Mika Westerberg | 5928808 | 2013-01-22 12:26:29 +0200 | [diff] [blame^] | 1 | /* |
| 2 | * PXA2xx SPI DMA engine support. |
| 3 | * |
| 4 | * Copyright (C) 2013, Intel Corporation |
| 5 | * Author: Mika Westerberg <mika.westerberg@linux.intel.com> |
| 6 | * |
| 7 | * This program is free software; you can redistribute it and/or modify |
| 8 | * it under the terms of the GNU General Public License version 2 as |
| 9 | * published by the Free Software Foundation. |
| 10 | */ |
| 11 | |
| 12 | #include <linux/init.h> |
| 13 | #include <linux/device.h> |
| 14 | #include <linux/dma-mapping.h> |
| 15 | #include <linux/dmaengine.h> |
| 16 | #include <linux/pxa2xx_ssp.h> |
| 17 | #include <linux/scatterlist.h> |
| 18 | #include <linux/sizes.h> |
| 19 | #include <linux/spi/spi.h> |
| 20 | #include <linux/spi/pxa2xx_spi.h> |
| 21 | |
| 22 | #include "spi-pxa2xx.h" |
| 23 | |
| 24 | static int pxa2xx_spi_map_dma_buffer(struct driver_data *drv_data, |
| 25 | enum dma_data_direction dir) |
| 26 | { |
| 27 | int i, nents, len = drv_data->len; |
| 28 | struct scatterlist *sg; |
| 29 | struct device *dmadev; |
| 30 | struct sg_table *sgt; |
| 31 | void *buf, *pbuf; |
| 32 | |
| 33 | /* |
| 34 | * Some DMA controllers have problems transferring buffers that are |
| 35 | * not multiple of 4 bytes. So we truncate the transfer so that it |
| 36 | * is suitable for such controllers, and handle the trailing bytes |
| 37 | * manually after the DMA completes. |
| 38 | * |
| 39 | * REVISIT: It would be better if this information could be |
| 40 | * retrieved directly from the DMA device in a similar way than |
| 41 | * ->copy_align etc. is done. |
| 42 | */ |
| 43 | len = ALIGN(drv_data->len, 4); |
| 44 | |
| 45 | if (dir == DMA_TO_DEVICE) { |
| 46 | dmadev = drv_data->tx_chan->device->dev; |
| 47 | sgt = &drv_data->tx_sgt; |
| 48 | buf = drv_data->tx; |
| 49 | drv_data->tx_map_len = len; |
| 50 | } else { |
| 51 | dmadev = drv_data->rx_chan->device->dev; |
| 52 | sgt = &drv_data->rx_sgt; |
| 53 | buf = drv_data->rx; |
| 54 | drv_data->rx_map_len = len; |
| 55 | } |
| 56 | |
| 57 | nents = DIV_ROUND_UP(len, SZ_2K); |
| 58 | if (nents != sgt->nents) { |
| 59 | int ret; |
| 60 | |
| 61 | sg_free_table(sgt); |
| 62 | ret = sg_alloc_table(sgt, nents, GFP_KERNEL); |
| 63 | if (ret) |
| 64 | return ret; |
| 65 | } |
| 66 | |
| 67 | pbuf = buf; |
| 68 | for_each_sg(sgt->sgl, sg, sgt->nents, i) { |
| 69 | size_t bytes = min_t(size_t, len, SZ_2K); |
| 70 | |
| 71 | if (buf) |
| 72 | sg_set_buf(sg, pbuf, bytes); |
| 73 | else |
| 74 | sg_set_buf(sg, drv_data->dummy, bytes); |
| 75 | |
| 76 | pbuf += bytes; |
| 77 | len -= bytes; |
| 78 | } |
| 79 | |
| 80 | nents = dma_map_sg(dmadev, sgt->sgl, sgt->nents, dir); |
| 81 | if (!nents) |
| 82 | return -ENOMEM; |
| 83 | |
| 84 | return nents; |
| 85 | } |
| 86 | |
| 87 | static void pxa2xx_spi_unmap_dma_buffer(struct driver_data *drv_data, |
| 88 | enum dma_data_direction dir) |
| 89 | { |
| 90 | struct device *dmadev; |
| 91 | struct sg_table *sgt; |
| 92 | |
| 93 | if (dir == DMA_TO_DEVICE) { |
| 94 | dmadev = drv_data->tx_chan->device->dev; |
| 95 | sgt = &drv_data->tx_sgt; |
| 96 | } else { |
| 97 | dmadev = drv_data->rx_chan->device->dev; |
| 98 | sgt = &drv_data->rx_sgt; |
| 99 | } |
| 100 | |
| 101 | dma_unmap_sg(dmadev, sgt->sgl, sgt->nents, dir); |
| 102 | } |
| 103 | |
| 104 | static void pxa2xx_spi_unmap_dma_buffers(struct driver_data *drv_data) |
| 105 | { |
| 106 | if (!drv_data->dma_mapped) |
| 107 | return; |
| 108 | |
| 109 | pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_FROM_DEVICE); |
| 110 | pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_TO_DEVICE); |
| 111 | |
| 112 | drv_data->dma_mapped = 0; |
| 113 | } |
| 114 | |
| 115 | static void pxa2xx_spi_dma_transfer_complete(struct driver_data *drv_data, |
| 116 | bool error) |
| 117 | { |
| 118 | struct spi_message *msg = drv_data->cur_msg; |
| 119 | |
| 120 | /* |
| 121 | * It is possible that one CPU is handling ROR interrupt and other |
| 122 | * just gets DMA completion. Calling pump_transfers() twice for the |
| 123 | * same transfer leads to problems thus we prevent concurrent calls |
| 124 | * by using ->dma_running. |
| 125 | */ |
| 126 | if (atomic_dec_and_test(&drv_data->dma_running)) { |
| 127 | void __iomem *reg = drv_data->ioaddr; |
| 128 | |
| 129 | /* |
| 130 | * If the other CPU is still handling the ROR interrupt we |
| 131 | * might not know about the error yet. So we re-check the |
| 132 | * ROR bit here before we clear the status register. |
| 133 | */ |
| 134 | if (!error) { |
| 135 | u32 status = read_SSSR(reg) & drv_data->mask_sr; |
| 136 | error = status & SSSR_ROR; |
| 137 | } |
| 138 | |
| 139 | /* Clear status & disable interrupts */ |
| 140 | write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg); |
| 141 | write_SSSR_CS(drv_data, drv_data->clear_sr); |
| 142 | if (!pxa25x_ssp_comp(drv_data)) |
| 143 | write_SSTO(0, reg); |
| 144 | |
| 145 | if (!error) { |
| 146 | pxa2xx_spi_unmap_dma_buffers(drv_data); |
| 147 | |
| 148 | /* Handle the last bytes of unaligned transfer */ |
| 149 | drv_data->tx += drv_data->tx_map_len; |
| 150 | drv_data->write(drv_data); |
| 151 | |
| 152 | drv_data->rx += drv_data->rx_map_len; |
| 153 | drv_data->read(drv_data); |
| 154 | |
| 155 | msg->actual_length += drv_data->len; |
| 156 | msg->state = pxa2xx_spi_next_transfer(drv_data); |
| 157 | } else { |
| 158 | /* In case we got an error we disable the SSP now */ |
| 159 | write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg); |
| 160 | |
| 161 | msg->state = ERROR_STATE; |
| 162 | } |
| 163 | |
| 164 | tasklet_schedule(&drv_data->pump_transfers); |
| 165 | } |
| 166 | } |
| 167 | |
| 168 | static void pxa2xx_spi_dma_callback(void *data) |
| 169 | { |
| 170 | pxa2xx_spi_dma_transfer_complete(data, false); |
| 171 | } |
| 172 | |
| 173 | static struct dma_async_tx_descriptor * |
| 174 | pxa2xx_spi_dma_prepare_one(struct driver_data *drv_data, |
| 175 | enum dma_transfer_direction dir) |
| 176 | { |
| 177 | struct pxa2xx_spi_master *pdata = drv_data->master_info; |
| 178 | struct chip_data *chip = drv_data->cur_chip; |
| 179 | enum dma_slave_buswidth width; |
| 180 | struct dma_slave_config cfg; |
| 181 | struct dma_chan *chan; |
| 182 | struct sg_table *sgt; |
| 183 | int nents, ret; |
| 184 | |
| 185 | switch (drv_data->n_bytes) { |
| 186 | case 1: |
| 187 | width = DMA_SLAVE_BUSWIDTH_1_BYTE; |
| 188 | break; |
| 189 | case 2: |
| 190 | width = DMA_SLAVE_BUSWIDTH_2_BYTES; |
| 191 | break; |
| 192 | default: |
| 193 | width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| 194 | break; |
| 195 | } |
| 196 | |
| 197 | memset(&cfg, 0, sizeof(cfg)); |
| 198 | cfg.direction = dir; |
| 199 | |
| 200 | if (dir == DMA_MEM_TO_DEV) { |
| 201 | cfg.dst_addr = drv_data->ssdr_physical; |
| 202 | cfg.dst_addr_width = width; |
| 203 | cfg.dst_maxburst = chip->dma_burst_size; |
| 204 | cfg.slave_id = pdata->tx_slave_id; |
| 205 | |
| 206 | sgt = &drv_data->tx_sgt; |
| 207 | nents = drv_data->tx_nents; |
| 208 | chan = drv_data->tx_chan; |
| 209 | } else { |
| 210 | cfg.src_addr = drv_data->ssdr_physical; |
| 211 | cfg.src_addr_width = width; |
| 212 | cfg.src_maxburst = chip->dma_burst_size; |
| 213 | cfg.slave_id = pdata->rx_slave_id; |
| 214 | |
| 215 | sgt = &drv_data->rx_sgt; |
| 216 | nents = drv_data->rx_nents; |
| 217 | chan = drv_data->rx_chan; |
| 218 | } |
| 219 | |
| 220 | ret = dmaengine_slave_config(chan, &cfg); |
| 221 | if (ret) { |
| 222 | dev_warn(&drv_data->pdev->dev, "DMA slave config failed\n"); |
| 223 | return NULL; |
| 224 | } |
| 225 | |
| 226 | return dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir, |
| 227 | DMA_PREP_INTERRUPT | DMA_CTRL_ACK); |
| 228 | } |
| 229 | |
| 230 | static bool pxa2xx_spi_dma_filter(struct dma_chan *chan, void *param) |
| 231 | { |
| 232 | const struct pxa2xx_spi_master *pdata = param; |
| 233 | |
| 234 | return chan->chan_id == pdata->tx_chan_id || |
| 235 | chan->chan_id == pdata->rx_chan_id; |
| 236 | } |
| 237 | |
| 238 | bool pxa2xx_spi_dma_is_possible(size_t len) |
| 239 | { |
| 240 | return len <= MAX_DMA_LEN; |
| 241 | } |
| 242 | |
| 243 | int pxa2xx_spi_map_dma_buffers(struct driver_data *drv_data) |
| 244 | { |
| 245 | const struct chip_data *chip = drv_data->cur_chip; |
| 246 | int ret; |
| 247 | |
| 248 | if (!chip->enable_dma) |
| 249 | return 0; |
| 250 | |
| 251 | /* Don't bother with DMA if we can't do even a single burst */ |
| 252 | if (drv_data->len < chip->dma_burst_size) |
| 253 | return 0; |
| 254 | |
| 255 | ret = pxa2xx_spi_map_dma_buffer(drv_data, DMA_TO_DEVICE); |
| 256 | if (ret <= 0) { |
| 257 | dev_warn(&drv_data->pdev->dev, "failed to DMA map TX\n"); |
| 258 | return 0; |
| 259 | } |
| 260 | |
| 261 | drv_data->tx_nents = ret; |
| 262 | |
| 263 | ret = pxa2xx_spi_map_dma_buffer(drv_data, DMA_FROM_DEVICE); |
| 264 | if (ret <= 0) { |
| 265 | pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_TO_DEVICE); |
| 266 | dev_warn(&drv_data->pdev->dev, "failed to DMA map RX\n"); |
| 267 | return 0; |
| 268 | } |
| 269 | |
| 270 | drv_data->rx_nents = ret; |
| 271 | return 1; |
| 272 | } |
| 273 | |
| 274 | irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data) |
| 275 | { |
| 276 | u32 status; |
| 277 | |
| 278 | status = read_SSSR(drv_data->ioaddr) & drv_data->mask_sr; |
| 279 | if (status & SSSR_ROR) { |
| 280 | dev_err(&drv_data->pdev->dev, "FIFO overrun\n"); |
| 281 | |
| 282 | dmaengine_terminate_all(drv_data->rx_chan); |
| 283 | dmaengine_terminate_all(drv_data->tx_chan); |
| 284 | |
| 285 | pxa2xx_spi_dma_transfer_complete(drv_data, true); |
| 286 | return IRQ_HANDLED; |
| 287 | } |
| 288 | |
| 289 | return IRQ_NONE; |
| 290 | } |
| 291 | |
| 292 | int pxa2xx_spi_dma_prepare(struct driver_data *drv_data, u32 dma_burst) |
| 293 | { |
| 294 | struct dma_async_tx_descriptor *tx_desc, *rx_desc; |
| 295 | |
| 296 | tx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_MEM_TO_DEV); |
| 297 | if (!tx_desc) { |
| 298 | dev_err(&drv_data->pdev->dev, |
| 299 | "failed to get DMA TX descriptor\n"); |
| 300 | return -EBUSY; |
| 301 | } |
| 302 | |
| 303 | rx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_DEV_TO_MEM); |
| 304 | if (!rx_desc) { |
| 305 | dev_err(&drv_data->pdev->dev, |
| 306 | "failed to get DMA RX descriptor\n"); |
| 307 | return -EBUSY; |
| 308 | } |
| 309 | |
| 310 | /* We are ready when RX completes */ |
| 311 | rx_desc->callback = pxa2xx_spi_dma_callback; |
| 312 | rx_desc->callback_param = drv_data; |
| 313 | |
| 314 | dmaengine_submit(rx_desc); |
| 315 | dmaengine_submit(tx_desc); |
| 316 | return 0; |
| 317 | } |
| 318 | |
| 319 | void pxa2xx_spi_dma_start(struct driver_data *drv_data) |
| 320 | { |
| 321 | dma_async_issue_pending(drv_data->rx_chan); |
| 322 | dma_async_issue_pending(drv_data->tx_chan); |
| 323 | |
| 324 | atomic_set(&drv_data->dma_running, 1); |
| 325 | } |
| 326 | |
| 327 | int pxa2xx_spi_dma_setup(struct driver_data *drv_data) |
| 328 | { |
| 329 | struct pxa2xx_spi_master *pdata = drv_data->master_info; |
| 330 | dma_cap_mask_t mask; |
| 331 | |
| 332 | dma_cap_zero(mask); |
| 333 | dma_cap_set(DMA_SLAVE, mask); |
| 334 | |
| 335 | drv_data->dummy = devm_kzalloc(&drv_data->pdev->dev, SZ_2K, GFP_KERNEL); |
| 336 | if (!drv_data->dummy) |
| 337 | return -ENOMEM; |
| 338 | |
| 339 | drv_data->tx_chan = dma_request_channel(mask, pxa2xx_spi_dma_filter, |
| 340 | pdata); |
| 341 | if (!drv_data->tx_chan) |
| 342 | return -ENODEV; |
| 343 | |
| 344 | drv_data->rx_chan = dma_request_channel(mask, pxa2xx_spi_dma_filter, |
| 345 | pdata); |
| 346 | if (!drv_data->rx_chan) { |
| 347 | dma_release_channel(drv_data->tx_chan); |
| 348 | drv_data->tx_chan = NULL; |
| 349 | return -ENODEV; |
| 350 | } |
| 351 | |
| 352 | return 0; |
| 353 | } |
| 354 | |
| 355 | void pxa2xx_spi_dma_release(struct driver_data *drv_data) |
| 356 | { |
| 357 | if (drv_data->rx_chan) { |
| 358 | dmaengine_terminate_all(drv_data->rx_chan); |
| 359 | dma_release_channel(drv_data->rx_chan); |
| 360 | sg_free_table(&drv_data->rx_sgt); |
| 361 | drv_data->rx_chan = NULL; |
| 362 | } |
| 363 | if (drv_data->tx_chan) { |
| 364 | dmaengine_terminate_all(drv_data->tx_chan); |
| 365 | dma_release_channel(drv_data->tx_chan); |
| 366 | sg_free_table(&drv_data->tx_sgt); |
| 367 | drv_data->tx_chan = NULL; |
| 368 | } |
| 369 | } |
| 370 | |
| 371 | void pxa2xx_spi_dma_resume(struct driver_data *drv_data) |
| 372 | { |
| 373 | } |
| 374 | |
| 375 | int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip, |
| 376 | struct spi_device *spi, |
| 377 | u8 bits_per_word, u32 *burst_code, |
| 378 | u32 *threshold) |
| 379 | { |
| 380 | struct pxa2xx_spi_chip *chip_info = spi->controller_data; |
| 381 | |
| 382 | /* |
| 383 | * If the DMA burst size is given in chip_info we use that, |
| 384 | * otherwise we use the default. Also we use the default FIFO |
| 385 | * thresholds for now. |
| 386 | */ |
| 387 | *burst_code = chip_info ? chip_info->dma_burst_size : 16; |
| 388 | *threshold = SSCR1_RxTresh(RX_THRESH_DFLT) |
| 389 | | SSCR1_TxTresh(TX_THRESH_DFLT); |
| 390 | |
| 391 | return 0; |
| 392 | } |