blob: 73e416db0a1e6b23205cc416864ea2c91b9d26d0 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
8 * adjtime
9 */
10/*
11 * Modification history kernel/time.c
Daniel Walker6fa6c3b2007-10-18 03:06:03 -070012 *
Linus Torvalds1da177e2005-04-16 15:20:36 -070013 * 1993-09-02 Philip Gladstone
Daniel Walker6fa6c3b2007-10-18 03:06:03 -070014 * Created file with time related functions from sched.c and adjtimex()
Linus Torvalds1da177e2005-04-16 15:20:36 -070015 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
28 */
29
Paul Gortmaker9984de12011-05-23 14:51:41 -040030#include <linux/export.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070031#include <linux/timex.h>
Randy.Dunlapc59ede72006-01-11 12:17:46 -080032#include <linux/capability.h>
Tony Breeds2c622142007-10-18 03:04:57 -070033#include <linux/clocksource.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070034#include <linux/errno.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070035#include <linux/syscalls.h>
36#include <linux/security.h>
37#include <linux/fs.h>
Roman Zippel71abb3a2008-05-01 04:34:26 -070038#include <linux/math64.h>
Paul Mackerrase3d5a272009-01-06 14:41:02 -080039#include <linux/ptrace.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070040
41#include <asm/uaccess.h>
42#include <asm/unistd.h>
43
H. Peter Anvinbdc80782008-02-08 04:21:26 -080044#include "timeconst.h"
45
Daniel Walker6fa6c3b2007-10-18 03:06:03 -070046/*
Linus Torvalds1da177e2005-04-16 15:20:36 -070047 * The timezone where the local system is located. Used as a default by some
48 * programs who obtain this value by using gettimeofday.
49 */
50struct timezone sys_tz;
51
52EXPORT_SYMBOL(sys_tz);
53
54#ifdef __ARCH_WANT_SYS_TIME
55
56/*
57 * sys_time() can be implemented in user-level using
58 * sys_gettimeofday(). Is this for backwards compatibility? If so,
59 * why not move it into the appropriate arch directory (for those
60 * architectures that need it).
61 */
Heiko Carstens58fd3aa2009-01-14 14:14:03 +010062SYSCALL_DEFINE1(time, time_t __user *, tloc)
Linus Torvalds1da177e2005-04-16 15:20:36 -070063{
Ingo Molnarf20bf612007-10-16 16:09:20 +020064 time_t i = get_seconds();
Linus Torvalds1da177e2005-04-16 15:20:36 -070065
66 if (tloc) {
Linus Torvalds20082202007-07-20 13:28:54 -070067 if (put_user(i,tloc))
Paul Mackerrase3d5a272009-01-06 14:41:02 -080068 return -EFAULT;
Linus Torvalds1da177e2005-04-16 15:20:36 -070069 }
Paul Mackerrase3d5a272009-01-06 14:41:02 -080070 force_successful_syscall_return();
Linus Torvalds1da177e2005-04-16 15:20:36 -070071 return i;
72}
73
74/*
75 * sys_stime() can be implemented in user-level using
76 * sys_settimeofday(). Is this for backwards compatibility? If so,
77 * why not move it into the appropriate arch directory (for those
78 * architectures that need it).
79 */
Daniel Walker6fa6c3b2007-10-18 03:06:03 -070080
Heiko Carstens58fd3aa2009-01-14 14:14:03 +010081SYSCALL_DEFINE1(stime, time_t __user *, tptr)
Linus Torvalds1da177e2005-04-16 15:20:36 -070082{
83 struct timespec tv;
84 int err;
85
86 if (get_user(tv.tv_sec, tptr))
87 return -EFAULT;
88
89 tv.tv_nsec = 0;
90
91 err = security_settime(&tv, NULL);
92 if (err)
93 return err;
94
95 do_settimeofday(&tv);
96 return 0;
97}
98
99#endif /* __ARCH_WANT_SYS_TIME */
100
Heiko Carstens58fd3aa2009-01-14 14:14:03 +0100101SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
102 struct timezone __user *, tz)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700103{
104 if (likely(tv != NULL)) {
105 struct timeval ktv;
106 do_gettimeofday(&ktv);
107 if (copy_to_user(tv, &ktv, sizeof(ktv)))
108 return -EFAULT;
109 }
110 if (unlikely(tz != NULL)) {
111 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
112 return -EFAULT;
113 }
114 return 0;
115}
116
117/*
118 * Adjust the time obtained from the CMOS to be UTC time instead of
119 * local time.
Daniel Walker6fa6c3b2007-10-18 03:06:03 -0700120 *
Linus Torvalds1da177e2005-04-16 15:20:36 -0700121 * This is ugly, but preferable to the alternatives. Otherwise we
122 * would either need to write a program to do it in /etc/rc (and risk
Daniel Walker6fa6c3b2007-10-18 03:06:03 -0700123 * confusion if the program gets run more than once; it would also be
Linus Torvalds1da177e2005-04-16 15:20:36 -0700124 * hard to make the program warp the clock precisely n hours) or
125 * compile in the timezone information into the kernel. Bad, bad....
126 *
H. Peter Anvinbdc80782008-02-08 04:21:26 -0800127 * - TYT, 1992-01-01
Linus Torvalds1da177e2005-04-16 15:20:36 -0700128 *
129 * The best thing to do is to keep the CMOS clock in universal time (UTC)
130 * as real UNIX machines always do it. This avoids all headaches about
131 * daylight saving times and warping kernel clocks.
132 */
Jesper Juhl77933d72005-07-27 11:46:09 -0700133static inline void warp_clock(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700134{
Thomas Gleixnerbd45b7a2010-05-23 08:14:45 +0200135 struct timespec adjust;
136
137 adjust = current_kernel_time();
138 adjust.tv_sec += sys_tz.tz_minuteswest * 60;
John Stultz64ce4c22010-03-11 14:04:47 -0800139 do_settimeofday(&adjust);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700140}
141
142/*
143 * In case for some reason the CMOS clock has not already been running
144 * in UTC, but in some local time: The first time we set the timezone,
145 * we will warp the clock so that it is ticking UTC time instead of
146 * local time. Presumably, if someone is setting the timezone then we
147 * are running in an environment where the programs understand about
148 * timezones. This should be done at boot time in the /etc/rc script,
149 * as soon as possible, so that the clock can be set right. Otherwise,
150 * various programs will get confused when the clock gets warped.
151 */
152
Richard Cochran1e6d7672011-02-01 13:50:58 +0000153int do_sys_settimeofday(const struct timespec *tv, const struct timezone *tz)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700154{
155 static int firsttime = 1;
156 int error = 0;
157
Linus Torvalds951069e2006-01-31 10:16:55 -0800158 if (tv && !timespec_valid(tv))
Thomas Gleixner718bcce2006-01-09 20:52:29 -0800159 return -EINVAL;
160
Linus Torvalds1da177e2005-04-16 15:20:36 -0700161 error = security_settime(tv, tz);
162 if (error)
163 return error;
164
165 if (tz) {
166 /* SMP safe, global irq locking makes it work. */
167 sys_tz = *tz;
Tony Breeds2c622142007-10-18 03:04:57 -0700168 update_vsyscall_tz();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700169 if (firsttime) {
170 firsttime = 0;
171 if (!tv)
172 warp_clock();
173 }
174 }
175 if (tv)
176 {
177 /* SMP safe, again the code in arch/foo/time.c should
178 * globally block out interrupts when it runs.
179 */
180 return do_settimeofday(tv);
181 }
182 return 0;
183}
184
Heiko Carstens58fd3aa2009-01-14 14:14:03 +0100185SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
186 struct timezone __user *, tz)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700187{
188 struct timeval user_tv;
189 struct timespec new_ts;
190 struct timezone new_tz;
191
192 if (tv) {
193 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
194 return -EFAULT;
195 new_ts.tv_sec = user_tv.tv_sec;
196 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
197 }
198 if (tz) {
199 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
200 return -EFAULT;
201 }
202
203 return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
204}
205
Heiko Carstens58fd3aa2009-01-14 14:14:03 +0100206SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700207{
208 struct timex txc; /* Local copy of parameter */
209 int ret;
210
211 /* Copy the user data space into the kernel copy
212 * structure. But bear in mind that the structures
213 * may change
214 */
215 if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
216 return -EFAULT;
217 ret = do_adjtimex(&txc);
218 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
219}
220
Linus Torvalds1da177e2005-04-16 15:20:36 -0700221/**
222 * current_fs_time - Return FS time
223 * @sb: Superblock.
224 *
Kalin KOZHUHAROV8ba8e952006-04-01 01:41:22 +0200225 * Return the current time truncated to the time granularity supported by
Linus Torvalds1da177e2005-04-16 15:20:36 -0700226 * the fs.
227 */
228struct timespec current_fs_time(struct super_block *sb)
229{
230 struct timespec now = current_kernel_time();
231 return timespec_trunc(now, sb->s_time_gran);
232}
233EXPORT_SYMBOL(current_fs_time);
234
Eric Dumazet753e9c52007-05-08 00:25:32 -0700235/*
236 * Convert jiffies to milliseconds and back.
237 *
238 * Avoid unnecessary multiplications/divisions in the
239 * two most common HZ cases:
240 */
Jesper Juhlfa9f90b2010-11-28 21:39:34 +0100241inline unsigned int jiffies_to_msecs(const unsigned long j)
Eric Dumazet753e9c52007-05-08 00:25:32 -0700242{
243#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
244 return (MSEC_PER_SEC / HZ) * j;
245#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
246 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
247#else
H. Peter Anvinbdc80782008-02-08 04:21:26 -0800248# if BITS_PER_LONG == 32
H. Peter Anvinb9095fd2008-05-02 16:18:42 -0700249 return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
H. Peter Anvinbdc80782008-02-08 04:21:26 -0800250# else
251 return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
252# endif
Eric Dumazet753e9c52007-05-08 00:25:32 -0700253#endif
254}
255EXPORT_SYMBOL(jiffies_to_msecs);
256
Jesper Juhlfa9f90b2010-11-28 21:39:34 +0100257inline unsigned int jiffies_to_usecs(const unsigned long j)
Eric Dumazet753e9c52007-05-08 00:25:32 -0700258{
259#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
260 return (USEC_PER_SEC / HZ) * j;
261#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
262 return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
263#else
H. Peter Anvinbdc80782008-02-08 04:21:26 -0800264# if BITS_PER_LONG == 32
H. Peter Anvinb9095fd2008-05-02 16:18:42 -0700265 return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
H. Peter Anvinbdc80782008-02-08 04:21:26 -0800266# else
267 return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
268# endif
Eric Dumazet753e9c52007-05-08 00:25:32 -0700269#endif
270}
271EXPORT_SYMBOL(jiffies_to_usecs);
272
Linus Torvalds1da177e2005-04-16 15:20:36 -0700273/**
Kalin KOZHUHAROV8ba8e952006-04-01 01:41:22 +0200274 * timespec_trunc - Truncate timespec to a granularity
Linus Torvalds1da177e2005-04-16 15:20:36 -0700275 * @t: Timespec
Kalin KOZHUHAROV8ba8e952006-04-01 01:41:22 +0200276 * @gran: Granularity in ns.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700277 *
Kalin KOZHUHAROV8ba8e952006-04-01 01:41:22 +0200278 * Truncate a timespec to a granularity. gran must be smaller than a second.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700279 * Always rounds down.
280 *
281 * This function should be only used for timestamps returned by
282 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
Li Zefan3eb05672008-02-08 04:19:25 -0800283 * it doesn't handle the better resolution of the latter.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700284 */
285struct timespec timespec_trunc(struct timespec t, unsigned gran)
286{
287 /*
288 * Division is pretty slow so avoid it for common cases.
289 * Currently current_kernel_time() never returns better than
290 * jiffies resolution. Exploit that.
291 */
292 if (gran <= jiffies_to_usecs(1) * 1000) {
293 /* nothing */
294 } else if (gran == 1000000000) {
295 t.tv_nsec = 0;
296 } else {
297 t.tv_nsec -= t.tv_nsec % gran;
298 }
299 return t;
300}
301EXPORT_SYMBOL(timespec_trunc);
302
Thomas Gleixner753be622006-01-09 20:52:22 -0800303/* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
304 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
305 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
306 *
307 * [For the Julian calendar (which was used in Russia before 1917,
308 * Britain & colonies before 1752, anywhere else before 1582,
309 * and is still in use by some communities) leave out the
310 * -year/100+year/400 terms, and add 10.]
311 *
312 * This algorithm was first published by Gauss (I think).
313 *
314 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
Li Zefan3eb05672008-02-08 04:19:25 -0800315 * machines where long is 32-bit! (However, as time_t is signed, we
Thomas Gleixner753be622006-01-09 20:52:22 -0800316 * will already get problems at other places on 2038-01-19 03:14:08)
317 */
318unsigned long
Ingo Molnarf4818902006-01-09 20:52:23 -0800319mktime(const unsigned int year0, const unsigned int mon0,
320 const unsigned int day, const unsigned int hour,
321 const unsigned int min, const unsigned int sec)
Thomas Gleixner753be622006-01-09 20:52:22 -0800322{
Ingo Molnarf4818902006-01-09 20:52:23 -0800323 unsigned int mon = mon0, year = year0;
324
325 /* 1..12 -> 11,12,1..10 */
326 if (0 >= (int) (mon -= 2)) {
327 mon += 12; /* Puts Feb last since it has leap day */
Thomas Gleixner753be622006-01-09 20:52:22 -0800328 year -= 1;
329 }
330
331 return ((((unsigned long)
332 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
333 year*365 - 719499
334 )*24 + hour /* now have hours */
335 )*60 + min /* now have minutes */
336 )*60 + sec; /* finally seconds */
337}
338
Andrew Morton199e7052006-01-09 20:52:24 -0800339EXPORT_SYMBOL(mktime);
340
Thomas Gleixner753be622006-01-09 20:52:22 -0800341/**
342 * set_normalized_timespec - set timespec sec and nsec parts and normalize
343 *
344 * @ts: pointer to timespec variable to be set
345 * @sec: seconds to set
346 * @nsec: nanoseconds to set
347 *
348 * Set seconds and nanoseconds field of a timespec variable and
349 * normalize to the timespec storage format
350 *
351 * Note: The tv_nsec part is always in the range of
H. Peter Anvinbdc80782008-02-08 04:21:26 -0800352 * 0 <= tv_nsec < NSEC_PER_SEC
Thomas Gleixner753be622006-01-09 20:52:22 -0800353 * For negative values only the tv_sec field is negative !
354 */
Thomas Gleixner12e09332009-09-14 23:37:40 +0200355void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
Thomas Gleixner753be622006-01-09 20:52:22 -0800356{
357 while (nsec >= NSEC_PER_SEC) {
Thomas Gleixner12e09332009-09-14 23:37:40 +0200358 /*
359 * The following asm() prevents the compiler from
360 * optimising this loop into a modulo operation. See
361 * also __iter_div_u64_rem() in include/linux/time.h
362 */
363 asm("" : "+rm"(nsec));
Thomas Gleixner753be622006-01-09 20:52:22 -0800364 nsec -= NSEC_PER_SEC;
365 ++sec;
366 }
367 while (nsec < 0) {
Thomas Gleixner12e09332009-09-14 23:37:40 +0200368 asm("" : "+rm"(nsec));
Thomas Gleixner753be622006-01-09 20:52:22 -0800369 nsec += NSEC_PER_SEC;
370 --sec;
371 }
372 ts->tv_sec = sec;
373 ts->tv_nsec = nsec;
374}
YOSHIFUJI Hideaki7c3f9442008-04-21 19:45:12 -0700375EXPORT_SYMBOL(set_normalized_timespec);
Thomas Gleixner753be622006-01-09 20:52:22 -0800376
Thomas Gleixnerf8f46da2006-01-09 20:52:30 -0800377/**
378 * ns_to_timespec - Convert nanoseconds to timespec
379 * @nsec: the nanoseconds value to be converted
380 *
381 * Returns the timespec representation of the nsec parameter.
382 */
Roman Zippeldf869b62006-03-26 01:38:11 -0800383struct timespec ns_to_timespec(const s64 nsec)
Thomas Gleixnerf8f46da2006-01-09 20:52:30 -0800384{
385 struct timespec ts;
Roman Zippelf8bd2252008-05-01 04:34:31 -0700386 s32 rem;
Thomas Gleixnerf8f46da2006-01-09 20:52:30 -0800387
George Anzinger88fc3892006-02-03 03:04:20 -0800388 if (!nsec)
389 return (struct timespec) {0, 0};
390
Roman Zippelf8bd2252008-05-01 04:34:31 -0700391 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
392 if (unlikely(rem < 0)) {
393 ts.tv_sec--;
394 rem += NSEC_PER_SEC;
395 }
396 ts.tv_nsec = rem;
Thomas Gleixnerf8f46da2006-01-09 20:52:30 -0800397
398 return ts;
399}
Stephen Hemminger85795d62007-03-24 21:35:33 -0700400EXPORT_SYMBOL(ns_to_timespec);
Thomas Gleixnerf8f46da2006-01-09 20:52:30 -0800401
402/**
403 * ns_to_timeval - Convert nanoseconds to timeval
404 * @nsec: the nanoseconds value to be converted
405 *
406 * Returns the timeval representation of the nsec parameter.
407 */
Roman Zippeldf869b62006-03-26 01:38:11 -0800408struct timeval ns_to_timeval(const s64 nsec)
Thomas Gleixnerf8f46da2006-01-09 20:52:30 -0800409{
410 struct timespec ts = ns_to_timespec(nsec);
411 struct timeval tv;
412
413 tv.tv_sec = ts.tv_sec;
414 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
415
416 return tv;
417}
Eric Dumazetb7aa0bf2007-04-19 16:16:32 -0700418EXPORT_SYMBOL(ns_to_timeval);
Thomas Gleixnerf8f46da2006-01-09 20:52:30 -0800419
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800420/*
Ingo Molnar41cf5442007-02-16 01:27:28 -0800421 * When we convert to jiffies then we interpret incoming values
422 * the following way:
423 *
424 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
425 *
426 * - 'too large' values [that would result in larger than
427 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
428 *
429 * - all other values are converted to jiffies by either multiplying
430 * the input value by a factor or dividing it with a factor
431 *
432 * We must also be careful about 32-bit overflows.
433 */
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800434unsigned long msecs_to_jiffies(const unsigned int m)
435{
Ingo Molnar41cf5442007-02-16 01:27:28 -0800436 /*
437 * Negative value, means infinite timeout:
438 */
439 if ((int)m < 0)
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800440 return MAX_JIFFY_OFFSET;
Ingo Molnar41cf5442007-02-16 01:27:28 -0800441
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800442#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
Ingo Molnar41cf5442007-02-16 01:27:28 -0800443 /*
444 * HZ is equal to or smaller than 1000, and 1000 is a nice
445 * round multiple of HZ, divide with the factor between them,
446 * but round upwards:
447 */
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800448 return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
449#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
Ingo Molnar41cf5442007-02-16 01:27:28 -0800450 /*
451 * HZ is larger than 1000, and HZ is a nice round multiple of
452 * 1000 - simply multiply with the factor between them.
453 *
454 * But first make sure the multiplication result cannot
455 * overflow:
456 */
457 if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
458 return MAX_JIFFY_OFFSET;
459
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800460 return m * (HZ / MSEC_PER_SEC);
461#else
Ingo Molnar41cf5442007-02-16 01:27:28 -0800462 /*
463 * Generic case - multiply, round and divide. But first
464 * check that if we are doing a net multiplication, that
H. Peter Anvinbdc80782008-02-08 04:21:26 -0800465 * we wouldn't overflow:
Ingo Molnar41cf5442007-02-16 01:27:28 -0800466 */
467 if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
468 return MAX_JIFFY_OFFSET;
469
H. Peter Anvinb9095fd2008-05-02 16:18:42 -0700470 return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32)
H. Peter Anvinbdc80782008-02-08 04:21:26 -0800471 >> MSEC_TO_HZ_SHR32;
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800472#endif
473}
474EXPORT_SYMBOL(msecs_to_jiffies);
475
476unsigned long usecs_to_jiffies(const unsigned int u)
477{
478 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
479 return MAX_JIFFY_OFFSET;
480#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
481 return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
482#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
483 return u * (HZ / USEC_PER_SEC);
484#else
H. Peter Anvinb9095fd2008-05-02 16:18:42 -0700485 return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
H. Peter Anvinbdc80782008-02-08 04:21:26 -0800486 >> USEC_TO_HZ_SHR32;
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800487#endif
488}
489EXPORT_SYMBOL(usecs_to_jiffies);
490
491/*
492 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
493 * that a remainder subtract here would not do the right thing as the
494 * resolution values don't fall on second boundries. I.e. the line:
495 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
496 *
497 * Rather, we just shift the bits off the right.
498 *
499 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
500 * value to a scaled second value.
501 */
502unsigned long
503timespec_to_jiffies(const struct timespec *value)
504{
505 unsigned long sec = value->tv_sec;
506 long nsec = value->tv_nsec + TICK_NSEC - 1;
507
508 if (sec >= MAX_SEC_IN_JIFFIES){
509 sec = MAX_SEC_IN_JIFFIES;
510 nsec = 0;
511 }
512 return (((u64)sec * SEC_CONVERSION) +
513 (((u64)nsec * NSEC_CONVERSION) >>
514 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
515
516}
517EXPORT_SYMBOL(timespec_to_jiffies);
518
519void
520jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
521{
522 /*
523 * Convert jiffies to nanoseconds and separate with
524 * one divide.
525 */
Roman Zippelf8bd2252008-05-01 04:34:31 -0700526 u32 rem;
527 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
528 NSEC_PER_SEC, &rem);
529 value->tv_nsec = rem;
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800530}
531EXPORT_SYMBOL(jiffies_to_timespec);
532
533/* Same for "timeval"
534 *
535 * Well, almost. The problem here is that the real system resolution is
536 * in nanoseconds and the value being converted is in micro seconds.
537 * Also for some machines (those that use HZ = 1024, in-particular),
538 * there is a LARGE error in the tick size in microseconds.
539
540 * The solution we use is to do the rounding AFTER we convert the
541 * microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
542 * Instruction wise, this should cost only an additional add with carry
543 * instruction above the way it was done above.
544 */
545unsigned long
546timeval_to_jiffies(const struct timeval *value)
547{
548 unsigned long sec = value->tv_sec;
549 long usec = value->tv_usec;
550
551 if (sec >= MAX_SEC_IN_JIFFIES){
552 sec = MAX_SEC_IN_JIFFIES;
553 usec = 0;
554 }
555 return (((u64)sec * SEC_CONVERSION) +
556 (((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
557 (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
558}
Thomas Bittermann456a09d2007-04-04 22:20:54 +0200559EXPORT_SYMBOL(timeval_to_jiffies);
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800560
561void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
562{
563 /*
564 * Convert jiffies to nanoseconds and separate with
565 * one divide.
566 */
Roman Zippelf8bd2252008-05-01 04:34:31 -0700567 u32 rem;
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800568
Roman Zippelf8bd2252008-05-01 04:34:31 -0700569 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
570 NSEC_PER_SEC, &rem);
571 value->tv_usec = rem / NSEC_PER_USEC;
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800572}
Thomas Bittermann456a09d2007-04-04 22:20:54 +0200573EXPORT_SYMBOL(jiffies_to_timeval);
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800574
575/*
576 * Convert jiffies/jiffies_64 to clock_t and back.
577 */
hankcbbc7192011-09-20 13:53:39 -0700578clock_t jiffies_to_clock_t(unsigned long x)
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800579{
580#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
David Fries6ffc7872008-02-06 01:38:04 -0800581# if HZ < USER_HZ
582 return x * (USER_HZ / HZ);
583# else
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800584 return x / (HZ / USER_HZ);
David Fries6ffc7872008-02-06 01:38:04 -0800585# endif
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800586#else
Roman Zippel71abb3a2008-05-01 04:34:26 -0700587 return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800588#endif
589}
590EXPORT_SYMBOL(jiffies_to_clock_t);
591
592unsigned long clock_t_to_jiffies(unsigned long x)
593{
594#if (HZ % USER_HZ)==0
595 if (x >= ~0UL / (HZ / USER_HZ))
596 return ~0UL;
597 return x * (HZ / USER_HZ);
598#else
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800599 /* Don't worry about loss of precision here .. */
600 if (x >= ~0UL / HZ * USER_HZ)
601 return ~0UL;
602
603 /* .. but do try to contain it here */
Roman Zippel71abb3a2008-05-01 04:34:26 -0700604 return div_u64((u64)x * HZ, USER_HZ);
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800605#endif
606}
607EXPORT_SYMBOL(clock_t_to_jiffies);
608
609u64 jiffies_64_to_clock_t(u64 x)
610{
611#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
David Fries6ffc7872008-02-06 01:38:04 -0800612# if HZ < USER_HZ
Roman Zippel71abb3a2008-05-01 04:34:26 -0700613 x = div_u64(x * USER_HZ, HZ);
Andrew Mortonec03d702008-02-06 01:38:06 -0800614# elif HZ > USER_HZ
Roman Zippel71abb3a2008-05-01 04:34:26 -0700615 x = div_u64(x, HZ / USER_HZ);
Andrew Mortonec03d702008-02-06 01:38:06 -0800616# else
617 /* Nothing to do */
David Fries6ffc7872008-02-06 01:38:04 -0800618# endif
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800619#else
620 /*
621 * There are better ways that don't overflow early,
622 * but even this doesn't overflow in hundreds of years
623 * in 64 bits, so..
624 */
Roman Zippel71abb3a2008-05-01 04:34:26 -0700625 x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800626#endif
627 return x;
628}
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800629EXPORT_SYMBOL(jiffies_64_to_clock_t);
630
631u64 nsec_to_clock_t(u64 x)
632{
633#if (NSEC_PER_SEC % USER_HZ) == 0
Roman Zippel71abb3a2008-05-01 04:34:26 -0700634 return div_u64(x, NSEC_PER_SEC / USER_HZ);
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800635#elif (USER_HZ % 512) == 0
Roman Zippel71abb3a2008-05-01 04:34:26 -0700636 return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800637#else
638 /*
639 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
640 * overflow after 64.99 years.
641 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
642 */
Roman Zippel71abb3a2008-05-01 04:34:26 -0700643 return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800644#endif
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800645}
646
Hidetoshi Setob7b20df92009-11-26 14:49:27 +0900647/**
Venkatesh Pallipadia1dabb62010-12-21 17:09:01 -0800648 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
Hidetoshi Setob7b20df92009-11-26 14:49:27 +0900649 *
650 * @n: nsecs in u64
651 *
652 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
653 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
654 * for scheduler, not for use in device drivers to calculate timeout value.
655 *
656 * note:
657 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
658 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
659 */
Venkatesh Pallipadia1dabb62010-12-21 17:09:01 -0800660u64 nsecs_to_jiffies64(u64 n)
Hidetoshi Setob7b20df92009-11-26 14:49:27 +0900661{
662#if (NSEC_PER_SEC % HZ) == 0
663 /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
664 return div_u64(n, NSEC_PER_SEC / HZ);
665#elif (HZ % 512) == 0
666 /* overflow after 292 years if HZ = 1024 */
667 return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
668#else
669 /*
670 * Generic case - optimized for cases where HZ is a multiple of 3.
671 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
672 */
673 return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
674#endif
675}
676
Venkatesh Pallipadia1dabb62010-12-21 17:09:01 -0800677/**
678 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
679 *
680 * @n: nsecs in u64
681 *
682 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
683 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
684 * for scheduler, not for use in device drivers to calculate timeout value.
685 *
686 * note:
687 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
688 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
689 */
690unsigned long nsecs_to_jiffies(u64 n)
691{
692 return (unsigned long)nsecs_to_jiffies64(n);
693}
694
Thomas Gleixnerdf0cc052008-08-31 08:09:53 -0700695/*
696 * Add two timespec values and do a safety check for overflow.
697 * It's assumed that both values are valid (>= 0)
698 */
699struct timespec timespec_add_safe(const struct timespec lhs,
700 const struct timespec rhs)
701{
702 struct timespec res;
703
704 set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
705 lhs.tv_nsec + rhs.tv_nsec);
706
707 if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
708 res.tv_sec = TIME_T_MAX;
709
710 return res;
711}