_leaf on the previously last-extent-block. */
585 fe->i_last_eb_blk = cpu_to_le64(new_last_eb_blk);
586
587 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
588 eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
589
590 status = ocfs2_journal_dirty(handle, last_eb_bh);
591 if (status < 0)
592 mlog_errno(status);
593 status = ocfs2_journal_dirty(handle, fe_bh);
594 if (status < 0)
595 mlog_errno(status);
596 if (eb_bh) {
597 status = ocfs2_journal_dirty(handle, eb_bh);
598 if (status < 0)
599 mlog_errno(status);
600 }
601
602 status = 0;
603bail:
604 if (new_eb_bhs) {
605 for (i = 0; i < new_blocks; i++)
606 if (new_eb_bhs[i])
607 brelse(new_eb_bhs[i]);
608 kfree(new_eb_bhs);
609 }
610
611 mlog_exit(status);
612 return status;
613}
614
615/*
616 * adds another level to the allocation tree.
617 * returns back the new extent block so you can add a branch to it
618 * after this call.
619 */
620static int ocfs2_shift_tree_depth(struct ocfs2_super *osb,
Mark Fasheh1fabe142006-10-09 18:11:45 -0700621 handle_t *handle,
Mark Fashehccd979b2005-12-15 14:31:24 -0800622 struct inode *inode,
623 struct buffer_head *fe_bh,
624 struct ocfs2_alloc_context *meta_ac,
625 struct buffer_head **ret_new_eb_bh)
626{
627 int status, i;
Mark Fashehdcd05382007-01-16 11:32:23 -0800628 u32 new_clusters;
Mark Fashehccd979b2005-12-15 14:31:24 -0800629 struct buffer_head *new_eb_bh = NULL;
630 struct ocfs2_dinode *fe;
631 struct ocfs2_extent_block *eb;
632 struct ocfs2_extent_list *fe_el;
633 struct ocfs2_extent_list *eb_el;
634
635 mlog_entry_void();
636
637 status = ocfs2_create_new_meta_bhs(osb, handle, inode, 1, meta_ac,
638 &new_eb_bh);
639 if (status < 0) {
640 mlog_errno(status);
641 goto bail;
642 }
643
644 eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
645 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
646 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
647 status = -EIO;
648 goto bail;
649 }
650
651 eb_el = &eb->h_list;
652 fe = (struct ocfs2_dinode *) fe_bh->b_data;
653 fe_el = &fe->id2.i_list;
654
655 status = ocfs2_journal_access(handle, inode, new_eb_bh,
656 OCFS2_JOURNAL_ACCESS_CREATE);
657 if (status < 0) {
658 mlog_errno(status);
659 goto bail;
660 }
661
662 /* copy the fe data into the new extent block */
663 eb_el->l_tree_depth = fe_el->l_tree_depth;
664 eb_el->l_next_free_rec = fe_el->l_next_free_rec;
665 for(i = 0; i < le16_to_cpu(fe_el->l_next_free_rec); i++) {
666 eb_el->l_recs[i].e_cpos = fe_el->l_recs[i].e_cpos;
667 eb_el->l_recs[i].e_clusters = fe_el->l_recs[i].e_clusters;
668 eb_el->l_recs[i].e_blkno = fe_el->l_recs[i].e_blkno;
669 }
670
671 status = ocfs2_journal_dirty(handle, new_eb_bh);
672 if (status < 0) {
673 mlog_errno(status);
674 goto bail;
675 }
676
677 status = ocfs2_journal_access(handle, inode, fe_bh,
678 OCFS2_JOURNAL_ACCESS_WRITE);
679 if (status < 0) {
680 mlog_errno(status);
681 goto bail;
682 }
683
Mark Fashehdcd05382007-01-16 11:32:23 -0800684 new_clusters = ocfs2_sum_rightmost_rec(eb_el);
685
Mark Fashehccd979b2005-12-15 14:31:24 -0800686 /* update fe now */
687 le16_add_cpu(&fe_el->l_tree_depth, 1);
688 fe_el->l_recs[0].e_cpos = 0;
689 fe_el->l_recs[0].e_blkno = eb->h_blkno;
Mark Fashehdcd05382007-01-16 11:32:23 -0800690 fe_el->l_recs[0].e_clusters = cpu_to_le32(new_clusters);
Mark Fashehccd979b2005-12-15 14:31:24 -0800691 for(i = 1; i < le16_to_cpu(fe_el->l_next_free_rec); i++) {
692 fe_el->l_recs[i].e_cpos = 0;
693 fe_el->l_recs[i].e_clusters = 0;
694 fe_el->l_recs[i].e_blkno = 0;
695 }
696 fe_el->l_next_free_rec = cpu_to_le16(1);
697
698 /* If this is our 1st tree depth shift, then last_eb_blk
699 * becomes the allocated extent block */
700 if (fe_el->l_tree_depth == cpu_to_le16(1))
701 fe->i_last_eb_blk = eb->h_blkno;
702
703 status = ocfs2_journal_dirty(handle, fe_bh);
704 if (status < 0) {
705 mlog_errno(status);
706 goto bail;
707 }
708
709 *ret_new_eb_bh = new_eb_bh;
710 new_eb_bh = NULL;
711 status = 0;
712bail:
713 if (new_eb_bh)
714 brelse(new_eb_bh);
715
716 mlog_exit(status);
717 return status;
718}
719
720/*
Mark Fashehccd979b2005-12-15 14:31:24 -0800721 * Should only be called when there is no space left in any of the
722 * leaf nodes. What we want to do is find the lowest tree depth
723 * non-leaf extent block with room for new records. There are three
724 * valid results of this search:
725 *
726 * 1) a lowest extent block is found, then we pass it back in
727 * *lowest_eb_bh and return '0'
728 *
729 * 2) the search fails to find anything, but the dinode has room. We
730 * pass NULL back in *lowest_eb_bh, but still return '0'
731 *
732 * 3) the search fails to find anything AND the dinode is full, in
733 * which case we return > 0
734 *
735 * return status < 0 indicates an error.
736 */
737static int ocfs2_find_branch_target(struct ocfs2_super *osb,
738 struct inode *inode,
739 struct buffer_head *fe_bh,
740 struct buffer_head **target_bh)
741{
742 int status = 0, i;
743 u64 blkno;
744 struct ocfs2_dinode *fe;
745 struct ocfs2_extent_block *eb;
746 struct ocfs2_extent_list *el;
747 struct buffer_head *bh = NULL;
748 struct buffer_head *lowest_bh = NULL;
749
750 mlog_entry_void();
751
752 *target_bh = NULL;
753
754 fe = (struct ocfs2_dinode *) fe_bh->b_data;
755 el = &fe->id2.i_list;
756
757 while(le16_to_cpu(el->l_tree_depth) > 1) {
758 if (le16_to_cpu(el->l_next_free_rec) == 0) {
Mark Fashehb06970532006-03-03 10:24:33 -0800759 ocfs2_error(inode->i_sb, "Dinode %llu has empty "
Mark Fashehccd979b2005-12-15 14:31:24 -0800760 "extent list (next_free_rec == 0)",
Mark Fashehb06970532006-03-03 10:24:33 -0800761 (unsigned long long)OCFS2_I(inode)->ip_blkno);
Mark Fashehccd979b2005-12-15 14:31:24 -0800762 status = -EIO;
763 goto bail;
764 }
765 i = le16_to_cpu(el->l_next_free_rec) - 1;
766 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
767 if (!blkno) {
Mark Fashehb06970532006-03-03 10:24:33 -0800768 ocfs2_error(inode->i_sb, "Dinode %llu has extent "
Mark Fashehccd979b2005-12-15 14:31:24 -0800769 "list where extent # %d has no physical "
770 "block start",
Mark Fashehb06970532006-03-03 10:24:33 -0800771 (unsigned long long)OCFS2_I(inode)->ip_blkno, i);
Mark Fashehccd979b2005-12-15 14:31:24 -0800772 status = -EIO;
773 goto bail;
774 }
775
776 if (bh) {
777 brelse(bh);
778 bh = NULL;
779 }
780
781 status = ocfs2_read_block(osb, blkno, &bh, OCFS2_BH_CACHED,
782 inode);
783 if (status < 0) {
784 mlog_errno(status);
785 goto bail;
786 }
787
788 eb = (struct ocfs2_extent_block *) bh->b_data;
789 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
790 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
791 status = -EIO;
792 goto bail;
793 }
794 el = &eb->h_list;
795
796 if (le16_to_cpu(el->l_next_free_rec) <
797 le16_to_cpu(el->l_count)) {
798 if (lowest_bh)
799 brelse(lowest_bh);
800 lowest_bh = bh;
801 get_bh(lowest_bh);
802 }
803 }
804
805 /* If we didn't find one and the fe doesn't have any room,
806 * then return '1' */
807 if (!lowest_bh
808 && (fe->id2.i_list.l_next_free_rec == fe->id2.i_list.l_count))
809 status = 1;
810
811 *target_bh = lowest_bh;
812bail:
813 if (bh)
814 brelse(bh);
815
816 mlog_exit(status);
817 return status;
818}
819
Mark Fashehdcd05382007-01-16 11:32:23 -0800820static inline int ocfs2_is_empty_extent(struct ocfs2_extent_rec *rec)
821{
822 return !rec->e_clusters;
823}
824
825/*
826 * This function will discard the rightmost extent record.
827 */
828static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
829{
830 int next_free = le16_to_cpu(el->l_next_free_rec);
831 int count = le16_to_cpu(el->l_count);
832 unsigned int num_bytes;
833
834 BUG_ON(!next_free);
835 /* This will cause us to go off the end of our extent list. */
836 BUG_ON(next_free >= count);
837
838 num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
839
840 memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
841}
842
843static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
844 struct ocfs2_extent_rec *insert_rec)
845{
846 int i, insert_index, next_free, has_empty, num_bytes;
847 u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
848 struct ocfs2_extent_rec *rec;
849
850 next_free = le16_to_cpu(el->l_next_free_rec);
851 has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
852
853 BUG_ON(!next_free);
854
855 /* The tree code before us didn't allow enough room in the leaf. */
856 if (el->l_next_free_rec == el->l_count && !has_empty)
857 BUG();
858
859 /*
860 * The easiest way to approach this is to just remove the
861 * empty extent and temporarily decrement next_free.
862 */
863 if (has_empty) {
864 /*
865 * If next_free was 1 (only an empty extent), this
866 * loop won't execute, which is fine. We still want
867 * the decrement above to happen.
868 */
869 for(i = 0; i < (next_free - 1); i++)
870 el->l_recs[i] = el->l_recs[i+1];
871
872 next_free--;
873 }
874
875 /*
876 * Figure out what the new record index should be.
877 */
878 for(i = 0; i < next_free; i++) {
879 rec = &el->l_recs[i];
880
881 if (insert_cpos < le32_to_cpu(rec->e_cpos))
882 break;
883 }
884 insert_index = i;
885
886 mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
887 insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count));
888
889 BUG_ON(insert_index < 0);
890 BUG_ON(insert_index >= le16_to_cpu(el->l_count));
891 BUG_ON(insert_index > next_free);
892
893 /*
894 * No need to memmove if we're just adding to the tail.
895 */
896 if (insert_index != next_free) {
897 BUG_ON(next_free >= le16_to_cpu(el->l_count));
898
899 num_bytes = next_free - insert_index;
900 num_bytes *= sizeof(struct ocfs2_extent_rec);
901 memmove(&el->l_recs[insert_index + 1],
902 &el->l_recs[insert_index],
903 num_bytes);
904 }
905
906 /*
907 * Either we had an empty extent, and need to re-increment or
908 * there was no empty extent on a non full rightmost leaf node,
909 * in which case we still need to increment.
910 */
911 next_free++;
912 el->l_next_free_rec = cpu_to_le16(next_free);
913 /*
914 * Make sure none of the math above just messed up our tree.
915 */
916 BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
917
918 el->l_recs[insert_index] = *insert_rec;
919
920}
921
922/*
923 * Create an empty extent record .
924 *
925 * l_next_free_rec may be updated.
926 *
927 * If an empty extent already exists do nothing.
928 */
929static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
930{
931 int next_free = le16_to_cpu(el->l_next_free_rec);
932
933 if (next_free == 0)
934 goto set_and_inc;
935
936 if (ocfs2_is_empty_extent(&el->l_recs[0]))
937 return;
938
939 mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
940 "Asked to create an empty extent in a full list:\n"
941 "count = %u, tree depth = %u",
942 le16_to_cpu(el->l_count),
943 le16_to_cpu(el->l_tree_depth));
944
945 ocfs2_shift_records_right(el);
946
947set_and_inc:
948 le16_add_cpu(&el->l_next_free_rec, 1);
949 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
950}
951
952/*
953 * For a rotation which involves two leaf nodes, the "root node" is
954 * the lowest level tree node which contains a path to both leafs. This
955 * resulting set of information can be used to form a complete "subtree"
956 *
957 * This function is passed two full paths from the dinode down to a
958 * pair of adjacent leaves. It's task is to figure out which path
959 * index contains the subtree root - this can be the root index itself
960 * in a worst-case rotation.
961 *
962 * The array index of the subtree root is passed back.
963 */
964static int ocfs2_find_subtree_root(struct inode *inode,
965 struct ocfs2_path *left,
966 struct ocfs2_path *right)
967{
968 int i = 0;
969
970 /*
971 * Check that the caller passed in two paths from the same tree.
972 */
973 BUG_ON(path_root_bh(left) != path_root_bh(right));
974
975 do {
976 i++;
977
978 /*
979 * The caller didn't pass two adjacent paths.
980 */
981 mlog_bug_on_msg(i > left->p_tree_depth,
982 "Inode %lu, left depth %u, right depth %u\n"
983 "left leaf blk %llu, right leaf blk %llu\n",
984 inode->i_ino, left->p_tree_depth,
985 right->p_tree_depth,
986 (unsigned long long)path_leaf_bh(left)->b_blocknr,
987 (unsigned long long)path_leaf_bh(right)->b_blocknr);
988 } while (left->p_node[i].bh->b_blocknr ==
989 right->p_node[i].bh->b_blocknr);
990
991 return i - 1;
992}
993
994typedef void (path_insert_t)(void *, struct buffer_head *);
995
996/*
997 * Traverse a btree path in search of cpos, starting at root_el.
998 *
999 * This code can be called with a cpos larger than the tree, in which
1000 * case it will return the rightmost path.
1001 */
1002static int __ocfs2_find_path(struct inode *inode,
1003 struct ocfs2_extent_list *root_el, u32 cpos,
1004 path_insert_t *func, void *data)
1005{
1006 int i, ret = 0;
1007 u32 range;
1008 u64 blkno;
1009 struct buffer_head *bh = NULL;
1010 struct ocfs2_extent_block *eb;
1011 struct ocfs2_extent_list *el;
1012 struct ocfs2_extent_rec *rec;
1013 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1014
1015 el = root_el;
1016 while (el->l_tree_depth) {
1017 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1018 ocfs2_error(inode->i_sb,
1019 "Inode %llu has empty extent list at "
1020 "depth %u\n",
1021 (unsigned long long)oi->ip_blkno,
1022 le16_to_cpu(el->l_tree_depth));
1023 ret = -EROFS;
1024 goto out;
1025
1026 }
1027
1028 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1029 rec = &el->l_recs[i];
1030
1031 /*
1032 * In the case that cpos is off the allocation
1033 * tree, this should just wind up returning the
1034 * rightmost record.
1035 */
1036 range = le32_to_cpu(rec->e_cpos) +
1037 le32_to_cpu(rec->e_clusters);
1038 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1039 break;
1040 }
1041
1042 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1043 if (blkno == 0) {
1044 ocfs2_error(inode->i_sb,
1045 "Inode %llu has bad blkno in extent list "
1046 "at depth %u (index %d)\n",
1047 (unsigned long long)oi->ip_blkno,
1048 le16_to_cpu(el->l_tree_depth), i);
1049 ret = -EROFS;
1050 goto out;
1051 }
1052
1053 brelse(bh);
1054 bh = NULL;
1055 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb), blkno,
1056 &bh, OCFS2_BH_CACHED, inode);
1057 if (ret) {
1058 mlog_errno(ret);
1059 goto out;
1060 }
1061
1062 eb = (struct ocfs2_extent_block *) bh->b_data;
1063 el = &eb->h_list;
1064 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
1065 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
1066 ret = -EIO;
1067 goto out;
1068 }
1069
1070 if (le16_to_cpu(el->l_next_free_rec) >
1071 le16_to_cpu(el->l_count)) {
1072 ocfs2_error(inode->i_sb,
1073 "Inode %llu has bad count in extent list "
1074 "at block %llu (next free=%u, count=%u)\n",
1075 (unsigned long long)oi->ip_blkno,
1076 (unsigned long long)bh->b_blocknr,
1077 le16_to_cpu(el->l_next_free_rec),
1078 le16_to_cpu(el->l_count));
1079 ret = -EROFS;
1080 goto out;
1081 }
1082
1083 if (func)
1084 func(data, bh);
1085 }
1086
1087out:
1088 /*
1089 * Catch any trailing bh that the loop didn't handle.
1090 */
1091 brelse(bh);
1092
1093 return ret;
1094}
1095
1096/*
1097 * Given an initialized path (that is, it has a valid root extent
1098 * list), this function will traverse the btree in search of the path
1099 * which would contain cpos.
1100 *
1101 * The path traveled is recorded in the path structure.
1102 *
1103 * Note that this will not do any comparisons on leaf node extent
1104 * records, so it will work fine in the case that we just added a tree
1105 * branch.
1106 */
1107struct find_path_data {
1108 int index;
1109 struct ocfs2_path *path;
1110};
1111static void find_path_ins(void *data, struct buffer_head *bh)
1112{
1113 struct find_path_data *fp = data;
1114
1115 get_bh(bh);
1116 ocfs2_path_insert_eb(fp->path, fp->index, bh);
1117 fp->index++;
1118}
1119static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path,
1120 u32 cpos)
1121{
1122 struct find_path_data data;
1123
1124 data.index = 1;
1125 data.path = path;
1126 return __ocfs2_find_path(inode, path_root_el(path), cpos,
1127 find_path_ins, &data);
1128}
1129
1130static void find_leaf_ins(void *data, struct buffer_head *bh)
1131{
1132 struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1133 struct ocfs2_extent_list *el = &eb->h_list;
1134 struct buffer_head **ret = data;
1135
1136 /* We want to retain only the leaf block. */
1137 if (le16_to_cpu(el->l_tree_depth) == 0) {
1138 get_bh(bh);
1139 *ret = bh;
1140 }
1141}
1142/*
1143 * Find the leaf block in the tree which would contain cpos. No
1144 * checking of the actual leaf is done.
1145 *
1146 * Some paths want to call this instead of allocating a path structure
1147 * and calling ocfs2_find_path().
1148 *
1149 * This function doesn't handle non btree extent lists.
1150 */
Mark Fasheh363041a2007-01-17 12:31:35 -08001151int ocfs2_find_leaf(struct inode *inode, struct ocfs2_extent_list *root_el,
1152 u32 cpos, struct buffer_head **leaf_bh)
Mark Fashehdcd05382007-01-16 11:32:23 -08001153{
1154 int ret;
1155 struct buffer_head *bh = NULL;
1156
1157 ret = __ocfs2_find_path(inode, root_el, cpos, find_leaf_ins, &bh);
1158 if (ret) {
1159 mlog_errno(ret);
1160 goto out;
1161 }
1162
1163 *leaf_bh = bh;
1164out:
1165 return ret;
1166}
1167
1168/*
1169 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1170 *
1171 * Basically, we've moved stuff around at the bottom of the tree and
1172 * we need to fix up the extent records above the changes to reflect
1173 * the new changes.
1174 *
1175 * left_rec: the record on the left.
1176 * left_child_el: is the child list pointed to by left_rec
1177 * right_rec: the record to the right of left_rec
1178 * right_child_el: is the child list pointed to by right_rec
1179 *
1180 * By definition, this only works on interior nodes.
1181 */
1182static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1183 struct ocfs2_extent_list *left_child_el,
1184 struct ocfs2_extent_rec *right_rec,
1185 struct ocfs2_extent_list *right_child_el)
1186{
1187 u32 left_clusters, right_end;
1188
1189 /*
1190 * Interior nodes never have holes. Their cpos is the cpos of
1191 * the leftmost record in their child list. Their cluster
1192 * count covers the full theoretical range of their child list
1193 * - the range between their cpos and the cpos of the record
1194 * immediately to their right.
1195 */
1196 left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1197 left_clusters -= le32_to_cpu(left_rec->e_cpos);
1198 left_rec->e_clusters = cpu_to_le32(left_clusters);
1199
1200 /*
1201 * Calculate the rightmost cluster count boundary before
1202 * moving cpos - we will need to adjust e_clusters after
1203 * updating e_cpos to keep the same highest cluster count.
1204 */
1205 right_end = le32_to_cpu(right_rec->e_cpos);
1206 right_end += le32_to_cpu(right_rec->e_clusters);
1207
1208 right_rec->e_cpos = left_rec->e_cpos;
1209 le32_add_cpu(&right_rec->e_cpos, left_clusters);
1210
1211 right_end -= le32_to_cpu(right_rec->e_cpos);
1212 right_rec->e_clusters = cpu_to_le32(right_end);
1213}
1214
1215/*
1216 * Adjust the adjacent root node records involved in a
1217 * rotation. left_el_blkno is passed in as a key so that we can easily
1218 * find it's index in the root list.
1219 */
1220static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1221 struct ocfs2_extent_list *left_el,
1222 struct ocfs2_extent_list *right_el,
1223 u64 left_el_blkno)
1224{
1225 int i;
1226
1227 BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
1228 le16_to_cpu(left_el->l_tree_depth));
1229
1230 for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
1231 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
1232 break;
1233 }
1234
1235 /*
1236 * The path walking code should have never returned a root and
1237 * two paths which are not adjacent.
1238 */
1239 BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
1240
1241 ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
1242 &root_el->l_recs[i + 1], right_el);
1243}
1244
1245/*
1246 * We've changed a leaf block (in right_path) and need to reflect that
1247 * change back up the subtree.
1248 *
1249 * This happens in multiple places:
1250 * - When we've moved an extent record from the left path leaf to the right
1251 * path leaf to make room for an empty extent in the left path leaf.
1252 * - When our insert into the right path leaf is at the leftmost edge
1253 * and requires an update of the path immediately to it's left. This
1254 * can occur at the end of some types of rotation and appending inserts.
1255 */
1256static void ocfs2_complete_edge_insert(struct inode *inode, handle_t *handle,
1257 struct ocfs2_path *left_path,
1258 struct ocfs2_path *right_path,
1259 int subtree_index)
1260{
1261 int ret, i, idx;
1262 struct ocfs2_extent_list *el, *left_el, *right_el;
1263 struct ocfs2_extent_rec *left_rec, *right_rec;
1264 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
1265
1266 /*
1267 * Update the counts and position values within all the
1268 * interior nodes to reflect the leaf rotation we just did.
1269 *
1270 * The root node is handled below the loop.
1271 *
1272 * We begin the loop with right_el and left_el pointing to the
1273 * leaf lists and work our way up.
1274 *
1275 * NOTE: within this loop, left_el and right_el always refer
1276 * to the *child* lists.
1277 */
1278 left_el = path_leaf_el(left_path);
1279 right_el = path_leaf_el(right_path);
1280 for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
1281 mlog(0, "Adjust records at index %u\n", i);
1282
1283 /*
1284 * One nice property of knowing that all of these
1285 * nodes are below the root is that we only deal with
1286 * the leftmost right node record and the rightmost
1287 * left node record.
1288 */
1289 el = left_path->p_node[i].el;
1290 idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
1291 left_rec = &el->l_recs[idx];
1292
1293 el = right_path->p_node[i].el;
1294 right_rec = &el->l_recs[0];
1295
1296 ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
1297 right_el);
1298
1299 ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
1300 if (ret)
1301 mlog_errno(ret);
1302
1303 ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
1304 if (ret)
1305 mlog_errno(ret);
1306
1307 /*
1308 * Setup our list pointers now so that the current
1309 * parents become children in the next iteration.
1310 */
1311 left_el = left_path->p_node[i].el;
1312 right_el = right_path->p_node[i].el;
1313 }
1314
1315 /*
1316 * At the root node, adjust the two adjacent records which
1317 * begin our path to the leaves.
1318 */
1319
1320 el = left_path->p_node[subtree_index].el;
1321 left_el = left_path->p_node[subtree_index + 1].el;
1322 right_el = right_path->p_node[subtree_index + 1].el;
1323
1324 ocfs2_adjust_root_records(el, left_el, right_el,
1325 left_path->p_node[subtree_index + 1].bh->b_blocknr);
1326
1327 root_bh = left_path->p_node[subtree_index].bh;
1328
1329 ret = ocfs2_journal_dirty(handle, root_bh);
1330 if (ret)
1331 mlog_errno(ret);
1332}
1333
1334static int ocfs2_rotate_subtree_right(struct inode *inode,
1335 handle_t *handle,
1336 struct ocfs2_path *left_path,
1337 struct ocfs2_path *right_path,
1338 int subtree_index)
1339{
1340 int ret, i;
1341 struct buffer_head *right_leaf_bh;
1342 struct buffer_head *left_leaf_bh = NULL;
1343 struct buffer_head *root_bh;
1344 struct ocfs2_extent_list *right_el, *left_el;
1345 struct ocfs2_extent_rec move_rec;
1346
1347 left_leaf_bh = path_leaf_bh(left_path);
1348 left_el = path_leaf_el(left_path);
1349
1350 if (left_el->l_next_free_rec != left_el->l_count) {
1351 ocfs2_error(inode->i_sb,
1352 "Inode %llu has non-full interior leaf node %llu"
1353 "(next free = %u)",
1354 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1355 (unsigned long long)left_leaf_bh->b_blocknr,
1356 le16_to_cpu(left_el->l_next_free_rec));
1357 return -EROFS;
1358 }
1359
1360 /*
1361 * This extent block may already have an empty record, so we
1362 * return early if so.
1363 */
1364 if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
1365 return 0;
1366
1367 root_bh = left_path->p_node[subtree_index].bh;
1368 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
1369
1370 ret = ocfs2_journal_access(handle, inode, root_bh,
1371 OCFS2_JOURNAL_ACCESS_WRITE);
1372 if (ret) {
1373 mlog_errno(ret);
1374 goto out;
1375 }
1376
1377 for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
1378 ret = ocfs2_journal_access(handle, inode,
1379 right_path->p_node[i].bh,
1380 OCFS2_JOURNAL_ACCESS_WRITE);
1381 if (ret) {
1382 mlog_errno(ret);
1383 goto out;
1384 }
1385
1386 ret = ocfs2_journal_access(handle, inode,
1387 left_path->p_node[i].bh,
1388 OCFS2_JOURNAL_ACCESS_WRITE);
1389 if (ret) {
1390 mlog_errno(ret);
1391 goto out;
1392 }
1393 }
1394
1395 right_leaf_bh = path_leaf_bh(right_path);
1396 right_el = path_leaf_el(right_path);
1397
1398 /* This is a code error, not a disk corruption. */
1399 mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
1400 "because rightmost leaf block %llu is empty\n",
1401 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1402 (unsigned long long)right_leaf_bh->b_blocknr);
1403
1404 ocfs2_create_empty_extent(right_el);
1405
1406 ret = ocfs2_journal_dirty(handle, right_leaf_bh);
1407 if (ret) {
1408 mlog_errno(ret);
1409 goto out;
1410 }
1411
1412 /* Do the copy now. */
1413 i = le16_to_cpu(left_el->l_next_free_rec) - 1;
1414 move_rec = left_el->l_recs[i];
1415 right_el->l_recs[0] = move_rec;
1416
1417 /*
1418 * Clear out the record we just copied and shift everything
1419 * over, leaving an empty extent in the left leaf.
1420 *
1421 * We temporarily subtract from next_free_rec so that the
1422 * shift will lose the tail record (which is now defunct).
1423 */
1424 le16_add_cpu(&left_el->l_next_free_rec, -1);
1425 ocfs2_shift_records_right(left_el);
1426 memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1427 le16_add_cpu(&left_el->l_next_free_rec, 1);
1428
1429 ret = ocfs2_journal_dirty(handle, left_leaf_bh);
1430 if (ret) {
1431 mlog_errno(ret);
1432 goto out;
1433 }
1434
1435 ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
1436 subtree_index);
1437
1438out:
1439 return ret;
1440}
1441
1442/*
1443 * Given a full path, determine what cpos value would return us a path
1444 * containing the leaf immediately to the left of the current one.
1445 *
1446 * Will return zero if the path passed in is already the leftmost path.
1447 */
1448static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
1449 struct ocfs2_path *path, u32 *cpos)
1450{
1451 int i, j, ret = 0;
1452 u64 blkno;
1453 struct ocfs2_extent_list *el;
1454
1455 *cpos = 0;
1456
1457 blkno = path_leaf_bh(path)->b_blocknr;
1458
1459 /* Start at the tree node just above the leaf and work our way up. */
1460 i = path->p_tree_depth - 1;
1461 while (i >= 0) {
1462 el = path->p_node[i].el;
1463
1464 /*
1465 * Find the extent record just before the one in our
1466 * path.
1467 */
1468 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
1469 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
1470 if (j == 0) {
1471 if (i == 0) {
1472 /*
1473 * We've determined that the
1474 * path specified is already
1475 * the leftmost one - return a
1476 * cpos of zero.
1477 */
1478 goto out;
1479 }
1480 /*
1481 * The leftmost record points to our
1482 * leaf - we need to travel up the
1483 * tree one level.
1484 */
1485 goto next_node;
1486 }
1487
1488 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
1489 *cpos = *cpos + le32_to_cpu(el->l_recs[j - 1].e_clusters) - 1;
1490 goto out;
1491 }
1492 }
1493
1494 /*
1495 * If we got here, we never found a valid node where
1496 * the tree indicated one should be.
1497 */
1498 ocfs2_error(sb,
1499 "Invalid extent tree at extent block %llu\n",
1500 (unsigned long long)blkno);
1501 ret = -EROFS;
1502 goto out;
1503
1504next_node:
1505 blkno = path->p_node[i].bh->b_blocknr;
1506 i--;
1507 }
1508
1509out:
1510 return ret;
1511}
1512
1513static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
1514 struct ocfs2_path *path)
1515{
1516 int credits = (path->p_tree_depth - subtree_depth) * 2 + 1;
1517
1518 if (handle->h_buffer_credits < credits)
1519 return ocfs2_extend_trans(handle, credits);
1520
1521 return 0;
1522}
1523
1524/*
1525 * Trap the case where we're inserting into the theoretical range past
1526 * the _actual_ left leaf range. Otherwise, we'll rotate a record
1527 * whose cpos is less than ours into the right leaf.
1528 *
1529 * It's only necessary to look at the rightmost record of the left
1530 * leaf because the logic that calls us should ensure that the
1531 * theoretical ranges in the path components above the leaves are
1532 * correct.
1533 */
1534static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
1535 u32 insert_cpos)
1536{
1537 struct ocfs2_extent_list *left_el;
1538 struct ocfs2_extent_rec *rec;
1539 int next_free;
1540
1541 left_el = path_leaf_el(left_path);
1542 next_free = le16_to_cpu(left_el->l_next_free_rec);
1543 rec = &left_el->l_recs[next_free - 1];
1544
1545 if (insert_cpos > le32_to_cpu(rec->e_cpos))
1546 return 1;
1547 return 0;
1548}
1549
1550/*
1551 * Rotate all the records in a btree right one record, starting at insert_cpos.
1552 *
1553 * The path to the rightmost leaf should be passed in.
1554 *
1555 * The array is assumed to be large enough to hold an entire path (tree depth).
1556 *
1557 * Upon succesful return from this function:
1558 *
1559 * - The 'right_path' array will contain a path to the leaf block
1560 * whose range contains e_cpos.
1561 * - That leaf block will have a single empty extent in list index 0.
1562 * - In the case that the rotation requires a post-insert update,
1563 * *ret_left_path will contain a valid path which can be passed to
1564 * ocfs2_insert_path().
1565 */
1566static int ocfs2_rotate_tree_right(struct inode *inode,
1567 handle_t *handle,
1568 u32 insert_cpos,
1569 struct ocfs2_path *right_path,
1570 struct ocfs2_path **ret_left_path)
1571{
1572 int ret, start;
1573 u32 cpos;
1574 struct ocfs2_path *left_path = NULL;
1575
1576 *ret_left_path = NULL;
1577
1578 left_path = ocfs2_new_path(path_root_bh(right_path),
1579 path_root_el(right_path));
1580 if (!left_path) {
1581 ret = -ENOMEM;
1582 mlog_errno(ret);
1583 goto out;
1584 }
1585
1586 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &cpos);
1587 if (ret) {
1588 mlog_errno(ret);
1589 goto out;
1590 }
1591
1592 mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos);
1593
1594 /*
1595 * What we want to do here is:
1596 *
1597 * 1) Start with the rightmost path.
1598 *
1599 * 2) Determine a path to the leaf block directly to the left
1600 * of that leaf.
1601 *
1602 * 3) Determine the 'subtree root' - the lowest level tree node
1603 * which contains a path to both leaves.
1604 *
1605 * 4) Rotate the subtree.
1606 *
1607 * 5) Find the next subtree by considering the left path to be
1608 * the new right path.
1609 *
1610 * The check at the top of this while loop also accepts
1611 * insert_cpos == cpos because cpos is only a _theoretical_
1612 * value to get us the left path - insert_cpos might very well
1613 * be filling that hole.
1614 *
1615 * Stop at a cpos of '0' because we either started at the
1616 * leftmost branch (i.e., a tree with one branch and a
1617 * rotation inside of it), or we've gone as far as we can in
1618 * rotating subtrees.
1619 */
1620 while (cpos && insert_cpos <= cpos) {
1621 mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
1622 insert_cpos, cpos);
1623
1624 ret = ocfs2_find_path(inode, left_path, cpos);
1625 if (ret) {
1626 mlog_errno(ret);
1627 goto out;
1628 }
1629
1630 mlog_bug_on_msg(path_leaf_bh(left_path) ==
1631 path_leaf_bh(right_path),
1632 "Inode %lu: error during insert of %u "
1633 "(left path cpos %u) results in two identical "
1634 "paths ending at %llu\n",
1635 inode->i_ino, insert_cpos, cpos,
1636 (unsigned long long)
1637 path_leaf_bh(left_path)->b_blocknr);
1638
1639 if (ocfs2_rotate_requires_path_adjustment(left_path,
1640 insert_cpos)) {
1641 mlog(0, "Path adjustment required\n");
1642
1643 /*
1644 * We've rotated the tree as much as we
1645 * should. The rest is up to
1646 * ocfs2_insert_path() to complete, after the
1647 * record insertion. We indicate this
1648 * situation by returning the left path.
1649 *
1650 * The reason we don't adjust the records here
1651 * before the record insert is that an error
1652 * later might break the rule where a parent
1653 * record e_cpos will reflect the actual
1654 * e_cpos of the 1st nonempty record of the
1655 * child list.
1656 */
1657 *ret_left_path = left_path;
1658 goto out_ret_path;
1659 }
1660
1661 start = ocfs2_find_subtree_root(inode, left_path, right_path);
1662
1663 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
1664 start,
1665 (unsigned long long) right_path->p_node[start].bh->b_blocknr,
1666 right_path->p_tree_depth);
1667
1668 ret = ocfs2_extend_rotate_transaction(handle, start,
1669 right_path);
1670 if (ret) {
1671 mlog_errno(ret);
1672 goto out;
1673 }
1674
1675 ret = ocfs2_rotate_subtree_right(inode, handle, left_path,
1676 right_path, start);
1677 if (ret) {
1678 mlog_errno(ret);
1679 goto out;
1680 }
1681
1682 /*
1683 * There is no need to re-read the next right path
1684 * as we know that it'll be our current left
1685 * path. Optimize by copying values instead.
1686 */
1687 ocfs2_mv_path(right_path, left_path);
1688
1689 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
1690 &cpos);
1691 if (ret) {
1692 mlog_errno(ret);
1693 goto out;
1694 }
1695 }
1696
1697out:
1698 ocfs2_free_path(left_path);
1699
1700out_ret_path:
1701 return ret;
1702}
1703
1704/*
1705 * Do the final bits of extent record insertion at the target leaf
1706 * list. If this leaf is part of an allocation tree, it is assumed
1707 * that the tree above has been prepared.
1708 */
1709static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec,
1710 struct ocfs2_extent_list *el,
1711 struct ocfs2_insert_type *insert,
1712 struct inode *inode)
1713{
1714 int i = insert->ins_contig_index;
1715 unsigned int range;
1716 struct ocfs2_extent_rec *rec;
1717
1718 BUG_ON(el->l_tree_depth);
1719
1720 /*
1721 * Contiguous insert - either left or right.
1722 */
1723 if (insert->ins_contig != CONTIG_NONE) {
1724 rec = &el->l_recs[i];
1725 if (insert->ins_contig == CONTIG_LEFT) {
1726 rec->e_blkno = insert_rec->e_blkno;
1727 rec->e_cpos = insert_rec->e_cpos;
1728 }
1729 le32_add_cpu(&rec->e_clusters,
1730 le32_to_cpu(insert_rec->e_clusters));
1731 return;
1732 }
1733
1734 /*
1735 * Handle insert into an empty leaf.
1736 */
1737 if (le16_to_cpu(el->l_next_free_rec) == 0 ||
1738 ((le16_to_cpu(el->l_next_free_rec) == 1) &&
1739 ocfs2_is_empty_extent(&el->l_recs[0]))) {
1740 el->l_recs[0] = *insert_rec;
1741 el->l_next_free_rec = cpu_to_le16(1);
1742 return;
1743 }
1744
1745 /*
1746 * Appending insert.
1747 */
1748 if (insert->ins_appending == APPEND_TAIL) {
1749 i = le16_to_cpu(el->l_next_free_rec) - 1;
1750 rec = &el->l_recs[i];
1751 range = le32_to_cpu(rec->e_cpos) + le32_to_cpu(rec->e_clusters);
1752 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
1753
1754 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
1755 le16_to_cpu(el->l_count),
1756 "inode %lu, depth %u, count %u, next free %u, "
1757 "rec.cpos %u, rec.clusters %u, "
1758 "insert.cpos %u, insert.clusters %u\n",
1759 inode->i_ino,
1760 le16_to_cpu(el->l_tree_depth),
1761 le16_to_cpu(el->l_count),
1762 le16_to_cpu(el->l_next_free_rec),
1763 le32_to_cpu(el->l_recs[i].e_cpos),
1764 le32_to_cpu(el->l_recs[i].e_clusters),
1765 le32_to_cpu(insert_rec->e_cpos),
1766 le32_to_cpu(insert_rec->e_clusters));
1767 i++;
1768 el->l_recs[i] = *insert_rec;
1769 le16_add_cpu(&el->l_next_free_rec, 1);
1770 return;
1771 }
1772
1773 /*
1774 * Ok, we have to rotate.
1775 *
1776 * At this point, it is safe to assume that inserting into an
1777 * empty leaf and appending to a leaf have both been handled
1778 * above.
1779 *
1780 * This leaf needs to have space, either by the empty 1st
1781 * extent record, or by virtue of an l_next_rec < l_count.
1782 */
1783 ocfs2_rotate_leaf(el, insert_rec);
1784}
1785
1786static inline void ocfs2_update_dinode_clusters(struct inode *inode,
1787 struct ocfs2_dinode *di,
1788 u32 clusters)
1789{
1790 le32_add_cpu(&di->i_clusters, clusters);
1791 spin_lock(&OCFS2_I(inode)->ip_lock);
1792 OCFS2_I(inode)->ip_clusters = le32_to_cpu(di->i_clusters);
1793 spin_unlock(&OCFS2_I(inode)->ip_lock);
1794}
1795
1796static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle,
1797 struct ocfs2_extent_rec *insert_rec,
1798 struct ocfs2_path *right_path,
1799 struct ocfs2_path **ret_left_path)
1800{
1801 int ret, i, next_free;
1802 struct buffer_head *bh;
1803 struct ocfs2_extent_list *el;
1804 struct ocfs2_path *left_path = NULL;
1805
1806 *ret_left_path = NULL;
1807
1808 /*
1809 * If our appending insert is at the leftmost edge of a leaf,
1810 * then we might need to update the rightmost records of the
1811 * neighboring path.
1812 */
1813 el = path_leaf_el(right_path);
1814 next_free = le16_to_cpu(el->l_next_free_rec);
1815 if (next_free == 0 ||
1816 (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
1817 u32 left_cpos;
1818
1819 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
1820 &left_cpos);
1821 if (ret) {
1822 mlog_errno(ret);
1823 goto out;
1824 }
1825
1826 mlog(0, "Append may need a left path update. cpos: %u, "
1827 "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos),
1828 left_cpos);
1829
1830 /*
1831 * No need to worry if the append is already in the
1832 * leftmost leaf.
1833 */
1834 if (left_cpos) {
1835 left_path = ocfs2_new_path(path_root_bh(right_path),
1836 path_root_el(right_path));
1837 if (!left_path) {
1838 ret = -ENOMEM;
1839 mlog_errno(ret);
1840 goto out;
1841 }
1842
1843 ret = ocfs2_find_path(inode, left_path, left_cpos);
1844 if (ret) {
1845 mlog_errno(ret);
1846 goto out;
1847 }
1848
1849 /*
1850 * ocfs2_insert_path() will pass the left_path to the
1851 * journal for us.
1852 */
1853 }
1854 }
1855
1856 ret = ocfs2_journal_access_path(inode, handle, right_path);
1857 if (ret) {
1858 mlog_errno(ret);
1859 goto out;
1860 }
1861
1862 el = path_root_el(right_path);
1863 bh = path_root_bh(right_path);
1864 i = 0;
1865 while (1) {
1866 next_free = le16_to_cpu(el->l_next_free_rec);
1867 if (next_free == 0) {
1868 ocfs2_error(inode->i_sb,
1869 "Dinode %llu has a bad extent list",
1870 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1871 ret = -EIO;
1872 goto out;
1873 }
1874
1875 el->l_recs[next_free - 1].e_clusters = insert_rec->e_cpos;
1876 le32_add_cpu(&el->l_recs[next_free - 1].e_clusters,
1877 le32_to_cpu(insert_rec->e_clusters));
1878 le32_add_cpu(&el->l_recs[next_free - 1].e_clusters,
1879 -le32_to_cpu(el->l_recs[next_free - 1].e_cpos));
1880
1881 ret = ocfs2_journal_dirty(handle, bh);
1882 if (ret)
1883 mlog_errno(ret);
1884
1885 if (++i >= right_path->p_tree_depth)
1886 break;
1887
1888 bh = right_path->p_node[i].bh;
1889 el = right_path->p_node[i].el;
1890 }
1891
1892 *ret_left_path = left_path;
1893 ret = 0;
1894out:
1895 if (ret != 0)
1896 ocfs2_free_path(left_path);
1897
1898 return ret;
1899}
1900
1901/*
1902 * This function only does inserts on an allocation b-tree. For dinode
1903 * lists, ocfs2_insert_at_leaf() is called directly.
1904 *
1905 * right_path is the path we want to do the actual insert
1906 * in. left_path should only be passed in if we need to update that
1907 * portion of the tree after an edge insert.
1908 */
1909static int ocfs2_insert_path(struct inode *inode,
1910 handle_t *handle,
1911 struct ocfs2_path *left_path,
1912 struct ocfs2_path *right_path,
1913 struct ocfs2_extent_rec *insert_rec,
1914 struct ocfs2_insert_type *insert)
1915{
1916 int ret, subtree_index;
1917 struct buffer_head *leaf_bh = path_leaf_bh(right_path);
1918 struct ocfs2_extent_list *el;
1919
1920 /*
1921 * Pass both paths to the journal. The majority of inserts
1922 * will be touching all components anyway.
1923 */
1924 ret = ocfs2_journal_access_path(inode, handle, right_path);
1925 if (ret < 0) {
1926 mlog_errno(ret);
1927 goto out;
1928 }
1929
1930 if (left_path) {
1931 int credits = handle->h_buffer_credits;
1932
1933 /*
1934 * There's a chance that left_path got passed back to
1935 * us without being accounted for in the
1936 * journal. Extend our transaction here to be sure we
1937 * can change those blocks.
1938 */
1939 credits += left_path->p_tree_depth;
1940
1941 ret = ocfs2_extend_trans(handle, credits);
1942 if (ret < 0) {
1943 mlog_errno(ret);
1944 goto out;
1945 }
1946
1947 ret = ocfs2_journal_access_path(inode, handle, left_path);
1948 if (ret < 0) {
1949 mlog_errno(ret);
1950 goto out;
1951 }
1952 }
1953
1954 el = path_leaf_el(right_path);
1955
1956 ocfs2_insert_at_leaf(insert_rec, el, insert, inode);
1957 ret = ocfs2_journal_dirty(handle, leaf_bh);
1958 if (ret)
1959 mlog_errno(ret);
1960
1961 if (left_path) {
1962 /*
1963 * The rotate code has indicated that we need to fix
1964 * up portions of the tree after the insert.
1965 *
1966 * XXX: Should we extend the transaction here?
1967 */
1968 subtree_index = ocfs2_find_subtree_root(inode, left_path,
1969 right_path);
1970 ocfs2_complete_edge_insert(inode, handle, left_path,
1971 right_path, subtree_index);
1972 }
1973
1974 ret = 0;
1975out:
1976 return ret;
1977}
1978
1979static int ocfs2_do_insert_extent(struct inode *inode,
1980 handle_t *handle,
1981 struct buffer_head *di_bh,
1982 struct ocfs2_extent_rec *insert_rec,
1983 struct ocfs2_insert_type *type)
1984{
1985 int ret, rotate = 0;
1986 u32 cpos;
1987 struct ocfs2_path *right_path = NULL;
1988 struct ocfs2_path *left_path = NULL;
1989 struct ocfs2_dinode *di;
1990 struct ocfs2_extent_list *el;
1991
1992 di = (struct ocfs2_dinode *) di_bh->b_data;
1993 el = &di->id2.i_list;
1994
1995 ret = ocfs2_journal_access(handle, inode, di_bh,
1996 OCFS2_JOURNAL_ACCESS_WRITE);
1997 if (ret) {
1998 mlog_errno(ret);
1999 goto out;
2000 }
2001
2002 if (le16_to_cpu(el->l_tree_depth) == 0) {
2003 ocfs2_insert_at_leaf(insert_rec, el, type, inode);
2004 goto out_update_clusters;
2005 }
2006
2007 right_path = ocfs2_new_inode_path(di_bh);
2008 if (!right_path) {
2009 ret = -ENOMEM;
2010 mlog_errno(ret);
2011 goto out;
2012 }
2013
2014 /*
2015 * Determine the path to start with. Rotations need the
2016 * rightmost path, everything else can go directly to the
2017 * target leaf.
2018 */
2019 cpos = le32_to_cpu(insert_rec->e_cpos);
2020 if (type->ins_appending == APPEND_NONE &&
2021 type->ins_contig == CONTIG_NONE) {
2022 rotate = 1;
2023 cpos = UINT_MAX;
2024 }
2025
2026 ret = ocfs2_find_path(inode, right_path, cpos);
2027 if (ret) {
2028 mlog_errno(ret);
2029 goto out;
2030 }
2031
2032 /*
2033 * Rotations and appends need special treatment - they modify
2034 * parts of the tree's above them.
2035 *
2036 * Both might pass back a path immediate to the left of the
2037 * one being inserted to. This will be cause
2038 * ocfs2_insert_path() to modify the rightmost records of
2039 * left_path to account for an edge insert.
2040 *
2041 * XXX: When modifying this code, keep in mind that an insert
2042 * can wind up skipping both of these two special cases...
2043 */
2044 if (rotate) {
2045 ret = ocfs2_rotate_tree_right(inode, handle,
2046 le32_to_cpu(insert_rec->e_cpos),
2047 right_path, &left_path);
2048 if (ret) {
2049 mlog_errno(ret);
2050 goto out;
2051 }
2052 } else if (type->ins_appending == APPEND_TAIL
2053 && type->ins_contig != CONTIG_LEFT) {
2054 ret = ocfs2_append_rec_to_path(inode, handle, insert_rec,
2055 right_path, &left_path);
2056 if (ret) {
2057 mlog_errno(ret);
2058 goto out;
2059 }
2060 }
2061
2062 ret = ocfs2_insert_path(inode, handle, left_path, right_path,
2063 insert_rec, type);
2064 if (ret) {
2065 mlog_errno(ret);
2066 goto out;
2067 }
2068
2069out_update_clusters:
2070 ocfs2_update_dinode_clusters(inode, di,
2071 le32_to_cpu(insert_rec->e_clusters));
2072
2073 ret = ocfs2_journal_dirty(handle, di_bh);
2074 if (ret)
2075 mlog_errno(ret);
2076
2077out:
2078 ocfs2_free_path(left_path);
2079 ocfs2_free_path(right_path);
2080
2081 return ret;
2082}
2083
2084static void ocfs2_figure_contig_type(struct inode *inode,
2085 struct ocfs2_insert_type *insert,
2086 struct ocfs2_extent_list *el,
2087 struct ocfs2_extent_rec *insert_rec)
2088{
2089 int i;
2090 enum ocfs2_contig_type contig_type = CONTIG_NONE;
2091
2092 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
2093 contig_type = ocfs2_extent_contig(inode, &el->l_recs[i],
2094 insert_rec);
2095 if (contig_type != CONTIG_NONE) {
2096 insert->ins_contig_index = i;
2097 break;
2098 }
2099 }
2100 insert->ins_contig = contig_type;
2101}
2102
2103/*
2104 * This should only be called against the righmost leaf extent list.
2105 *
2106 * ocfs2_figure_appending_type() will figure out whether we'll have to
2107 * insert at the tail of the rightmost leaf.
2108 *
2109 * This should also work against the dinode list for tree's with 0
2110 * depth. If we consider the dinode list to be the rightmost leaf node
2111 * then the logic here makes sense.
2112 */
2113static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
2114 struct ocfs2_extent_list *el,
2115 struct ocfs2_extent_rec *insert_rec)
2116{
2117 int i;
2118 u32 cpos = le32_to_cpu(insert_rec->e_cpos);
2119 struct ocfs2_extent_rec *rec;
2120
2121 insert->ins_appending = APPEND_NONE;
2122
2123 BUG_ON(el->l_tree_depth);
2124
2125 if (!el->l_next_free_rec)
2126 goto set_tail_append;
2127
2128 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
2129 /* Were all records empty? */
2130 if (le16_to_cpu(el->l_next_free_rec) == 1)
2131 goto set_tail_append;
2132 }
2133
2134 i = le16_to_cpu(el->l_next_free_rec) - 1;
2135 rec = &el->l_recs[i];
2136
2137 if (cpos >= (le32_to_cpu(rec->e_cpos) + le32_to_cpu(rec->e_clusters)))
2138 goto set_tail_append;
2139
2140 return;
2141
2142set_tail_append:
2143 insert->ins_appending = APPEND_TAIL;
2144}
2145
2146/*
2147 * Helper function called at the begining of an insert.
2148 *
2149 * This computes a few things that are commonly used in the process of
2150 * inserting into the btree:
2151 * - Whether the new extent is contiguous with an existing one.
2152 * - The current tree depth.
2153 * - Whether the insert is an appending one.
2154 * - The total # of free records in the tree.
2155 *
2156 * All of the information is stored on the ocfs2_insert_type
2157 * structure.
2158 */
2159static int ocfs2_figure_insert_type(struct inode *inode,
2160 struct buffer_head *di_bh,
2161 struct buffer_head **last_eb_bh,
2162 struct ocfs2_extent_rec *insert_rec,
2163 struct ocfs2_insert_type *insert)
2164{
2165 int ret;
2166 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
2167 struct ocfs2_extent_block *eb;
2168 struct ocfs2_extent_list *el;
2169 struct ocfs2_path *path = NULL;
2170 struct buffer_head *bh = NULL;
2171
2172 el = &di->id2.i_list;
2173 insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
2174
2175 if (el->l_tree_depth) {
2176 /*
2177 * If we have tree depth, we read in the
2178 * rightmost extent block ahead of time as
2179 * ocfs2_figure_insert_type() and ocfs2_add_branch()
2180 * may want it later.
2181 */
2182 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
2183 le64_to_cpu(di->i_last_eb_blk), &bh,
2184 OCFS2_BH_CACHED, inode);
2185 if (ret) {
2186 mlog_exit(ret);
2187 goto out;
2188 }
2189 eb = (struct ocfs2_extent_block *) bh->b_data;
2190 el = &eb->h_list;
2191 }
2192
2193 /*
2194 * Unless we have a contiguous insert, we'll need to know if
2195 * there is room left in our allocation tree for another
2196 * extent record.
2197 *
2198 * XXX: This test is simplistic, we can search for empty
2199 * extent records too.
2200 */
2201 insert->ins_free_records = le16_to_cpu(el->l_count) -
2202 le16_to_cpu(el->l_next_free_rec);
2203
2204 if (!insert->ins_tree_depth) {
2205 ocfs2_figure_contig_type(inode, insert, el, insert_rec);
2206 ocfs2_figure_appending_type(insert, el, insert_rec);
2207 return 0;
2208 }
2209
2210 path = ocfs2_new_inode_path(di_bh);
2211 if (!path) {
2212 ret = -ENOMEM;
2213 mlog_errno(ret);
2214 goto out;
2215 }
2216
2217 /*
2218 * In the case that we're inserting past what the tree
2219 * currently accounts for, ocfs2_find_path() will return for
2220 * us the rightmost tree path. This is accounted for below in
2221 * the appending code.
2222 */
2223 ret = ocfs2_find_path(inode, path, le32_to_cpu(insert_rec->e_cpos));
2224 if (ret) {
2225 mlog_errno(ret);
2226 goto out;
2227 }
2228
2229 el = path_leaf_el(path);
2230
2231 /*
2232 * Now that we have the path, there's two things we want to determine:
2233 * 1) Contiguousness (also set contig_index if this is so)
2234 *
2235 * 2) Are we doing an append? We can trivially break this up
2236 * into two types of appends: simple record append, or a
2237 * rotate inside the tail leaf.
2238 */
2239 ocfs2_figure_contig_type(inode, insert, el, insert_rec);
2240
2241 /*
2242 * The insert code isn't quite ready to deal with all cases of
2243 * left contiguousness. Specifically, if it's an insert into
2244 * the 1st record in a leaf, it will require the adjustment of
2245 * e_clusters on the last record of the path directly to it's
2246 * left. For now, just catch that case and fool the layers
2247 * above us. This works just fine for tree_depth == 0, which
2248 * is why we allow that above.
2249 */
2250 if (insert->ins_contig == CONTIG_LEFT &&
2251 insert->ins_contig_index == 0)
2252 insert->ins_contig = CONTIG_NONE;
2253
2254 /*
2255 * Ok, so we can simply compare against last_eb to figure out
2256 * whether the path doesn't exist. This will only happen in
2257 * the case that we're doing a tail append, so maybe we can
2258 * take advantage of that information somehow.
2259 */
2260 if (le64_to_cpu(di->i_last_eb_blk) == path_leaf_bh(path)->b_blocknr) {
2261 /*
2262 * Ok, ocfs2_find_path() returned us the rightmost
2263 * tree path. This might be an appending insert. There are
2264 * two cases:
2265 * 1) We're doing a true append at the tail:
2266 * -This might even be off the end of the leaf
2267 * 2) We're "appending" by rotating in the tail
2268 */
2269 ocfs2_figure_appending_type(insert, el, insert_rec);
2270 }
2271
2272out:
2273 ocfs2_free_path(path);
2274
2275 if (ret == 0)
2276 *last_eb_bh = bh;
2277 else
2278 brelse(bh);
2279 return ret;
2280}
2281
2282/*
2283 * Insert an extent into an inode btree.
2284 *
2285 * The caller needs to update fe->i_clusters
2286 */
Mark Fashehccd979b2005-12-15 14:31:24 -08002287int ocfs2_insert_extent(struct ocfs2_super *osb,
Mark Fasheh1fabe142006-10-09 18:11:45 -07002288 handle_t *handle,
Mark Fashehccd979b2005-12-15 14:31:24 -08002289 struct inode *inode,
2290 struct buffer_head *fe_bh,
Mark Fashehdcd05382007-01-16 11:32:23 -08002291 u32 cpos,
Mark Fashehccd979b2005-12-15 14:31:24 -08002292 u64 start_blk,
2293 u32 new_clusters,
2294 struct ocfs2_alloc_context *meta_ac)
2295{
Mark Fashehdcd05382007-01-16 11:32:23 -08002296 int status, shift;
Mark Fashehccd979b2005-12-15 14:31:24 -08002297 struct buffer_head *last_eb_bh = NULL;
2298 struct buffer_head *bh = NULL;
Mark Fashehdcd05382007-01-16 11:32:23 -08002299 struct ocfs2_insert_type insert = {0, };
2300 struct ocfs2_extent_rec rec;
Mark Fashehccd979b2005-12-15 14:31:24 -08002301
Mark Fashehdcd05382007-01-16 11:32:23 -08002302 mlog(0, "add %u clusters at position %u to inode %llu\n",
2303 new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno);
Mark Fashehccd979b2005-12-15 14:31:24 -08002304
Mark Fashehdcd05382007-01-16 11:32:23 -08002305 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
2306 (OCFS2_I(inode)->ip_clusters != cpos),
2307 "Device %s, asking for sparse allocation: inode %llu, "
2308 "cpos %u, clusters %u\n",
2309 osb->dev_str,
2310 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos,
2311 OCFS2_I(inode)->ip_clusters);
Mark Fashehccd979b2005-12-15 14:31:24 -08002312
Mark Fashehdcd05382007-01-16 11:32:23 -08002313 rec.e_cpos = cpu_to_le32(cpos);
2314 rec.e_blkno = cpu_to_le64(start_blk);
2315 rec.e_clusters = cpu_to_le32(new_clusters);
Mark Fashehccd979b2005-12-15 14:31:24 -08002316
Mark Fashehdcd05382007-01-16 11:32:23 -08002317 status = ocfs2_figure_insert_type(inode, fe_bh, &last_eb_bh, &rec,
2318 &insert);
2319 if (status < 0) {
2320 mlog_errno(status);
2321 goto bail;
Mark Fashehccd979b2005-12-15 14:31:24 -08002322 }
2323
Mark Fashehdcd05382007-01-16 11:32:23 -08002324 mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
2325 "Insert.contig_index: %d, Insert.free_records: %d, "
2326 "Insert.tree_depth: %d\n",
2327 insert.ins_appending, insert.ins_contig, insert.ins_contig_index,
2328 insert.ins_free_records, insert.ins_tree_depth);
Mark Fashehccd979b2005-12-15 14:31:24 -08002329
Mark Fashehdcd05382007-01-16 11:32:23 -08002330 /*
2331 * Avoid growing the tree unless we're out of records and the
2332 * insert type requres one.
2333 */
2334 if (insert.ins_contig != CONTIG_NONE || insert.ins_free_records)
2335 goto out_add;
Mark Fashehccd979b2005-12-15 14:31:24 -08002336
2337 shift = ocfs2_find_branch_target(osb, inode, fe_bh, &bh);
2338 if (shift < 0) {
2339 status = shift;
2340 mlog_errno(status);
2341 goto bail;
2342 }
2343
2344 /* We traveled all the way to the bottom of the allocation tree
2345 * and didn't find room for any more extents - we need to add
2346 * another tree level */
2347 if (shift) {
Mark Fashehccd979b2005-12-15 14:31:24 -08002348 BUG_ON(bh);
Mark Fashehdcd05382007-01-16 11:32:23 -08002349 mlog(0, "need to shift tree depth "
2350 "(current = %d)\n", insert.ins_tree_depth);
Mark Fashehccd979b2005-12-15 14:31:24 -08002351
2352 /* ocfs2_shift_tree_depth will return us a buffer with
2353 * the new extent block (so we can pass that to
2354 * ocfs2_add_branch). */
2355 status = ocfs2_shift_tree_depth(osb, handle, inode, fe_bh,
2356 meta_ac, &bh);
2357 if (status < 0) {
2358 mlog_errno(status);
2359 goto bail;
2360 }
Mark Fashehdcd05382007-01-16 11:32:23 -08002361 insert.ins_tree_depth++;
Mark Fashehccd979b2005-12-15 14:31:24 -08002362 /* Special case: we have room now if we shifted from
2363 * tree_depth 0 */
Mark Fashehdcd05382007-01-16 11:32:23 -08002364 if (insert.ins_tree_depth == 1)
Mark Fashehccd979b2005-12-15 14:31:24 -08002365 goto out_add;
2366 }
2367
2368 /* call ocfs2_add_branch to add the final part of the tree with
2369 * the new data. */
Mark Fashehdcd05382007-01-16 11:32:23 -08002370 mlog(0, "add branch. bh = %p\n", bh);
Mark Fashehccd979b2005-12-15 14:31:24 -08002371 status = ocfs2_add_branch(osb, handle, inode, fe_bh, bh, last_eb_bh,
2372 meta_ac);
2373 if (status < 0) {
2374 mlog_errno(status);
2375 goto bail;
2376 }
2377
2378out_add:
Mark Fashehdcd05382007-01-16 11:32:23 -08002379 /* Finally, we can add clusters. This might rotate the tree for us. */
2380 status = ocfs2_do_insert_extent(inode, handle, fe_bh, &rec, &insert);
Mark Fashehccd979b2005-12-15 14:31:24 -08002381 if (status < 0)
2382 mlog_errno(status);
2383
2384bail:
2385 if (bh)
2386 brelse(bh);
2387
2388 if (last_eb_bh)
2389 brelse(last_eb_bh);
2390
2391 mlog_exit(status);
2392 return status;
2393}
2394
2395static inline int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
2396{
2397 struct buffer_head *tl_bh = osb->osb_tl_bh;
2398 struct ocfs2_dinode *di;
2399 struct ocfs2_truncate_log *tl;
2400
2401 di = (struct ocfs2_dinode *) tl_bh->b_data;
2402 tl = &di->id2.i_dealloc;
2403
2404 mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
2405 "slot %d, invalid truncate log parameters: used = "
2406 "%u, count = %u\n", osb->slot_num,
2407 le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
2408 return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
2409}
2410
2411static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
2412 unsigned int new_start)
2413{
2414 unsigned int tail_index;
2415 unsigned int current_tail;
2416
2417 /* No records, nothing to coalesce */
2418 if (!le16_to_cpu(tl->tl_used))
2419 return 0;
2420
2421 tail_index = le16_to_cpu(tl->tl_used) - 1;
2422 current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
2423 current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
2424
2425 return current_tail == new_start;
2426}
2427
2428static int ocfs2_truncate_log_append(struct ocfs2_super *osb,
Mark Fasheh1fabe142006-10-09 18:11:45 -07002429 handle_t *handle,
Mark Fashehccd979b2005-12-15 14:31:24 -08002430 u64 start_blk,
2431 unsigned int num_clusters)
2432{
2433 int status, index;
2434 unsigned int start_cluster, tl_count;
2435 struct inode *tl_inode = osb->osb_tl_inode;
2436 struct buffer_head *tl_bh = osb->osb_tl_bh;
2437 struct ocfs2_dinode *di;
2438 struct ocfs2_truncate_log *tl;
2439
Mark Fashehb06970532006-03-03 10:24:33 -08002440 mlog_entry("start_blk = %llu, num_clusters = %u\n",
2441 (unsigned long long)start_blk, num_clusters);
Mark Fashehccd979b2005-12-15 14:31:24 -08002442
Jes Sorensen1b1dcc12006-01-09 15:59:24 -08002443 BUG_ON(mutex_trylock(&tl_inode->i_mutex));
Mark Fashehccd979b2005-12-15 14:31:24 -08002444
2445 start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
2446
2447 di = (struct ocfs2_dinode *) tl_bh->b_data;
2448 tl = &di->id2.i_dealloc;
2449 if (!OCFS2_IS_VALID_DINODE(di)) {
2450 OCFS2_RO_ON_INVALID_DINODE(osb->sb, di);
2451 status = -EIO;
2452 goto bail;
2453 }
2454
2455 tl_count = le16_to_cpu(tl->tl_count);
2456 mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
2457 tl_count == 0,
Mark Fashehb06970532006-03-03 10:24:33 -08002458 "Truncate record count on #%llu invalid "
2459 "wanted %u, actual %u\n",
2460 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
Mark Fashehccd979b2005-12-15 14:31:24 -08002461 ocfs2_truncate_recs_per_inode(osb->sb),
2462 le16_to_cpu(tl->tl_count));
2463
2464 /* Caller should have known to flush before calling us. */
2465 index = le16_to_cpu(tl->tl_used);
2466 if (index >= tl_count) {
2467 status = -ENOSPC;
2468 mlog_errno(status);
2469 goto bail;
2470 }
2471
2472 status = ocfs2_journal_access(handle, tl_inode, tl_bh,
2473 OCFS2_JOURNAL_ACCESS_WRITE);
2474 if (status < 0) {
2475 mlog_errno(status);
2476 goto bail;
2477 }
2478
2479 mlog(0, "Log truncate of %u clusters starting at cluster %u to "
Mark Fashehb06970532006-03-03 10:24:33 -08002480 "%llu (index = %d)\n", num_clusters, start_cluster,
2481 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index);
Mark Fashehccd979b2005-12-15 14:31:24 -08002482
2483 if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
2484 /*
2485 * Move index back to the record we are coalescing with.
2486 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
2487 */
2488 index--;
2489
2490 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
2491 mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
2492 index, le32_to_cpu(tl->tl_recs[index].t_start),
2493 num_clusters);
2494 } else {
2495 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
2496 tl->tl_used = cpu_to_le16(index + 1);
2497 }
2498 tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
2499
2500 status = ocfs2_journal_dirty(handle, tl_bh);
2501 if (status < 0) {
2502 mlog_errno(status);
2503 goto bail;
2504 }
2505
2506bail:
2507 mlog_exit(status);
2508 return status;
2509}
2510
2511static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
Mark Fasheh1fabe142006-10-09 18:11:45 -07002512 handle_t *handle,
Mark Fashehccd979b2005-12-15 14:31:24 -08002513 struct inode *data_alloc_inode,
2514 struct buffer_head *data_alloc_bh)
2515{
2516 int status = 0;
2517 int i;
2518 unsigned int num_clusters;
2519 u64 start_blk;
2520 struct ocfs2_truncate_rec rec;
2521 struct ocfs2_dinode *di;
2522 struct ocfs2_truncate_log *tl;
2523 struct inode *tl_inode = osb->osb_tl_inode;
2524 struct buffer_head *tl_bh = osb->osb_tl_bh;
2525
2526 mlog_entry_void();
2527
2528 di = (struct ocfs2_dinode *) tl_bh->b_data;
2529 tl = &di->id2.i_dealloc;
2530 i = le16_to_cpu(tl->tl_used) - 1;
2531 while (i >= 0) {
2532 /* Caller has given us at least enough credits to
2533 * update the truncate log dinode */
2534 status = ocfs2_journal_access(handle, tl_inode, tl_bh,
2535 OCFS2_JOURNAL_ACCESS_WRITE);
2536 if (status < 0) {
2537 mlog_errno(status);
2538 goto bail;
2539 }
2540
2541 tl->tl_used = cpu_to_le16(i);
2542
2543 status = ocfs2_journal_dirty(handle, tl_bh);
2544 if (status < 0) {
2545 mlog_errno(status);
2546 goto bail;
2547 }
2548
2549 /* TODO: Perhaps we can calculate the bulk of the
2550 * credits up front rather than extending like
2551 * this. */
2552 status = ocfs2_extend_trans(handle,
2553 OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
2554 if (status < 0) {
2555 mlog_errno(status);
2556 goto bail;
2557 }
2558
2559 rec = tl->tl_recs[i];
2560 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
2561 le32_to_cpu(rec.t_start));
2562 num_clusters = le32_to_cpu(rec.t_clusters);
2563
2564 /* if start_blk is not set, we ignore the record as
2565 * invalid. */
2566 if (start_blk) {
2567 mlog(0, "free record %d, start = %u, clusters = %u\n",
2568 i, le32_to_cpu(rec.t_start), num_clusters);
2569
2570 status = ocfs2_free_clusters(handle, data_alloc_inode,
2571 data_alloc_bh, start_blk,
2572 num_clusters);
2573 if (status < 0) {
2574 mlog_errno(status);
2575 goto bail;
2576 }
2577 }
2578 i--;
2579 }
2580
2581bail:
2582 mlog_exit(status);
2583 return status;
2584}
2585
Jes Sorensen1b1dcc12006-01-09 15:59:24 -08002586/* Expects you to already be holding tl_inode->i_mutex */
Mark Fashehccd979b2005-12-15 14:31:24 -08002587static int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
2588{
2589 int status;
2590 unsigned int num_to_flush;
Mark Fasheh1fabe142006-10-09 18:11:45 -07002591 handle_t *handle;
Mark Fashehccd979b2005-12-15 14:31:24 -08002592 struct inode *tl_inode = osb->osb_tl_inode;
2593 struct inode *data_alloc_inode = NULL;
2594 struct buffer_head *tl_bh = osb->osb_tl_bh;
2595 struct buffer_head *data_alloc_bh = NULL;
2596 struct ocfs2_dinode *di;
2597 struct ocfs2_truncate_log *tl;
2598
2599 mlog_entry_void();
2600
Jes Sorensen1b1dcc12006-01-09 15:59:24 -08002601 BUG_ON(mutex_trylock(&tl_inode->i_mutex));
Mark Fashehccd979b2005-12-15 14:31:24 -08002602
2603 di = (struct ocfs2_dinode *) tl_bh->b_data;
2604 tl = &di->id2.i_dealloc;
2605 if (!OCFS2_IS_VALID_DINODE(di)) {
2606 OCFS2_RO_ON_INVALID_DINODE(osb->sb, di);
2607 status = -EIO;
Mark Fashehe08dc8b2006-10-05 15:58:48 -07002608 goto out;
Mark Fashehccd979b2005-12-15 14:31:24 -08002609 }
2610
2611 num_to_flush = le16_to_cpu(tl->tl_used);
Mark Fashehb06970532006-03-03 10:24:33 -08002612 mlog(0, "Flush %u records from truncate log #%llu\n",
2613 num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno);
Mark Fashehccd979b2005-12-15 14:31:24 -08002614 if (!num_to_flush) {
2615 status = 0;
Mark Fashehe08dc8b2006-10-05 15:58:48 -07002616 goto out;
Mark Fashehccd979b2005-12-15 14:31:24 -08002617 }
2618
2619 data_alloc_inode = ocfs2_get_system_file_inode(osb,
2620 GLOBAL_BITMAP_SYSTEM_INODE,
2621 OCFS2_INVALID_SLOT);
2622 if (!data_alloc_inode) {
2623 status = -EINVAL;
2624 mlog(ML_ERROR, "Could not get bitmap inode!\n");
Mark Fashehe08dc8b2006-10-05 15:58:48 -07002625 goto out;
Mark Fashehccd979b2005-12-15 14:31:24 -08002626 }
2627
Mark Fashehe08dc8b2006-10-05 15:58:48 -07002628 mutex_lock(&data_alloc_inode->i_mutex);
2629
Mark Fasheh4bcec182006-10-09 16:02:40 -07002630 status = ocfs2_meta_lock(data_alloc_inode, &data_alloc_bh, 1);
Mark Fashehccd979b2005-12-15 14:31:24 -08002631 if (status < 0) {
2632 mlog_errno(status);
Mark Fashehe08dc8b2006-10-05 15:58:48 -07002633 goto out_mutex;
Mark Fashehccd979b2005-12-15 14:31:24 -08002634 }
2635
Mark Fasheh65eff9c2006-10-09 17:26:22 -07002636 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
Mark Fashehccd979b2005-12-15 14:31:24 -08002637 if (IS_ERR(handle)) {
2638 status = PTR_ERR(handle);
Mark Fashehccd979b2005-12-15 14:31:24 -08002639 mlog_errno(status);
Mark Fashehe08dc8b2006-10-05 15:58:48 -07002640 goto out_unlock;
Mark Fashehccd979b2005-12-15 14:31:24 -08002641 }
2642
2643 status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
2644 data_alloc_bh);
Mark Fashehe08dc8b2006-10-05 15:58:48 -07002645 if (status < 0)
Mark Fashehccd979b2005-12-15 14:31:24 -08002646 mlog_errno(status);
Mark Fashehccd979b2005-12-15 14:31:24 -08002647
Mark Fasheh02dc1af2006-10-09 16:48:10 -07002648 ocfs2_commit_trans(osb, handle);
Mark Fashehccd979b2005-12-15 14:31:24 -08002649
Mark Fashehe08dc8b2006-10-05 15:58:48 -07002650out_unlock:
2651 brelse(data_alloc_bh);
2652 ocfs2_meta_unlock(data_alloc_inode, 1);
Mark Fashehccd979b2005-12-15 14:31:24 -08002653
Mark Fashehe08dc8b2006-10-05 15:58:48 -07002654out_mutex:
2655 mutex_unlock(&data_alloc_inode->i_mutex);
2656 iput(data_alloc_inode);
Mark Fashehccd979b2005-12-15 14:31:24 -08002657
Mark Fashehe08dc8b2006-10-05 15:58:48 -07002658out:
Mark Fashehccd979b2005-12-15 14:31:24 -08002659 mlog_exit(status);
2660 return status;
2661}
2662
2663int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
2664{
2665 int status;
2666 struct inode *tl_inode = osb->osb_tl_inode;
2667
Jes Sorensen1b1dcc12006-01-09 15:59:24 -08002668 mutex_lock(&tl_inode->i_mutex);
Mark Fashehccd979b2005-12-15 14:31:24 -08002669 status = __ocfs2_flush_truncate_log(osb);
Jes Sorensen1b1dcc12006-01-09 15:59:24 -08002670 mutex_unlock(&tl_inode->i_mutex);
Mark Fashehccd979b2005-12-15 14:31:24 -08002671
2672 return status;
2673}
2674
David Howellsc4028952006-11-22 14:57:56 +00002675static void ocfs2_truncate_log_worker(struct work_struct *work)
Mark Fashehccd979b2005-12-15 14:31:24 -08002676{
2677 int status;
David Howellsc4028952006-11-22 14:57:56 +00002678 struct ocfs2_super *osb =
2679 container_of(work, struct ocfs2_super,
2680 osb_truncate_log_wq.work);
Mark Fashehccd979b2005-12-15 14:31:24 -08002681
2682 mlog_entry_void();
2683
2684 status = ocfs2_flush_truncate_log(osb);
2685 if (status < 0)
2686 mlog_errno(status);
2687
2688 mlog_exit(status);
2689}
2690
2691#define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
2692void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
2693 int cancel)
2694{
2695 if (osb->osb_tl_inode) {
2696 /* We want to push off log flushes while truncates are
2697 * still running. */
2698 if (cancel)
2699 cancel_delayed_work(&osb->osb_truncate_log_wq);
2700
2701 queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
2702 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
2703 }
2704}
2705
2706static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
2707 int slot_num,
2708 struct inode **tl_inode,
2709 struct buffer_head **tl_bh)
2710{
2711 int status;
2712 struct inode *inode = NULL;
2713 struct buffer_head *bh = NULL;
2714
2715 inode = ocfs2_get_system_file_inode(osb,
2716 TRUNCATE_LOG_SYSTEM_INODE,
2717 slot_num);
2718 if (!inode) {
2719 status = -EINVAL;
2720 mlog(ML_ERROR, "Could not get load truncate log inode!\n");
2721 goto bail;
2722 }
2723
2724 status = ocfs2_read_block(osb, OCFS2_I(inode)->ip_blkno, &bh,
2725 OCFS2_BH_CACHED, inode);
2726 if (status < 0) {
2727 iput(inode);
2728 mlog_errno(status);
2729 goto bail;
2730 }
2731
2732 *tl_inode = inode;
2733 *tl_bh = bh;
2734bail:
2735 mlog_exit(status);
2736 return status;
2737}
2738
2739/* called during the 1st stage of node recovery. we stamp a clean
2740 * truncate log and pass back a copy for processing later. if the
2741 * truncate log does not require processing, a *tl_copy is set to
2742 * NULL. */
2743int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
2744 int slot_num,
2745 struct ocfs2_dinode **tl_copy)
2746{
2747 int status;
2748 struct inode *tl_inode = NULL;
2749 struct buffer_head *tl_bh = NULL;
2750 struct ocfs2_dinode *di;
2751 struct ocfs2_truncate_log *tl;
2752
2753 *tl_copy = NULL;
2754
2755 mlog(0, "recover truncate log from slot %d\n", slot_num);
2756
2757 status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
2758 if (status < 0) {
2759 mlog_errno(status);
2760 goto bail;
2761 }
2762
2763 di = (struct ocfs2_dinode *) tl_bh->b_data;
2764 tl = &di->id2.i_dealloc;
2765 if (!OCFS2_IS_VALID_DINODE(di)) {
2766 OCFS2_RO_ON_INVALID_DINODE(tl_inode->i_sb, di);
2767 status = -EIO;
2768 goto bail;
2769 }
2770
2771 if (le16_to_cpu(tl->tl_used)) {
2772 mlog(0, "We'll have %u logs to recover\n",
2773 le16_to_cpu(tl->tl_used));
2774
2775 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
2776 if (!(*tl_copy)) {
2777 status = -ENOMEM;
2778 mlog_errno(status);
2779 goto bail;
2780 }
2781
2782 /* Assuming the write-out below goes well, this copy
2783 * will be passed back to recovery for processing. */
2784 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
2785
2786 /* All we need to do to clear the truncate log is set
2787 * tl_used. */
2788 tl->tl_used = 0;
2789
2790 status = ocfs2_write_block(osb, tl_bh, tl_inode);
2791 if (status < 0) {
2792 mlog_errno(status);
2793 goto bail;
2794 }
2795 }
2796
2797bail:
2798 if (tl_inode)
2799 iput(tl_inode);
2800 if (tl_bh)
2801 brelse(tl_bh);
2802
2803 if (status < 0 && (*tl_copy)) {
2804 kfree(*tl_copy);
2805 *tl_copy = NULL;
2806 }
2807
2808 mlog_exit(status);
2809 return status;
2810}
2811
2812int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
2813 struct ocfs2_dinode *tl_copy)
2814{
2815 int status = 0;
2816 int i;
2817 unsigned int clusters, num_recs, start_cluster;
2818 u64 start_blk;
Mark Fasheh1fabe142006-10-09 18:11:45 -07002819 handle_t *handle;
Mark Fashehccd979b2005-12-15 14:31:24 -08002820 struct inode *tl_inode = osb->osb_tl_inode;
2821 struct ocfs2_truncate_log *tl;
2822
2823 mlog_entry_void();
2824
2825 if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
2826 mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
2827 return -EINVAL;
2828 }
2829
2830 tl = &tl_copy->id2.i_dealloc;
2831 num_recs = le16_to_cpu(tl->tl_used);
Mark Fashehb06970532006-03-03 10:24:33 -08002832 mlog(0, "cleanup %u records from %llu\n", num_recs,
2833 (unsigned long long)tl_copy->i_blkno);
Mark Fashehccd979b2005-12-15 14:31:24 -08002834
Jes Sorensen1b1dcc12006-01-09 15:59:24 -08002835 mutex_lock(&tl_inode->i_mutex);
Mark Fashehccd979b2005-12-15 14:31:24 -08002836 for(i = 0; i < num_recs; i++) {
2837 if (ocfs2_truncate_log_needs_flush(osb)) {
2838 status = __ocfs2_flush_truncate_log(osb);
2839 if (status < 0) {
2840 mlog_errno(status);
2841 goto bail_up;
2842 }
2843 }
2844
Mark Fasheh65eff9c2006-10-09 17:26:22 -07002845 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
Mark Fashehccd979b2005-12-15 14:31:24 -08002846 if (IS_ERR(handle)) {
2847 status = PTR_ERR(handle);
2848 mlog_errno(status);
2849 goto bail_up;
2850 }
2851
2852 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
2853 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
2854 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
2855
2856 status = ocfs2_truncate_log_append(osb, handle,
2857 start_blk, clusters);
Mark Fasheh02dc1af2006-10-09 16:48:10 -07002858 ocfs2_commit_trans(osb, handle);
Mark Fashehccd979b2005-12-15 14:31:24 -08002859 if (status < 0) {
2860 mlog_errno(status);
2861 goto bail_up;
2862 }
2863 }
2864
2865bail_up:
Jes Sorensen1b1dcc12006-01-09 15:59:24 -08002866 mutex_unlock(&tl_inode->i_mutex);
Mark Fashehccd979b2005-12-15 14:31:24 -08002867
2868 mlog_exit(status);
2869 return status;
2870}
2871
2872void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
2873{
2874 int status;
2875 struct inode *tl_inode = osb->osb_tl_inode;
2876
2877 mlog_entry_void();
2878
2879 if (tl_inode) {
2880 cancel_delayed_work(&osb->osb_truncate_log_wq);
2881 flush_workqueue(ocfs2_wq);
2882
2883 status = ocfs2_flush_truncate_log(osb);
2884 if (status < 0)
2885 mlog_errno(status);
2886
2887 brelse(osb->osb_tl_bh);
2888 iput(osb->osb_tl_inode);
2889 }
2890
2891 mlog_exit_void();
2892}
2893
2894int ocfs2_truncate_log_init(struct ocfs2_super *osb)
2895{
2896 int status;
2897 struct inode *tl_inode = NULL;
2898 struct buffer_head *tl_bh = NULL;
2899
2900 mlog_entry_void();
2901
2902 status = ocfs2_get_truncate_log_info(osb,
2903 osb->slot_num,
2904 &tl_inode,
2905 &tl_bh);
2906 if (status < 0)
2907 mlog_errno(status);
2908
2909 /* ocfs2_truncate_log_shutdown keys on the existence of
2910 * osb->osb_tl_inode so we don't set any of the osb variables
2911 * until we're sure all is well. */
David Howellsc4028952006-11-22 14:57:56 +00002912 INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
2913 ocfs2_truncate_log_worker);
Mark Fashehccd979b2005-12-15 14:31:24 -08002914 osb->osb_tl_bh = tl_bh;
2915 osb->osb_tl_inode = tl_inode;
2916
2917 mlog_exit(status);
2918 return status;
2919}
2920
2921/* This function will figure out whether the currently last extent
2922 * block will be deleted, and if it will, what the new last extent
2923 * block will be so we can update his h_next_leaf_blk field, as well
2924 * as the dinodes i_last_eb_blk */
Mark Fashehdcd05382007-01-16 11:32:23 -08002925static int ocfs2_find_new_last_ext_blk(struct inode *inode,
Mark Fasheh3a0782d2007-01-17 12:53:31 -08002926 unsigned int clusters_to_del,
Mark Fashehdcd05382007-01-16 11:32:23 -08002927 struct ocfs2_path *path,
Mark Fashehccd979b2005-12-15 14:31:24 -08002928 struct buffer_head **new_last_eb)
2929{
Mark Fasheh3a0782d2007-01-17 12:53:31 -08002930 int next_free, ret = 0;
Mark Fashehdcd05382007-01-16 11:32:23 -08002931 u32 cpos;
Mark Fasheh3a0782d2007-01-17 12:53:31 -08002932 struct ocfs2_extent_rec *rec;
Mark Fashehccd979b2005-12-15 14:31:24 -08002933 struct ocfs2_extent_block *eb;
2934 struct ocfs2_extent_list *el;
2935 struct buffer_head *bh = NULL;
2936
2937 *new_last_eb = NULL;
2938
Mark Fashehccd979b2005-12-15 14:31:24 -08002939 /* we have no tree, so of course, no last_eb. */
Mark Fashehdcd05382007-01-16 11:32:23 -08002940 if (!path->p_tree_depth)
2941 goto out;
Mark Fashehccd979b2005-12-15 14:31:24 -08002942
2943 /* trunc to zero special case - this makes tree_depth = 0
2944 * regardless of what it is. */
Mark Fasheh3a0782d2007-01-17 12:53:31 -08002945 if (OCFS2_I(inode)->ip_clusters == clusters_to_del)
Mark Fashehdcd05382007-01-16 11:32:23 -08002946 goto out;
Mark Fashehccd979b2005-12-15 14:31:24 -08002947
Mark Fashehdcd05382007-01-16 11:32:23 -08002948 el = path_leaf_el(path);
Mark Fashehccd979b2005-12-15 14:31:24 -08002949 BUG_ON(!el->l_next_free_rec);
2950
Mark Fasheh3a0782d2007-01-17 12:53:31 -08002951 /*
2952 * Make sure that this extent list will actually be empty
2953 * after we clear away the data. We can shortcut out if
2954 * there's more than one non-empty extent in the
2955 * list. Otherwise, a check of the remaining extent is
2956 * necessary.
2957 */
2958 next_free = le16_to_cpu(el->l_next_free_rec);
2959 rec = NULL;
Mark Fashehdcd05382007-01-16 11:32:23 -08002960 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
Mark Fasheh3a0782d2007-01-17 12:53:31 -08002961 if (next_free > 2)
Mark Fashehdcd05382007-01-16 11:32:23 -08002962 goto out;
Mark Fasheh3a0782d2007-01-17 12:53:31 -08002963
2964 /* We may have a valid extent in index 1, check it. */
2965 if (next_free == 2)
2966 rec = &el->l_recs[1];
2967
2968 /*
2969 * Fall through - no more nonempty extents, so we want
2970 * to delete this leaf.
2971 */
2972 } else {
2973 if (next_free > 1)
2974 goto out;
2975
2976 rec = &el->l_recs[0];
2977 }
2978
2979 if (rec) {
2980 /*
2981 * Check it we'll only be trimming off the end of this
2982 * cluster.
2983 */
2984 if (le16_to_cpu(rec->e_clusters) > clusters_to_del)
2985 goto out;
2986 }
Mark Fashehccd979b2005-12-15 14:31:24 -08002987
Mark Fashehdcd05382007-01-16 11:32:23 -08002988 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
2989 if (ret) {
2990 mlog_errno(ret);
2991 goto out;
2992 }
Mark Fashehccd979b2005-12-15 14:31:24 -08002993
Mark Fashehdcd05382007-01-16 11:32:23 -08002994 ret = ocfs2_find_leaf(inode, path_root_el(path), cpos, &bh);
2995 if (ret) {
2996 mlog_errno(ret);
2997 goto out;
2998 }
Mark Fashehccd979b2005-12-15 14:31:24 -08002999
Mark Fashehdcd05382007-01-16 11:32:23 -08003000 eb = (struct ocfs2_extent_block *) bh->b_data;
3001 el = &eb->h_list;
3002 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
3003 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
3004 ret = -EROFS;
3005 goto out;
3006 }
Mark Fashehccd979b2005-12-15 14:31:24 -08003007
3008 *new_last_eb = bh;
3009 get_bh(*new_last_eb);
Mark Fashehdcd05382007-01-16 11:32:23 -08003010 mlog(0, "returning block %llu, (cpos: %u)\n",
3011 (unsigned long long)le64_to_cpu(eb->h_blkno), cpos);
3012out:
3013 brelse(bh);
Mark Fashehccd979b2005-12-15 14:31:24 -08003014
Mark Fashehdcd05382007-01-16 11:32:23 -08003015 return ret;
Mark Fashehccd979b2005-12-15 14:31:24 -08003016}
3017
Mark Fasheh3a0782d2007-01-17 12:53:31 -08003018/*
3019 * Trim some clusters off the rightmost edge of a tree. Only called
3020 * during truncate.
3021 *
3022 * The caller needs to:
3023 * - start journaling of each path component.
3024 * - compute and fully set up any new last ext block
3025 */
3026static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path,
3027 handle_t *handle, struct ocfs2_truncate_context *tc,
3028 u32 clusters_to_del, u64 *delete_start)
3029{
3030 int ret, i, index = path->p_tree_depth;
3031 u32 new_edge = 0;
3032 u64 deleted_eb = 0;
3033 struct buffer_head *bh;
3034 struct ocfs2_extent_list *el;
3035 struct ocfs2_extent_rec *rec;
3036
3037 *delete_start = 0;
3038
3039 while (index >= 0) {
3040 bh = path->p_node[index].bh;
3041 el = path->p_node[index].el;
3042
3043 mlog(0, "traveling tree (index = %d, block = %llu)\n",
3044 index, (unsigned long long)bh->b_blocknr);
3045
3046 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
3047
3048 if (index !=
3049 (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) {
3050 ocfs2_error(inode->i_sb,
3051 "Inode %lu has invalid ext. block %llu",
3052 inode->i_ino,
3053 (unsigned long long)bh->b_blocknr);
3054 ret = -EROFS;
3055 goto out;
3056 }
3057
3058find_tail_record:
3059 i = le16_to_cpu(el->l_next_free_rec) - 1;
3060 rec = &el->l_recs[i];
3061
3062 mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
3063 "next = %u\n", i, le32_to_cpu(rec->e_cpos),
3064 le32_to_cpu(rec->e_clusters),
3065 (unsigned long long)le64_to_cpu(rec->e_blkno),
3066 le16_to_cpu(el->l_next_free_rec));
3067
3068 BUG_ON(le32_to_cpu(rec->e_clusters) < clusters_to_del);
3069
3070 if (le16_to_cpu(el->l_tree_depth) == 0) {
3071 /*
3072 * If the leaf block contains a single empty
3073 * extent and no records, we can just remove
3074 * the block.
3075 */
3076 if (i == 0 && ocfs2_is_empty_extent(rec)) {
3077 memset(rec, 0,
3078 sizeof(struct ocfs2_extent_rec));
3079 el->l_next_free_rec = cpu_to_le16(0);
3080
3081 goto delete;
3082 }
3083
3084 /*
3085 * Remove any empty extents by shifting things
3086 * left. That should make life much easier on
3087 * the code below. This condition is rare
3088 * enough that we shouldn't see a performance
3089 * hit.
3090 */
3091 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
3092 le16_add_cpu(&el->l_next_free_rec, -1);
3093
3094 for(i = 0;
3095 i < le16_to_cpu(el->l_next_free_rec); i++)
3096 el->l_recs[i] = el->l_recs[i + 1];
3097
3098 memset(&el->l_recs[i], 0,
3099 sizeof(struct ocfs2_extent_rec));
3100
3101 /*
3102 * We've modified our extent list. The
3103 * simplest way to handle this change
3104 * is to being the search from the
3105 * start again.
3106 */
3107 goto find_tail_record;
3108 }
3109
3110 le32_add_cpu(&rec->e_clusters, -clusters_to_del);
3111
3112 /*
3113 * We'll use "new_edge" on our way back up the
3114 * tree to know what our rightmost cpos is.
3115 */
3116 new_edge = le32_to_cpu(rec->e_clusters);
3117 new_edge += le32_to_cpu(rec->e_cpos);
3118
3119 /*
3120 * The caller will use this to delete data blocks.
3121 */
3122 *delete_start = le64_to_cpu(rec->e_blkno)
3123 + ocfs2_clusters_to_blocks(inode->i_sb,
3124 le32_to_cpu(rec->e_clusters));
3125
3126 /*
3127 * If it's now empty, remove this record.
3128 */
3129 if (le32_to_cpu(rec->e_clusters) == 0) {
3130 memset(rec, 0,
3131 sizeof(struct ocfs2_extent_rec));
3132 le16_add_cpu(&el->l_next_free_rec, -1);
3133 }
3134 } else {
3135 if (le64_to_cpu(rec->e_blkno) == deleted_eb) {
3136 memset(rec, 0,
3137 sizeof(struct ocfs2_extent_rec));
3138 le16_add_cpu(&el->l_next_free_rec, -1);
3139
3140 goto delete;
3141 }
3142
3143 /* Can this actually happen? */
3144 if (le16_to_cpu(el->l_next_free_rec) == 0)
3145 goto delete;
3146
3147 /*
3148 * We never actually deleted any clusters
3149 * because our leaf was empty. There's no
3150 * reason to adjust the rightmost edge then.
3151 */
3152 if (new_edge == 0)
3153 goto delete;
3154
3155 rec->e_clusters = cpu_to_le32(new_edge);
3156 le32_add_cpu(&rec->e_clusters,
3157 -le32_to_cpu(rec->e_cpos));
3158
3159 /*
3160 * A deleted child record should have been
3161 * caught above.
3162 */
3163 BUG_ON(le32_to_cpu(rec->e_clusters) == 0);
3164 }
3165
3166delete:
3167 ret = ocfs2_journal_dirty(handle, bh);
3168 if (ret) {
3169 mlog_errno(ret);
3170 goto out;
3171 }
3172
3173 mlog(0, "extent list container %llu, after: record %d: "
3174 "(%u, %u, %llu), next = %u.\n",
3175 (unsigned long long)bh->b_blocknr, i,
3176 le32_to_cpu(rec->e_cpos), le32_to_cpu(rec->e_clusters),
3177 (unsigned long long)le64_to_cpu(rec->e_blkno),
3178 le16_to_cpu(el->l_next_free_rec));
3179
3180 /*
3181 * We must be careful to only attempt delete of an
3182 * extent block (and not the root inode block).
3183 */
3184 if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) {
3185 struct ocfs2_extent_block *eb =
3186 (struct ocfs2_extent_block *)bh->b_data;
3187
3188 /*
3189 * Save this for use when processing the
3190 * parent block.
3191 */
3192 deleted_eb = le64_to_cpu(eb->h_blkno);
3193
3194 mlog(0, "deleting this extent block.\n");
3195
3196 ocfs2_remove_from_cache(inode, bh);
3197
3198 BUG_ON(le32_to_cpu(el->l_recs[0].e_clusters));
3199 BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos));
3200 BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno));
3201
3202 if (le16_to_cpu(eb->h_suballoc_slot) == 0) {
3203 /*
3204 * This code only understands how to
3205 * lock the suballocator in slot 0,
3206 * which is fine because allocation is
3207 * only ever done out of that
3208 * suballocator too. A future version
3209 * might change that however, so avoid
3210 * a free if we don't know how to
3211 * handle it. This way an fs incompat
3212 * bit will not be necessary.
3213 */
3214 ret = ocfs2_free_extent_block(handle,
3215 tc->tc_ext_alloc_inode,
3216 tc->tc_ext_alloc_bh,
3217 eb);
3218
3219 /* An error here is not fatal. */
3220 if (ret < 0)
3221 mlog_errno(ret);
3222 }
3223 } else {
3224 deleted_eb = 0;
3225 }
3226
3227 index--;
3228 }
3229
3230 ret = 0;
3231out:
3232 return ret;
3233}
3234
Mark Fashehccd979b2005-12-15 14:31:24 -08003235static int ocfs2_do_truncate(struct ocfs2_super *osb,
3236 unsigned int clusters_to_del,
3237 struct inode *inode,
3238 struct buffer_head *fe_bh,
Mark Fasheh1fabe142006-10-09 18:11:45 -07003239 handle_t *handle,
Mark Fashehdcd05382007-01-16 11:32:23 -08003240 struct ocfs2_truncate_context *tc,
3241 struct ocfs2_path *path)
Mark Fashehccd979b2005-12-15 14:31:24 -08003242{
Mark Fasheh3a0782d2007-01-17 12:53:31 -08003243 int status;
Mark Fashehccd979b2005-12-15 14:31:24 -08003244 struct ocfs2_dinode *fe;
Mark Fashehccd979b2005-12-15 14:31:24 -08003245 struct ocfs2_extent_block *last_eb = NULL;
3246 struct ocfs2_extent_list *el;
Mark Fashehccd979b2005-12-15 14:31:24 -08003247 struct buffer_head *last_eb_bh = NULL;
Mark Fashehccd979b2005-12-15 14:31:24 -08003248 u64 delete_blk = 0;
3249
3250 fe = (struct ocfs2_dinode *) fe_bh->b_data;
3251
Mark Fasheh3a0782d2007-01-17 12:53:31 -08003252 status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del,
Mark Fashehdcd05382007-01-16 11:32:23 -08003253 path, &last_eb_bh);
Mark Fashehccd979b2005-12-15 14:31:24 -08003254 if (status < 0) {
3255 mlog_errno(status);
3256 goto bail;
3257 }
Mark Fashehccd979b2005-12-15 14:31:24 -08003258
Mark Fashehdcd05382007-01-16 11:32:23 -08003259 /*
3260 * Each component will be touched, so we might as well journal
3261 * here to avoid having to handle errors later.
3262 */
Mark Fasheh3a0782d2007-01-17 12:53:31 -08003263 status = ocfs2_journal_access_path(inode, handle, path);
3264 if (status < 0) {
3265 mlog_errno(status);
3266 goto bail;
Mark Fashehdcd05382007-01-16 11:32:23 -08003267 }
3268
3269 if (last_eb_bh) {
3270 status = ocfs2_journal_access(handle, inode, last_eb_bh,
3271 OCFS2_JOURNAL_ACCESS_WRITE);
3272 if (status < 0) {
3273 mlog_errno(status);
3274 goto bail;
3275 }
3276
3277 last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
3278 }
3279
3280 el = &(fe->id2.i_list);
3281
3282 /*
3283 * Lower levels depend on this never happening, but it's best
3284 * to check it up here before changing the tree.
3285 */
3286 if (el->l_tree_depth && ocfs2_is_empty_extent(&el->l_recs[0])) {
3287 ocfs2_error(inode->i_sb,
3288 "Inode %lu has an empty extent record, depth %u\n",
3289 inode->i_ino, le16_to_cpu(el->l_tree_depth));
Mark Fasheh3a0782d2007-01-17 12:53:31 -08003290 status = -EROFS;
Mark Fashehccd979b2005-12-15 14:31:24 -08003291 goto bail;
3292 }
Mark Fashehccd979b2005-12-15 14:31:24 -08003293
3294 spin_lock(&OCFS2_I(inode)->ip_lock);
3295 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) -
3296 clusters_to_del;
3297 spin_unlock(&OCFS2_I(inode)->ip_lock);
3298 le32_add_cpu(&fe->i_clusters, -clusters_to_del);
Mark Fashehccd979b2005-12-15 14:31:24 -08003299
Mark Fasheh3a0782d2007-01-17 12:53:31 -08003300 status = ocfs2_trim_tree(inode, path, handle, tc,
3301 clusters_to_del, &delete_blk);
3302 if (status) {
3303 mlog_errno(status);
3304 goto bail;
Mark Fashehccd979b2005-12-15 14:31:24 -08003305 }
3306
Mark Fashehdcd05382007-01-16 11:32:23 -08003307 if (le32_to_cpu(fe->i_clusters) == 0) {
Mark Fashehccd979b2005-12-15 14:31:24 -08003308 /* trunc to zero is a special case. */
3309 el->l_tree_depth = 0;
3310 fe->i_last_eb_blk = 0;
3311 } else if (last_eb)
3312 fe->i_last_eb_blk = last_eb->h_blkno;
3313
3314 status = ocfs2_journal_dirty(handle, fe_bh);
3315 if (status < 0) {
3316 mlog_errno(status);
3317 goto bail;
3318 }
3319
3320 if (last_eb) {
3321 /* If there will be a new last extent block, then by
3322 * definition, there cannot be any leaves to the right of
3323 * him. */
Mark Fashehccd979b2005-12-15 14:31:24 -08003324 last_eb->h_next_leaf_blk = 0;
3325 status = ocfs2_journal_dirty(handle, last_eb_bh);
3326 if (status < 0) {
3327 mlog_errno(status);
3328 goto bail;
3329 }
3330 }
3331
Mark Fasheh3a0782d2007-01-17 12:53:31 -08003332 if (delete_blk) {
3333 status = ocfs2_truncate_log_append(osb, handle, delete_blk,
3334 clusters_to_del);
Mark Fashehccd979b2005-12-15 14:31:24 -08003335 if (status < 0) {
3336 mlog_errno(status);
3337 goto bail;
3338 }
Mark Fashehccd979b2005-12-15 14:31:24 -08003339 }
3340 status = 0;
3341bail:
Mark Fashehdcd05382007-01-16 11:32:23 -08003342
Mark Fashehccd979b2005-12-15 14:31:24 -08003343 mlog_exit(status);
3344 return status;
3345}
3346
Mark Fasheh60b11392007-02-16 11:46:50 -08003347static int ocfs2_writeback_zero_func(handle_t *handle, struct buffer_head *bh)
3348{
3349 set_buffer_uptodate(bh);
3350 mark_buffer_dirty(bh);
3351 return 0;
3352}
3353
3354static int ocfs2_ordered_zero_func(handle_t *handle, struct buffer_head *bh)
3355{
3356 set_buffer_uptodate(bh);
3357 mark_buffer_dirty(bh);
3358 return ocfs2_journal_dirty_data(handle, bh);
3359}
3360
3361static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t isize,
3362 struct page **pages, int numpages,
3363 u64 phys, handle_t *handle)
3364{
3365 int i, ret, partial = 0;
3366 void *kaddr;
3367 struct page *page;
3368 unsigned int from, to = PAGE_CACHE_SIZE;
3369 struct super_block *sb = inode->i_sb;
3370
3371 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
3372
3373 if (numpages == 0)
3374 goto out;
3375
3376 from = isize & (PAGE_CACHE_SIZE - 1); /* 1st page offset */
3377 if (PAGE_CACHE_SHIFT > OCFS2_SB(sb)->s_clustersize_bits) {
3378 /*
3379 * Since 'from' has been capped to a value below page
3380 * size, this calculation won't be able to overflow
3381 * 'to'
3382 */
3383 to = ocfs2_align_bytes_to_clusters(sb, from);
3384
3385 /*
3386 * The truncate tail in this case should never contain
3387 * more than one page at maximum. The loop below also
3388 * assumes this.
3389 */
3390 BUG_ON(numpages != 1);
3391 }
3392
3393 for(i = 0; i < numpages; i++) {
3394 page = pages[i];
3395
3396 BUG_ON(from > PAGE_CACHE_SIZE);
3397 BUG_ON(to > PAGE_CACHE_SIZE);
3398
3399 ret = ocfs2_map_page_blocks(page, &phys, inode, from, to, 0);
3400 if (ret)
3401 mlog_errno(ret);
3402
3403 kaddr = kmap_atomic(page, KM_USER0);
3404 memset(kaddr + from, 0, to - from);
3405 kunmap_atomic(kaddr, KM_USER0);
3406
3407 /*
3408 * Need to set the buffers we zero'd into uptodate
3409 * here if they aren't - ocfs2_map_page_blocks()
3410 * might've skipped some
3411 */
3412 if (ocfs2_should_order_data(inode)) {
3413 ret = walk_page_buffers(handle,
3414 page_buffers(page),
3415 from, to, &partial,
3416 ocfs2_ordered_zero_func);
3417 if (ret < 0)
3418 mlog_errno(ret);
3419 } else {
3420 ret = walk_page_buffers(handle, page_buffers(page),
3421 from, to, &partial,
3422 ocfs2_writeback_zero_func);
3423 if (ret < 0)
3424 mlog_errno(ret);
3425 }
3426
3427 if (!partial)
3428 SetPageUptodate(page);
3429
3430 flush_dcache_page(page);
3431
3432 /*
3433 * Every page after the 1st one should be completely zero'd.
3434 */
3435 from = 0;
3436 }
3437out:
3438 if (pages) {
3439 for (i = 0; i < numpages; i++) {
3440 page = pages[i];
3441 unlock_page(page);
3442 mark_page_accessed(page);
3443 page_cache_release(page);
3444 }
3445 }
3446}
3447
3448static int ocfs2_grab_eof_pages(struct inode *inode, loff_t isize, struct page **pages,
3449 int *num, u64 *phys)
3450{
3451 int i, numpages = 0, ret = 0;
3452 unsigned int csize = OCFS2_SB(inode->i_sb)->s_clustersize;
3453 struct super_block *sb = inode->i_sb;
3454 struct address_space *mapping = inode->i_mapping;
3455 unsigned long index;
3456 u64 next_cluster_bytes;
3457
3458 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
3459
3460 /* Cluster boundary, so we don't need to grab any pages. */
3461 if ((isize & (csize - 1)) == 0)
3462 goto out;
3463
3464 ret = ocfs2_extent_map_get_blocks(inode, isize >> sb->s_blocksize_bits,
3465 phys, NULL);
3466 if (ret) {
3467 mlog_errno(ret);
3468 goto out;
3469 }
3470
3471 /* Tail is a hole. */
3472 if (*phys == 0)
3473 goto out;
3474
3475 next_cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, isize);
3476 index = isize >> PAGE_CACHE_SHIFT;
3477 do {
3478 pages[numpages] = grab_cache_page(mapping, index);
3479 if (!pages[numpages]) {
3480 ret = -ENOMEM;
3481 mlog_errno(ret);
3482 goto out;
3483 }
3484
3485 numpages++;
3486 index++;
3487 } while (index < (next_cluster_bytes >> PAGE_CACHE_SHIFT));
3488
3489out:
3490 if (ret != 0) {
3491 if (pages) {
3492 for (i = 0; i < numpages; i++) {
3493 if (pages[i]) {
3494 unlock_page(pages[i]);
3495 page_cache_release(pages[i]);
3496 }
3497 }
3498 }
3499 numpages = 0;
3500 }
3501
3502 *num = numpages;
3503
3504 return ret;
3505}
3506
3507/*
3508 * Zero the area past i_size but still within an allocated
3509 * cluster. This avoids exposing nonzero data on subsequent file
3510 * extends.
3511 *
3512 * We need to call this before i_size is updated on the inode because
3513 * otherwise block_write_full_page() will skip writeout of pages past
3514 * i_size. The new_i_size parameter is passed for this reason.
3515 */
3516int ocfs2_zero_tail_for_truncate(struct inode *inode, handle_t *handle,
3517 u64 new_i_size)
3518{
3519 int ret, numpages;
3520 struct page **pages = NULL;
3521 u64 phys;
3522
3523 /*
3524 * File systems which don't support sparse files zero on every
3525 * extend.
3526 */
3527 if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
3528 return 0;
3529
3530 pages = kcalloc(ocfs2_pages_per_cluster(inode->i_sb),
3531 sizeof(struct page *), GFP_NOFS);
3532 if (pages == NULL) {
3533 ret = -ENOMEM;
3534 mlog_errno(ret);
3535 goto out;
3536 }
3537
3538 ret = ocfs2_grab_eof_pages(inode, new_i_size, pages, &numpages, &phys);
3539 if (ret) {
3540 mlog_errno(ret);
3541 goto out;
3542 }
3543
3544 /*
3545 * Truncate on an i_size boundary - nothing more to do.
3546 */
3547 if (numpages == 0)
3548 goto out;
3549
3550 ocfs2_zero_cluster_pages(inode, new_i_size, pages, numpages, phys,
3551 handle);
3552
3553 /*
3554 * Initiate writeout of the pages we zero'd here. We don't
3555 * wait on them - the truncate_inode_pages() call later will
3556 * do that for us.
3557 */
3558 ret = filemap_fdatawrite(inode->i_mapping);
3559 if (ret)
3560 mlog_errno(ret);
3561
3562out:
3563 if (pages)
3564 kfree(pages);
3565
3566 return ret;
3567}
3568
Mark Fashehccd979b2005-12-15 14:31:24 -08003569/*
3570 * It is expected, that by the time you call this function,
3571 * inode->i_size and fe->i_size have been adjusted.
3572 *
3573 * WARNING: This will kfree the truncate context
3574 */
3575int ocfs2_commit_truncate(struct ocfs2_super *osb,
3576 struct inode *inode,
3577 struct buffer_head *fe_bh,
3578 struct ocfs2_truncate_context *tc)
3579{
3580 int status, i, credits, tl_sem = 0;
Mark Fashehdcd05382007-01-16 11:32:23 -08003581 u32 clusters_to_del, new_highest_cpos, range;
Mark Fashehccd979b2005-12-15 14:31:24 -08003582 struct ocfs2_extent_list *el;
Mark Fasheh1fabe142006-10-09 18:11:45 -07003583 handle_t *handle = NULL;
Mark Fashehccd979b2005-12-15 14:31:24 -08003584 struct inode *tl_inode = osb->osb_tl_inode;
Mark Fashehdcd05382007-01-16 11:32:23 -08003585 struct ocfs2_path *path = NULL;
Mark Fashehccd979b2005-12-15 14:31:24 -08003586
3587 mlog_entry_void();
3588
3589 down_write(&OCFS2_I(inode)->ip_alloc_sem);
3590
Mark Fashehdcd05382007-01-16 11:32:23 -08003591 new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
Mark Fashehccd979b2005-12-15 14:31:24 -08003592 i_size_read(inode));
3593
Mark Fashehdcd05382007-01-16 11:32:23 -08003594 path = ocfs2_new_inode_path(fe_bh);
3595 if (!path) {
3596 status = -ENOMEM;
3597 mlog_errno(status);
3598 goto bail;
3599 }
Mark Fashehccd979b2005-12-15 14:31:24 -08003600start:
Mark Fashehdcd05382007-01-16 11:32:23 -08003601 /*
Mark Fasheh3a0782d2007-01-17 12:53:31 -08003602 * Check that we still have allocation to delete.
3603 */
3604 if (OCFS2_I(inode)->ip_clusters == 0) {
3605 status = 0;
3606 goto bail;
3607 }
3608
3609 /*
Mark Fashehdcd05382007-01-16 11:32:23 -08003610 * Truncate always works against the rightmost tree branch.
3611 */
3612 status = ocfs2_find_path(inode, path, UINT_MAX);
3613 if (status) {
3614 mlog_errno(status);
3615 goto bail;
Mark Fashehccd979b2005-12-15 14:31:24 -08003616 }
3617
Mark Fashehdcd05382007-01-16 11:32:23 -08003618 mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
3619 OCFS2_I(inode)->ip_clusters, path->p_tree_depth);
3620
3621 /*
3622 * By now, el will point to the extent list on the bottom most
3623 * portion of this tree. Only the tail record is considered in
3624 * each pass.
3625 *
3626 * We handle the following cases, in order:
3627 * - empty extent: delete the remaining branch
3628 * - remove the entire record
3629 * - remove a partial record
3630 * - no record needs to be removed (truncate has completed)
3631 */
3632 el = path_leaf_el(path);
Mark Fasheh3a0782d2007-01-17 12:53:31 -08003633 if (le16_to_cpu(el->l_next_free_rec) == 0) {
3634 ocfs2_error(inode->i_sb,
3635 "Inode %llu has empty extent block at %llu\n",
3636 (unsigned long long)OCFS2_I(inode)->ip_blkno,
3637 (unsigned long long)path_leaf_bh(path)->b_blocknr);
3638 status = -EROFS;
3639 goto bail;
3640 }
3641
Mark Fashehccd979b2005-12-15 14:31:24 -08003642 i = le16_to_cpu(el->l_next_free_rec) - 1;
Mark Fashehdcd05382007-01-16 11:32:23 -08003643 range = le32_to_cpu(el->l_recs[i].e_cpos) +
3644 le32_to_cpu(el->l_recs[i].e_clusters);
3645 if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) {
3646 clusters_to_del = 0;
3647 } else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) {
Mark Fashehccd979b2005-12-15 14:31:24 -08003648 clusters_to_del = le32_to_cpu(el->l_recs[i].e_clusters);
Mark Fashehdcd05382007-01-16 11:32:23 -08003649 } else if (range > new_highest_cpos) {
Mark Fashehccd979b2005-12-15 14:31:24 -08003650 clusters_to_del = (le32_to_cpu(el->l_recs[i].e_clusters) +
3651 le32_to_cpu(el->l_recs[i].e_cpos)) -
Mark Fashehdcd05382007-01-16 11:32:23 -08003652 new_highest_cpos;
3653 } else {
3654 status = 0;
3655 goto bail;
3656 }
Mark Fashehccd979b2005-12-15 14:31:24 -08003657
Mark Fashehdcd05382007-01-16 11:32:23 -08003658 mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
3659 clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr);
3660
3661 BUG_ON(clusters_to_del == 0);
Mark Fashehccd979b2005-12-15 14:31:24 -08003662
Jes Sorensen1b1dcc12006-01-09 15:59:24 -08003663 mutex_lock(&tl_inode->i_mutex);
Mark Fashehccd979b2005-12-15 14:31:24 -08003664 tl_sem = 1;
3665 /* ocfs2_truncate_log_needs_flush guarantees us at least one
3666 * record is free for use. If there isn't any, we flush to get
3667 * an empty truncate log. */
3668 if (ocfs2_truncate_log_needs_flush(osb)) {
3669 status = __ocfs2_flush_truncate_log(osb);
3670 if (status < 0) {
3671 mlog_errno(status);
3672 goto bail;
3673 }
3674 }
3675
3676 credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del,
Mark Fashehdcd05382007-01-16 11:32:23 -08003677 (struct ocfs2_dinode *)fe_bh->b_data,
3678 el);
Mark Fasheh65eff9c2006-10-09 17:26:22 -07003679 handle = ocfs2_start_trans(osb, credits);
Mark Fashehccd979b2005-12-15 14:31:24 -08003680 if (IS_ERR(handle)) {
3681 status = PTR_ERR(handle);
3682 handle = NULL;
3683 mlog_errno(status);
3684 goto bail;
3685 }
3686
Mark Fashehdcd05382007-01-16 11:32:23 -08003687 status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle,
3688 tc, path);
Mark Fashehccd979b2005-12-15 14:31:24 -08003689 if (status < 0) {
3690 mlog_errno(status);
3691 goto bail;
3692 }
3693
Jes Sorensen1b1dcc12006-01-09 15:59:24 -08003694 mutex_unlock(&tl_inode->i_mutex);
Mark Fashehccd979b2005-12-15 14:31:24 -08003695 tl_sem = 0;
3696
Mark Fasheh02dc1af2006-10-09 16:48:10 -07003697 ocfs2_commit_trans(osb, handle);
Mark Fashehccd979b2005-12-15 14:31:24 -08003698 handle = NULL;
3699
Mark Fashehdcd05382007-01-16 11:32:23 -08003700 ocfs2_reinit_path(path, 1);
3701
3702 /*
Mark Fasheh3a0782d2007-01-17 12:53:31 -08003703 * The check above will catch the case where we've truncated
3704 * away all allocation.
Mark Fashehdcd05382007-01-16 11:32:23 -08003705 */
Mark Fasheh3a0782d2007-01-17 12:53:31 -08003706 goto start;
3707
Mark Fashehccd979b2005-12-15 14:31:24 -08003708bail:
3709 up_write(&OCFS2_I(inode)->ip_alloc_sem);
3710
3711 ocfs2_schedule_truncate_log_flush(osb, 1);
3712
3713 if (tl_sem)
Jes Sorensen1b1dcc12006-01-09 15:59:24 -08003714 mutex_unlock(&tl_inode->i_mutex);
Mark Fashehccd979b2005-12-15 14:31:24 -08003715
3716 if (handle)
Mark Fasheh02dc1af2006-10-09 16:48:10 -07003717 ocfs2_commit_trans(osb, handle);
Mark Fashehccd979b2005-12-15 14:31:24 -08003718
Mark Fashehdcd05382007-01-16 11:32:23 -08003719 ocfs2_free_path(path);
Mark Fashehccd979b2005-12-15 14:31:24 -08003720
3721 /* This will drop the ext_alloc cluster lock for us */
3722 ocfs2_free_truncate_context(tc);
3723
3724 mlog_exit(status);
3725 return status;
3726}
3727
Mark Fashehccd979b2005-12-15 14:31:24 -08003728/*
3729 * Expects the inode to already be locked. This will figure out which
3730 * inodes need to be locked and will put them on the returned truncate
3731 * context.
3732 */
3733int ocfs2_prepare_truncate(struct ocfs2_super *osb,
3734 struct inode *inode,
3735 struct buffer_head *fe_bh,
3736 struct ocfs2_truncate_context **tc)
3737{
Mark Fashehdcd05382007-01-16 11:32:23 -08003738 int status, metadata_delete, i;
Mark Fashehccd979b2005-12-15 14:31:24 -08003739 unsigned int new_i_clusters;
3740 struct ocfs2_dinode *fe;
3741 struct ocfs2_extent_block *eb;
3742 struct ocfs2_extent_list *el;
3743 struct buffer_head *last_eb_bh = NULL;
3744 struct inode *ext_alloc_inode = NULL;
3745 struct buffer_head *ext_alloc_bh = NULL;
3746
3747 mlog_entry_void();
3748
3749 *tc = NULL;
3750
3751 new_i_clusters = ocfs2_clusters_for_bytes(osb->sb,
3752 i_size_read(inode));
3753 fe = (struct ocfs2_dinode *) fe_bh->b_data;
3754
3755 mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
Mark Fashehb06970532006-03-03 10:24:33 -08003756 "%llu\n", fe->i_clusters, new_i_clusters,
3757 (unsigned long long)fe->i_size);
Mark Fashehccd979b2005-12-15 14:31:24 -08003758
Robert P. J. Daycd861282006-12-13 00:34:52 -08003759 *tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL);
Mark Fashehccd979b2005-12-15 14:31:24 -08003760 if (!(*tc)) {
3761 status = -ENOMEM;
3762 mlog_errno(status);
3763 goto bail;
3764 }
3765
3766 metadata_delete = 0;
3767 if (fe->id2.i_list.l_tree_depth) {
3768 /* If we have a tree, then the truncate may result in
3769 * metadata deletes. Figure this out from the
3770 * rightmost leaf block.*/
3771 status = ocfs2_read_block(osb, le64_to_cpu(fe->i_last_eb_blk),
3772 &last_eb_bh, OCFS2_BH_CACHED, inode);
3773 if (status < 0) {
3774 mlog_errno(status);
3775 goto bail;
3776 }
3777 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
3778 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
3779 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
3780
3781 brelse(last_eb_bh);
3782 status = -EIO;
3783 goto bail;
3784 }
3785 el = &(eb->h_list);
Mark Fashehdcd05382007-01-16 11:32:23 -08003786
3787 i = 0;
3788 if (ocfs2_is_empty_extent(&el->l_recs[0]))
3789 i = 1;
3790 /*
3791 * XXX: Should we check that next_free_rec contains
3792 * the extent?
3793 */
3794 if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_i_clusters)
Mark Fashehccd979b2005-12-15 14:31:24 -08003795 metadata_delete = 1;
3796 }
3797
3798 (*tc)->tc_last_eb_bh = last_eb_bh;
3799
3800 if (metadata_delete) {
3801 mlog(0, "Will have to delete metadata for this trunc. "
3802 "locking allocator.\n");
3803 ext_alloc_inode = ocfs2_get_system_file_inode(osb, EXTENT_ALLOC_SYSTEM_INODE, 0);
3804 if (!ext_alloc_inode) {
3805 status = -ENOMEM;
3806 mlog_errno(status);
3807 goto bail;
3808 }
3809
Jes Sorensen1b1dcc12006-01-09 15:59:24 -08003810 mutex_lock(&ext_alloc_inode->i_mutex);
Mark Fashehccd979b2005-12-15 14:31:24 -08003811 (*tc)->tc_ext_alloc_inode = ext_alloc_inode;
3812
Mark Fasheh4bcec182006-10-09 16:02:40 -07003813 status = ocfs2_meta_lock(ext_alloc_inode, &ext_alloc_bh, 1);
Mark Fashehccd979b2005-12-15 14:31:24 -08003814 if (status < 0) {
3815 mlog_errno(status);
3816 goto bail;
3817 }
3818 (*tc)->tc_ext_alloc_bh = ext_alloc_bh;
3819 (*tc)->tc_ext_alloc_locked = 1;
3820 }
3821
3822 status = 0;
3823bail:
3824 if (status < 0) {
3825 if (*tc)
3826 ocfs2_free_truncate_context(*tc);
3827 *tc = NULL;
3828 }
3829 mlog_exit_void();
3830 return status;
3831}
3832
3833static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc)
3834{
3835 if (tc->tc_ext_alloc_inode) {
3836 if (tc->tc_ext_alloc_locked)
3837 ocfs2_meta_unlock(tc->tc_ext_alloc_inode, 1);
3838
Jes Sorensen1b1dcc12006-01-09 15:59:24 -08003839 mutex_unlock(&tc->tc_ext_alloc_inode->i_mutex);
Mark Fashehccd979b2005-12-15 14:31:24 -08003840 iput(tc->tc_ext_alloc_inode);
3841 }
3842
3843 if (tc->tc_ext_alloc_bh)
3844 brelse(tc->tc_ext_alloc_bh);
3845
3846 if (tc->tc_last_eb_bh)
3847 brelse(tc->tc_last_eb_bh);
3848
3849 kfree(tc);
3850}