Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* Software floating-point emulation. |
| 2 | Basic two-word fraction declaration and manipulation. |
| 3 | Copyright (C) 1997,1998,1999 Free Software Foundation, Inc. |
| 4 | This file is part of the GNU C Library. |
| 5 | Contributed by Richard Henderson (rth@cygnus.com), |
| 6 | Jakub Jelinek (jj@ultra.linux.cz), |
| 7 | David S. Miller (davem@redhat.com) and |
| 8 | Peter Maydell (pmaydell@chiark.greenend.org.uk). |
| 9 | |
| 10 | The GNU C Library is free software; you can redistribute it and/or |
| 11 | modify it under the terms of the GNU Library General Public License as |
| 12 | published by the Free Software Foundation; either version 2 of the |
| 13 | License, or (at your option) any later version. |
| 14 | |
| 15 | The GNU C Library is distributed in the hope that it will be useful, |
| 16 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 17 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 18 | Library General Public License for more details. |
| 19 | |
| 20 | You should have received a copy of the GNU Library General Public |
| 21 | License along with the GNU C Library; see the file COPYING.LIB. If |
| 22 | not, write to the Free Software Foundation, Inc., |
| 23 | 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ |
| 24 | |
| 25 | #ifndef __MATH_EMU_OP_2_H__ |
| 26 | #define __MATH_EMU_OP_2_H__ |
| 27 | |
Kumar Gala | 40d3057 | 2008-06-27 09:33:59 -0500 | [diff] [blame] | 28 | #define _FP_FRAC_DECL_2(X) _FP_W_TYPE X##_f0 = 0, X##_f1 = 0 |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 29 | #define _FP_FRAC_COPY_2(D,S) (D##_f0 = S##_f0, D##_f1 = S##_f1) |
| 30 | #define _FP_FRAC_SET_2(X,I) __FP_FRAC_SET_2(X, I) |
| 31 | #define _FP_FRAC_HIGH_2(X) (X##_f1) |
| 32 | #define _FP_FRAC_LOW_2(X) (X##_f0) |
| 33 | #define _FP_FRAC_WORD_2(X,w) (X##_f##w) |
Vincent Chen | 7adb3e9 | 2018-11-22 11:14:37 +0800 | [diff] [blame] | 34 | #define _FP_FRAC_SLL_2(X, N) ( \ |
| 35 | (void) (((N) < _FP_W_TYPE_SIZE) \ |
| 36 | ? ({ \ |
| 37 | if (__builtin_constant_p(N) && (N) == 1) { \ |
| 38 | X##_f1 = X##_f1 + X##_f1 + \ |
| 39 | (((_FP_WS_TYPE) (X##_f0)) < 0); \ |
| 40 | X##_f0 += X##_f0; \ |
| 41 | } else { \ |
| 42 | X##_f1 = X##_f1 << (N) | X##_f0 >> \ |
| 43 | (_FP_W_TYPE_SIZE - (N)); \ |
| 44 | X##_f0 <<= (N); \ |
| 45 | } \ |
| 46 | 0; \ |
| 47 | }) \ |
| 48 | : ({ \ |
| 49 | X##_f1 = X##_f0 << ((N) - _FP_W_TYPE_SIZE); \ |
| 50 | X##_f0 = 0; \ |
| 51 | }))) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 52 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 53 | |
Vincent Chen | 7adb3e9 | 2018-11-22 11:14:37 +0800 | [diff] [blame] | 54 | #define _FP_FRAC_SRL_2(X, N) ( \ |
| 55 | (void) (((N) < _FP_W_TYPE_SIZE) \ |
| 56 | ? ({ \ |
| 57 | X##_f0 = X##_f0 >> (N) | X##_f1 << (_FP_W_TYPE_SIZE - (N)); \ |
| 58 | X##_f1 >>= (N); \ |
| 59 | }) \ |
| 60 | : ({ \ |
| 61 | X##_f0 = X##_f1 >> ((N) - _FP_W_TYPE_SIZE); \ |
| 62 | X##_f1 = 0; \ |
| 63 | }))) |
| 64 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 65 | |
| 66 | /* Right shift with sticky-lsb. */ |
Vincent Chen | 7adb3e9 | 2018-11-22 11:14:37 +0800 | [diff] [blame] | 67 | #define _FP_FRAC_SRS_2(X, N, sz) ( \ |
| 68 | (void) (((N) < _FP_W_TYPE_SIZE) \ |
| 69 | ? ({ \ |
| 70 | X##_f0 = (X##_f1 << (_FP_W_TYPE_SIZE - (N)) | X##_f0 >> (N) \ |
| 71 | | (__builtin_constant_p(N) && (N) == 1 \ |
| 72 | ? X##_f0 & 1 \ |
| 73 | : (X##_f0 << (_FP_W_TYPE_SIZE - (N))) != 0)); \ |
| 74 | X##_f1 >>= (N); \ |
| 75 | }) \ |
| 76 | : ({ \ |
| 77 | X##_f0 = (X##_f1 >> ((N) - _FP_W_TYPE_SIZE) \ |
| 78 | | ((((N) == _FP_W_TYPE_SIZE \ |
| 79 | ? 0 \ |
| 80 | : (X##_f1 << (2*_FP_W_TYPE_SIZE - (N)))) \ |
| 81 | | X##_f0) != 0)); \ |
| 82 | X##_f1 = 0; \ |
| 83 | }))) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 84 | |
| 85 | #define _FP_FRAC_ADDI_2(X,I) \ |
| 86 | __FP_FRAC_ADDI_2(X##_f1, X##_f0, I) |
| 87 | |
| 88 | #define _FP_FRAC_ADD_2(R,X,Y) \ |
| 89 | __FP_FRAC_ADD_2(R##_f1, R##_f0, X##_f1, X##_f0, Y##_f1, Y##_f0) |
| 90 | |
| 91 | #define _FP_FRAC_SUB_2(R,X,Y) \ |
| 92 | __FP_FRAC_SUB_2(R##_f1, R##_f0, X##_f1, X##_f0, Y##_f1, Y##_f0) |
| 93 | |
| 94 | #define _FP_FRAC_DEC_2(X,Y) \ |
| 95 | __FP_FRAC_DEC_2(X##_f1, X##_f0, Y##_f1, Y##_f0) |
| 96 | |
| 97 | #define _FP_FRAC_CLZ_2(R,X) \ |
| 98 | do { \ |
| 99 | if (X##_f1) \ |
| 100 | __FP_CLZ(R,X##_f1); \ |
| 101 | else \ |
| 102 | { \ |
| 103 | __FP_CLZ(R,X##_f0); \ |
| 104 | R += _FP_W_TYPE_SIZE; \ |
| 105 | } \ |
| 106 | } while(0) |
| 107 | |
| 108 | /* Predicates */ |
| 109 | #define _FP_FRAC_NEGP_2(X) ((_FP_WS_TYPE)X##_f1 < 0) |
| 110 | #define _FP_FRAC_ZEROP_2(X) ((X##_f1 | X##_f0) == 0) |
| 111 | #define _FP_FRAC_OVERP_2(fs,X) (_FP_FRAC_HIGH_##fs(X) & _FP_OVERFLOW_##fs) |
| 112 | #define _FP_FRAC_CLEAR_OVERP_2(fs,X) (_FP_FRAC_HIGH_##fs(X) &= ~_FP_OVERFLOW_##fs) |
| 113 | #define _FP_FRAC_EQ_2(X, Y) (X##_f1 == Y##_f1 && X##_f0 == Y##_f0) |
| 114 | #define _FP_FRAC_GT_2(X, Y) \ |
| 115 | (X##_f1 > Y##_f1 || (X##_f1 == Y##_f1 && X##_f0 > Y##_f0)) |
| 116 | #define _FP_FRAC_GE_2(X, Y) \ |
| 117 | (X##_f1 > Y##_f1 || (X##_f1 == Y##_f1 && X##_f0 >= Y##_f0)) |
| 118 | |
| 119 | #define _FP_ZEROFRAC_2 0, 0 |
| 120 | #define _FP_MINFRAC_2 0, 1 |
| 121 | #define _FP_MAXFRAC_2 (~(_FP_WS_TYPE)0), (~(_FP_WS_TYPE)0) |
| 122 | |
| 123 | /* |
| 124 | * Internals |
| 125 | */ |
| 126 | |
| 127 | #define __FP_FRAC_SET_2(X,I1,I0) (X##_f0 = I0, X##_f1 = I1) |
| 128 | |
| 129 | #define __FP_CLZ_2(R, xh, xl) \ |
| 130 | do { \ |
| 131 | if (xh) \ |
| 132 | __FP_CLZ(R,xh); \ |
| 133 | else \ |
| 134 | { \ |
| 135 | __FP_CLZ(R,xl); \ |
| 136 | R += _FP_W_TYPE_SIZE; \ |
| 137 | } \ |
| 138 | } while(0) |
| 139 | |
| 140 | #if 0 |
| 141 | |
| 142 | #ifndef __FP_FRAC_ADDI_2 |
| 143 | #define __FP_FRAC_ADDI_2(xh, xl, i) \ |
| 144 | (xh += ((xl += i) < i)) |
| 145 | #endif |
| 146 | #ifndef __FP_FRAC_ADD_2 |
| 147 | #define __FP_FRAC_ADD_2(rh, rl, xh, xl, yh, yl) \ |
| 148 | (rh = xh + yh + ((rl = xl + yl) < xl)) |
| 149 | #endif |
| 150 | #ifndef __FP_FRAC_SUB_2 |
| 151 | #define __FP_FRAC_SUB_2(rh, rl, xh, xl, yh, yl) \ |
| 152 | (rh = xh - yh - ((rl = xl - yl) > xl)) |
| 153 | #endif |
| 154 | #ifndef __FP_FRAC_DEC_2 |
| 155 | #define __FP_FRAC_DEC_2(xh, xl, yh, yl) \ |
| 156 | do { \ |
| 157 | UWtype _t = xl; \ |
| 158 | xh -= yh + ((xl -= yl) > _t); \ |
| 159 | } while (0) |
| 160 | #endif |
| 161 | |
| 162 | #else |
| 163 | |
| 164 | #undef __FP_FRAC_ADDI_2 |
| 165 | #define __FP_FRAC_ADDI_2(xh, xl, i) add_ssaaaa(xh, xl, xh, xl, 0, i) |
| 166 | #undef __FP_FRAC_ADD_2 |
| 167 | #define __FP_FRAC_ADD_2 add_ssaaaa |
| 168 | #undef __FP_FRAC_SUB_2 |
| 169 | #define __FP_FRAC_SUB_2 sub_ddmmss |
| 170 | #undef __FP_FRAC_DEC_2 |
| 171 | #define __FP_FRAC_DEC_2(xh, xl, yh, yl) sub_ddmmss(xh, xl, xh, xl, yh, yl) |
| 172 | |
| 173 | #endif |
| 174 | |
| 175 | /* |
| 176 | * Unpack the raw bits of a native fp value. Do not classify or |
| 177 | * normalize the data. |
| 178 | */ |
| 179 | |
| 180 | #define _FP_UNPACK_RAW_2(fs, X, val) \ |
| 181 | do { \ |
| 182 | union _FP_UNION_##fs _flo; _flo.flt = (val); \ |
| 183 | \ |
| 184 | X##_f0 = _flo.bits.frac0; \ |
| 185 | X##_f1 = _flo.bits.frac1; \ |
| 186 | X##_e = _flo.bits.exp; \ |
| 187 | X##_s = _flo.bits.sign; \ |
| 188 | } while (0) |
| 189 | |
| 190 | #define _FP_UNPACK_RAW_2_P(fs, X, val) \ |
| 191 | do { \ |
| 192 | union _FP_UNION_##fs *_flo = \ |
| 193 | (union _FP_UNION_##fs *)(val); \ |
| 194 | \ |
| 195 | X##_f0 = _flo->bits.frac0; \ |
| 196 | X##_f1 = _flo->bits.frac1; \ |
| 197 | X##_e = _flo->bits.exp; \ |
| 198 | X##_s = _flo->bits.sign; \ |
| 199 | } while (0) |
| 200 | |
| 201 | |
| 202 | /* |
| 203 | * Repack the raw bits of a native fp value. |
| 204 | */ |
| 205 | |
| 206 | #define _FP_PACK_RAW_2(fs, val, X) \ |
| 207 | do { \ |
| 208 | union _FP_UNION_##fs _flo; \ |
| 209 | \ |
| 210 | _flo.bits.frac0 = X##_f0; \ |
| 211 | _flo.bits.frac1 = X##_f1; \ |
| 212 | _flo.bits.exp = X##_e; \ |
| 213 | _flo.bits.sign = X##_s; \ |
| 214 | \ |
| 215 | (val) = _flo.flt; \ |
| 216 | } while (0) |
| 217 | |
| 218 | #define _FP_PACK_RAW_2_P(fs, val, X) \ |
| 219 | do { \ |
| 220 | union _FP_UNION_##fs *_flo = \ |
| 221 | (union _FP_UNION_##fs *)(val); \ |
| 222 | \ |
| 223 | _flo->bits.frac0 = X##_f0; \ |
| 224 | _flo->bits.frac1 = X##_f1; \ |
| 225 | _flo->bits.exp = X##_e; \ |
| 226 | _flo->bits.sign = X##_s; \ |
| 227 | } while (0) |
| 228 | |
| 229 | |
| 230 | /* |
| 231 | * Multiplication algorithms: |
| 232 | */ |
| 233 | |
| 234 | /* Given a 1W * 1W => 2W primitive, do the extended multiplication. */ |
| 235 | |
| 236 | #define _FP_MUL_MEAT_2_wide(wfracbits, R, X, Y, doit) \ |
| 237 | do { \ |
| 238 | _FP_FRAC_DECL_4(_z); _FP_FRAC_DECL_2(_b); _FP_FRAC_DECL_2(_c); \ |
| 239 | \ |
| 240 | doit(_FP_FRAC_WORD_4(_z,1), _FP_FRAC_WORD_4(_z,0), X##_f0, Y##_f0); \ |
| 241 | doit(_b_f1, _b_f0, X##_f0, Y##_f1); \ |
| 242 | doit(_c_f1, _c_f0, X##_f1, Y##_f0); \ |
| 243 | doit(_FP_FRAC_WORD_4(_z,3), _FP_FRAC_WORD_4(_z,2), X##_f1, Y##_f1); \ |
| 244 | \ |
| 245 | __FP_FRAC_ADD_3(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2), \ |
| 246 | _FP_FRAC_WORD_4(_z,1), 0, _b_f1, _b_f0, \ |
| 247 | _FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2), \ |
| 248 | _FP_FRAC_WORD_4(_z,1)); \ |
| 249 | __FP_FRAC_ADD_3(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2), \ |
| 250 | _FP_FRAC_WORD_4(_z,1), 0, _c_f1, _c_f0, \ |
| 251 | _FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2), \ |
| 252 | _FP_FRAC_WORD_4(_z,1)); \ |
| 253 | \ |
| 254 | /* Normalize since we know where the msb of the multiplicands \ |
| 255 | were (bit B), we know that the msb of the of the product is \ |
| 256 | at either 2B or 2B-1. */ \ |
| 257 | _FP_FRAC_SRS_4(_z, wfracbits-1, 2*wfracbits); \ |
| 258 | R##_f0 = _FP_FRAC_WORD_4(_z,0); \ |
| 259 | R##_f1 = _FP_FRAC_WORD_4(_z,1); \ |
| 260 | } while (0) |
| 261 | |
| 262 | /* Given a 1W * 1W => 2W primitive, do the extended multiplication. |
| 263 | Do only 3 multiplications instead of four. This one is for machines |
| 264 | where multiplication is much more expensive than subtraction. */ |
| 265 | |
| 266 | #define _FP_MUL_MEAT_2_wide_3mul(wfracbits, R, X, Y, doit) \ |
| 267 | do { \ |
| 268 | _FP_FRAC_DECL_4(_z); _FP_FRAC_DECL_2(_b); _FP_FRAC_DECL_2(_c); \ |
| 269 | _FP_W_TYPE _d; \ |
| 270 | int _c1, _c2; \ |
| 271 | \ |
| 272 | _b_f0 = X##_f0 + X##_f1; \ |
| 273 | _c1 = _b_f0 < X##_f0; \ |
| 274 | _b_f1 = Y##_f0 + Y##_f1; \ |
| 275 | _c2 = _b_f1 < Y##_f0; \ |
| 276 | doit(_d, _FP_FRAC_WORD_4(_z,0), X##_f0, Y##_f0); \ |
| 277 | doit(_FP_FRAC_WORD_4(_z,2), _FP_FRAC_WORD_4(_z,1), _b_f0, _b_f1); \ |
| 278 | doit(_c_f1, _c_f0, X##_f1, Y##_f1); \ |
| 279 | \ |
| 280 | _b_f0 &= -_c2; \ |
| 281 | _b_f1 &= -_c1; \ |
| 282 | __FP_FRAC_ADD_3(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2), \ |
| 283 | _FP_FRAC_WORD_4(_z,1), (_c1 & _c2), 0, _d, \ |
| 284 | 0, _FP_FRAC_WORD_4(_z,2), _FP_FRAC_WORD_4(_z,1)); \ |
| 285 | __FP_FRAC_ADDI_2(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2), \ |
| 286 | _b_f0); \ |
| 287 | __FP_FRAC_ADDI_2(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2), \ |
| 288 | _b_f1); \ |
| 289 | __FP_FRAC_DEC_3(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2), \ |
| 290 | _FP_FRAC_WORD_4(_z,1), \ |
| 291 | 0, _d, _FP_FRAC_WORD_4(_z,0)); \ |
| 292 | __FP_FRAC_DEC_3(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2), \ |
| 293 | _FP_FRAC_WORD_4(_z,1), 0, _c_f1, _c_f0); \ |
| 294 | __FP_FRAC_ADD_2(_FP_FRAC_WORD_4(_z,3), _FP_FRAC_WORD_4(_z,2), \ |
| 295 | _c_f1, _c_f0, \ |
| 296 | _FP_FRAC_WORD_4(_z,3), _FP_FRAC_WORD_4(_z,2)); \ |
| 297 | \ |
| 298 | /* Normalize since we know where the msb of the multiplicands \ |
| 299 | were (bit B), we know that the msb of the of the product is \ |
| 300 | at either 2B or 2B-1. */ \ |
| 301 | _FP_FRAC_SRS_4(_z, wfracbits-1, 2*wfracbits); \ |
| 302 | R##_f0 = _FP_FRAC_WORD_4(_z,0); \ |
| 303 | R##_f1 = _FP_FRAC_WORD_4(_z,1); \ |
| 304 | } while (0) |
| 305 | |
| 306 | #define _FP_MUL_MEAT_2_gmp(wfracbits, R, X, Y) \ |
| 307 | do { \ |
| 308 | _FP_FRAC_DECL_4(_z); \ |
| 309 | _FP_W_TYPE _x[2], _y[2]; \ |
| 310 | _x[0] = X##_f0; _x[1] = X##_f1; \ |
| 311 | _y[0] = Y##_f0; _y[1] = Y##_f1; \ |
| 312 | \ |
| 313 | mpn_mul_n(_z_f, _x, _y, 2); \ |
| 314 | \ |
| 315 | /* Normalize since we know where the msb of the multiplicands \ |
| 316 | were (bit B), we know that the msb of the of the product is \ |
| 317 | at either 2B or 2B-1. */ \ |
| 318 | _FP_FRAC_SRS_4(_z, wfracbits-1, 2*wfracbits); \ |
| 319 | R##_f0 = _z_f[0]; \ |
| 320 | R##_f1 = _z_f[1]; \ |
| 321 | } while (0) |
| 322 | |
| 323 | /* Do at most 120x120=240 bits multiplication using double floating |
| 324 | point multiplication. This is useful if floating point |
| 325 | multiplication has much bigger throughput than integer multiply. |
| 326 | It is supposed to work for _FP_W_TYPE_SIZE 64 and wfracbits |
| 327 | between 106 and 120 only. |
| 328 | Caller guarantees that X and Y has (1LLL << (wfracbits - 1)) set. |
| 329 | SETFETZ is a macro which will disable all FPU exceptions and set rounding |
| 330 | towards zero, RESETFE should optionally reset it back. */ |
| 331 | |
| 332 | #define _FP_MUL_MEAT_2_120_240_double(wfracbits, R, X, Y, setfetz, resetfe) \ |
| 333 | do { \ |
| 334 | static const double _const[] = { \ |
| 335 | /* 2^-24 */ 5.9604644775390625e-08, \ |
| 336 | /* 2^-48 */ 3.5527136788005009e-15, \ |
| 337 | /* 2^-72 */ 2.1175823681357508e-22, \ |
| 338 | /* 2^-96 */ 1.2621774483536189e-29, \ |
| 339 | /* 2^28 */ 2.68435456e+08, \ |
| 340 | /* 2^4 */ 1.600000e+01, \ |
| 341 | /* 2^-20 */ 9.5367431640625e-07, \ |
| 342 | /* 2^-44 */ 5.6843418860808015e-14, \ |
| 343 | /* 2^-68 */ 3.3881317890172014e-21, \ |
| 344 | /* 2^-92 */ 2.0194839173657902e-28, \ |
| 345 | /* 2^-116 */ 1.2037062152420224e-35}; \ |
| 346 | double _a240, _b240, _c240, _d240, _e240, _f240, \ |
| 347 | _g240, _h240, _i240, _j240, _k240; \ |
| 348 | union { double d; UDItype i; } _l240, _m240, _n240, _o240, \ |
| 349 | _p240, _q240, _r240, _s240; \ |
| 350 | UDItype _t240, _u240, _v240, _w240, _x240, _y240 = 0; \ |
| 351 | \ |
| 352 | if (wfracbits < 106 || wfracbits > 120) \ |
| 353 | abort(); \ |
| 354 | \ |
| 355 | setfetz; \ |
| 356 | \ |
| 357 | _e240 = (double)(long)(X##_f0 & 0xffffff); \ |
| 358 | _j240 = (double)(long)(Y##_f0 & 0xffffff); \ |
| 359 | _d240 = (double)(long)((X##_f0 >> 24) & 0xffffff); \ |
| 360 | _i240 = (double)(long)((Y##_f0 >> 24) & 0xffffff); \ |
| 361 | _c240 = (double)(long)(((X##_f1 << 16) & 0xffffff) | (X##_f0 >> 48)); \ |
| 362 | _h240 = (double)(long)(((Y##_f1 << 16) & 0xffffff) | (Y##_f0 >> 48)); \ |
| 363 | _b240 = (double)(long)((X##_f1 >> 8) & 0xffffff); \ |
| 364 | _g240 = (double)(long)((Y##_f1 >> 8) & 0xffffff); \ |
| 365 | _a240 = (double)(long)(X##_f1 >> 32); \ |
| 366 | _f240 = (double)(long)(Y##_f1 >> 32); \ |
| 367 | _e240 *= _const[3]; \ |
| 368 | _j240 *= _const[3]; \ |
| 369 | _d240 *= _const[2]; \ |
| 370 | _i240 *= _const[2]; \ |
| 371 | _c240 *= _const[1]; \ |
| 372 | _h240 *= _const[1]; \ |
| 373 | _b240 *= _const[0]; \ |
| 374 | _g240 *= _const[0]; \ |
| 375 | _s240.d = _e240*_j240;\ |
| 376 | _r240.d = _d240*_j240 + _e240*_i240;\ |
| 377 | _q240.d = _c240*_j240 + _d240*_i240 + _e240*_h240;\ |
| 378 | _p240.d = _b240*_j240 + _c240*_i240 + _d240*_h240 + _e240*_g240;\ |
| 379 | _o240.d = _a240*_j240 + _b240*_i240 + _c240*_h240 + _d240*_g240 + _e240*_f240;\ |
| 380 | _n240.d = _a240*_i240 + _b240*_h240 + _c240*_g240 + _d240*_f240; \ |
| 381 | _m240.d = _a240*_h240 + _b240*_g240 + _c240*_f240; \ |
| 382 | _l240.d = _a240*_g240 + _b240*_f240; \ |
| 383 | _k240 = _a240*_f240; \ |
| 384 | _r240.d += _s240.d; \ |
| 385 | _q240.d += _r240.d; \ |
| 386 | _p240.d += _q240.d; \ |
| 387 | _o240.d += _p240.d; \ |
| 388 | _n240.d += _o240.d; \ |
| 389 | _m240.d += _n240.d; \ |
| 390 | _l240.d += _m240.d; \ |
| 391 | _k240 += _l240.d; \ |
| 392 | _s240.d -= ((_const[10]+_s240.d)-_const[10]); \ |
| 393 | _r240.d -= ((_const[9]+_r240.d)-_const[9]); \ |
| 394 | _q240.d -= ((_const[8]+_q240.d)-_const[8]); \ |
| 395 | _p240.d -= ((_const[7]+_p240.d)-_const[7]); \ |
| 396 | _o240.d += _const[7]; \ |
| 397 | _n240.d += _const[6]; \ |
| 398 | _m240.d += _const[5]; \ |
| 399 | _l240.d += _const[4]; \ |
| 400 | if (_s240.d != 0.0) _y240 = 1; \ |
| 401 | if (_r240.d != 0.0) _y240 = 1; \ |
| 402 | if (_q240.d != 0.0) _y240 = 1; \ |
| 403 | if (_p240.d != 0.0) _y240 = 1; \ |
| 404 | _t240 = (DItype)_k240; \ |
| 405 | _u240 = _l240.i; \ |
| 406 | _v240 = _m240.i; \ |
| 407 | _w240 = _n240.i; \ |
| 408 | _x240 = _o240.i; \ |
| 409 | R##_f1 = (_t240 << (128 - (wfracbits - 1))) \ |
| 410 | | ((_u240 & 0xffffff) >> ((wfracbits - 1) - 104)); \ |
| 411 | R##_f0 = ((_u240 & 0xffffff) << (168 - (wfracbits - 1))) \ |
| 412 | | ((_v240 & 0xffffff) << (144 - (wfracbits - 1))) \ |
| 413 | | ((_w240 & 0xffffff) << (120 - (wfracbits - 1))) \ |
| 414 | | ((_x240 & 0xffffff) >> ((wfracbits - 1) - 96)) \ |
| 415 | | _y240; \ |
| 416 | resetfe; \ |
| 417 | } while (0) |
| 418 | |
| 419 | /* |
| 420 | * Division algorithms: |
| 421 | */ |
| 422 | |
| 423 | #define _FP_DIV_MEAT_2_udiv(fs, R, X, Y) \ |
| 424 | do { \ |
| 425 | _FP_W_TYPE _n_f2, _n_f1, _n_f0, _r_f1, _r_f0, _m_f1, _m_f0; \ |
| 426 | if (_FP_FRAC_GT_2(X, Y)) \ |
| 427 | { \ |
| 428 | _n_f2 = X##_f1 >> 1; \ |
| 429 | _n_f1 = X##_f1 << (_FP_W_TYPE_SIZE - 1) | X##_f0 >> 1; \ |
| 430 | _n_f0 = X##_f0 << (_FP_W_TYPE_SIZE - 1); \ |
| 431 | } \ |
| 432 | else \ |
| 433 | { \ |
| 434 | R##_e--; \ |
| 435 | _n_f2 = X##_f1; \ |
| 436 | _n_f1 = X##_f0; \ |
| 437 | _n_f0 = 0; \ |
| 438 | } \ |
| 439 | \ |
| 440 | /* Normalize, i.e. make the most significant bit of the \ |
| 441 | denominator set. */ \ |
| 442 | _FP_FRAC_SLL_2(Y, _FP_WFRACXBITS_##fs); \ |
| 443 | \ |
| 444 | udiv_qrnnd(R##_f1, _r_f1, _n_f2, _n_f1, Y##_f1); \ |
| 445 | umul_ppmm(_m_f1, _m_f0, R##_f1, Y##_f0); \ |
| 446 | _r_f0 = _n_f0; \ |
| 447 | if (_FP_FRAC_GT_2(_m, _r)) \ |
| 448 | { \ |
| 449 | R##_f1--; \ |
| 450 | _FP_FRAC_ADD_2(_r, Y, _r); \ |
| 451 | if (_FP_FRAC_GE_2(_r, Y) && _FP_FRAC_GT_2(_m, _r)) \ |
| 452 | { \ |
| 453 | R##_f1--; \ |
| 454 | _FP_FRAC_ADD_2(_r, Y, _r); \ |
| 455 | } \ |
| 456 | } \ |
| 457 | _FP_FRAC_DEC_2(_r, _m); \ |
| 458 | \ |
| 459 | if (_r_f1 == Y##_f1) \ |
| 460 | { \ |
| 461 | /* This is a special case, not an optimization \ |
| 462 | (_r/Y##_f1 would not fit into UWtype). \ |
| 463 | As _r is guaranteed to be < Y, R##_f0 can be either \ |
| 464 | (UWtype)-1 or (UWtype)-2. But as we know what kind \ |
| 465 | of bits it is (sticky, guard, round), we don't care. \ |
| 466 | We also don't care what the reminder is, because the \ |
| 467 | guard bit will be set anyway. -jj */ \ |
| 468 | R##_f0 = -1; \ |
| 469 | } \ |
| 470 | else \ |
| 471 | { \ |
| 472 | udiv_qrnnd(R##_f0, _r_f1, _r_f1, _r_f0, Y##_f1); \ |
| 473 | umul_ppmm(_m_f1, _m_f0, R##_f0, Y##_f0); \ |
| 474 | _r_f0 = 0; \ |
| 475 | if (_FP_FRAC_GT_2(_m, _r)) \ |
| 476 | { \ |
| 477 | R##_f0--; \ |
| 478 | _FP_FRAC_ADD_2(_r, Y, _r); \ |
| 479 | if (_FP_FRAC_GE_2(_r, Y) && _FP_FRAC_GT_2(_m, _r)) \ |
| 480 | { \ |
| 481 | R##_f0--; \ |
| 482 | _FP_FRAC_ADD_2(_r, Y, _r); \ |
| 483 | } \ |
| 484 | } \ |
| 485 | if (!_FP_FRAC_EQ_2(_r, _m)) \ |
| 486 | R##_f0 |= _FP_WORK_STICKY; \ |
| 487 | } \ |
| 488 | } while (0) |
| 489 | |
| 490 | |
| 491 | #define _FP_DIV_MEAT_2_gmp(fs, R, X, Y) \ |
| 492 | do { \ |
| 493 | _FP_W_TYPE _x[4], _y[2], _z[4]; \ |
| 494 | _y[0] = Y##_f0; _y[1] = Y##_f1; \ |
| 495 | _x[0] = _x[3] = 0; \ |
| 496 | if (_FP_FRAC_GT_2(X, Y)) \ |
| 497 | { \ |
| 498 | R##_e++; \ |
| 499 | _x[1] = (X##_f0 << (_FP_WFRACBITS_##fs-1 - _FP_W_TYPE_SIZE) | \ |
| 500 | X##_f1 >> (_FP_W_TYPE_SIZE - \ |
| 501 | (_FP_WFRACBITS_##fs-1 - _FP_W_TYPE_SIZE))); \ |
| 502 | _x[2] = X##_f1 << (_FP_WFRACBITS_##fs-1 - _FP_W_TYPE_SIZE); \ |
| 503 | } \ |
| 504 | else \ |
| 505 | { \ |
| 506 | _x[1] = (X##_f0 << (_FP_WFRACBITS_##fs - _FP_W_TYPE_SIZE) | \ |
| 507 | X##_f1 >> (_FP_W_TYPE_SIZE - \ |
| 508 | (_FP_WFRACBITS_##fs - _FP_W_TYPE_SIZE))); \ |
| 509 | _x[2] = X##_f1 << (_FP_WFRACBITS_##fs - _FP_W_TYPE_SIZE); \ |
| 510 | } \ |
| 511 | \ |
| 512 | (void) mpn_divrem (_z, 0, _x, 4, _y, 2); \ |
| 513 | R##_f1 = _z[1]; \ |
| 514 | R##_f0 = _z[0] | ((_x[0] | _x[1]) != 0); \ |
| 515 | } while (0) |
| 516 | |
| 517 | |
| 518 | /* |
| 519 | * Square root algorithms: |
| 520 | * We have just one right now, maybe Newton approximation |
| 521 | * should be added for those machines where division is fast. |
| 522 | */ |
| 523 | |
| 524 | #define _FP_SQRT_MEAT_2(R, S, T, X, q) \ |
| 525 | do { \ |
| 526 | while (q) \ |
| 527 | { \ |
| 528 | T##_f1 = S##_f1 + q; \ |
| 529 | if (T##_f1 <= X##_f1) \ |
| 530 | { \ |
| 531 | S##_f1 = T##_f1 + q; \ |
| 532 | X##_f1 -= T##_f1; \ |
| 533 | R##_f1 += q; \ |
| 534 | } \ |
| 535 | _FP_FRAC_SLL_2(X, 1); \ |
| 536 | q >>= 1; \ |
| 537 | } \ |
| 538 | q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1); \ |
| 539 | while (q != _FP_WORK_ROUND) \ |
| 540 | { \ |
| 541 | T##_f0 = S##_f0 + q; \ |
| 542 | T##_f1 = S##_f1; \ |
| 543 | if (T##_f1 < X##_f1 || \ |
| 544 | (T##_f1 == X##_f1 && T##_f0 <= X##_f0)) \ |
| 545 | { \ |
| 546 | S##_f0 = T##_f0 + q; \ |
| 547 | S##_f1 += (T##_f0 > S##_f0); \ |
| 548 | _FP_FRAC_DEC_2(X, T); \ |
| 549 | R##_f0 += q; \ |
| 550 | } \ |
| 551 | _FP_FRAC_SLL_2(X, 1); \ |
| 552 | q >>= 1; \ |
| 553 | } \ |
| 554 | if (X##_f0 | X##_f1) \ |
| 555 | { \ |
| 556 | if (S##_f1 < X##_f1 || \ |
| 557 | (S##_f1 == X##_f1 && S##_f0 < X##_f0)) \ |
| 558 | R##_f0 |= _FP_WORK_ROUND; \ |
| 559 | R##_f0 |= _FP_WORK_STICKY; \ |
| 560 | } \ |
| 561 | } while (0) |
| 562 | |
| 563 | |
| 564 | /* |
| 565 | * Assembly/disassembly for converting to/from integral types. |
| 566 | * No shifting or overflow handled here. |
| 567 | */ |
| 568 | |
| 569 | #define _FP_FRAC_ASSEMBLE_2(r, X, rsize) \ |
Vincent Chen | 8183db1 | 2019-05-27 14:17:21 +0800 | [diff] [blame] | 570 | (void) (((rsize) <= _FP_W_TYPE_SIZE) \ |
| 571 | ? ({ (r) = X##_f0; }) \ |
| 572 | : ({ \ |
| 573 | (r) = X##_f1; \ |
| 574 | (r) <<= _FP_W_TYPE_SIZE; \ |
| 575 | (r) += X##_f0; \ |
| 576 | })) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 577 | |
| 578 | #define _FP_FRAC_DISASSEMBLE_2(X, r, rsize) \ |
| 579 | do { \ |
| 580 | X##_f0 = r; \ |
| 581 | X##_f1 = (rsize <= _FP_W_TYPE_SIZE ? 0 : r >> _FP_W_TYPE_SIZE); \ |
| 582 | } while (0) |
| 583 | |
| 584 | /* |
| 585 | * Convert FP values between word sizes |
| 586 | */ |
| 587 | |
| 588 | #define _FP_FRAC_CONV_1_2(dfs, sfs, D, S) \ |
| 589 | do { \ |
| 590 | if (S##_c != FP_CLS_NAN) \ |
| 591 | _FP_FRAC_SRS_2(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs), \ |
| 592 | _FP_WFRACBITS_##sfs); \ |
| 593 | else \ |
| 594 | _FP_FRAC_SRL_2(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs)); \ |
| 595 | D##_f = S##_f0; \ |
| 596 | } while (0) |
| 597 | |
| 598 | #define _FP_FRAC_CONV_2_1(dfs, sfs, D, S) \ |
| 599 | do { \ |
| 600 | D##_f0 = S##_f; \ |
| 601 | D##_f1 = 0; \ |
| 602 | _FP_FRAC_SLL_2(D, (_FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs)); \ |
| 603 | } while (0) |
| 604 | |
| 605 | #endif |