blob: a8e99ef76a08e3758adc6794d9580991b8207361 [file] [log] [blame]
Tejun Heo7caa4712019-08-28 15:05:58 -07001/* SPDX-License-Identifier: GPL-2.0
2 *
3 * IO cost model based controller.
4 *
5 * Copyright (C) 2019 Tejun Heo <tj@kernel.org>
6 * Copyright (C) 2019 Andy Newell <newella@fb.com>
7 * Copyright (C) 2019 Facebook
8 *
9 * One challenge of controlling IO resources is the lack of trivially
10 * observable cost metric. This is distinguished from CPU and memory where
11 * wallclock time and the number of bytes can serve as accurate enough
12 * approximations.
13 *
14 * Bandwidth and iops are the most commonly used metrics for IO devices but
15 * depending on the type and specifics of the device, different IO patterns
16 * easily lead to multiple orders of magnitude variations rendering them
17 * useless for the purpose of IO capacity distribution. While on-device
18 * time, with a lot of clutches, could serve as a useful approximation for
19 * non-queued rotational devices, this is no longer viable with modern
20 * devices, even the rotational ones.
21 *
22 * While there is no cost metric we can trivially observe, it isn't a
23 * complete mystery. For example, on a rotational device, seek cost
24 * dominates while a contiguous transfer contributes a smaller amount
25 * proportional to the size. If we can characterize at least the relative
26 * costs of these different types of IOs, it should be possible to
27 * implement a reasonable work-conserving proportional IO resource
28 * distribution.
29 *
30 * 1. IO Cost Model
31 *
32 * IO cost model estimates the cost of an IO given its basic parameters and
33 * history (e.g. the end sector of the last IO). The cost is measured in
34 * device time. If a given IO is estimated to cost 10ms, the device should
35 * be able to process ~100 of those IOs in a second.
36 *
37 * Currently, there's only one builtin cost model - linear. Each IO is
38 * classified as sequential or random and given a base cost accordingly.
39 * On top of that, a size cost proportional to the length of the IO is
40 * added. While simple, this model captures the operational
41 * characteristics of a wide varienty of devices well enough. Default
42 * paramters for several different classes of devices are provided and the
43 * parameters can be configured from userspace via
44 * /sys/fs/cgroup/io.cost.model.
45 *
46 * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
47 * device-specific coefficients.
48 *
49 * 2. Control Strategy
50 *
51 * The device virtual time (vtime) is used as the primary control metric.
52 * The control strategy is composed of the following three parts.
53 *
54 * 2-1. Vtime Distribution
55 *
56 * When a cgroup becomes active in terms of IOs, its hierarchical share is
57 * calculated. Please consider the following hierarchy where the numbers
58 * inside parentheses denote the configured weights.
59 *
60 * root
61 * / \
62 * A (w:100) B (w:300)
63 * / \
64 * A0 (w:100) A1 (w:100)
65 *
66 * If B is idle and only A0 and A1 are actively issuing IOs, as the two are
67 * of equal weight, each gets 50% share. If then B starts issuing IOs, B
68 * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest,
69 * 12.5% each. The distribution mechanism only cares about these flattened
70 * shares. They're called hweights (hierarchical weights) and always add
71 * upto 1 (HWEIGHT_WHOLE).
72 *
73 * A given cgroup's vtime runs slower in inverse proportion to its hweight.
74 * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5)
75 * against the device vtime - an IO which takes 10ms on the underlying
76 * device is considered to take 80ms on A0.
77 *
78 * This constitutes the basis of IO capacity distribution. Each cgroup's
79 * vtime is running at a rate determined by its hweight. A cgroup tracks
80 * the vtime consumed by past IOs and can issue a new IO iff doing so
81 * wouldn't outrun the current device vtime. Otherwise, the IO is
82 * suspended until the vtime has progressed enough to cover it.
83 *
84 * 2-2. Vrate Adjustment
85 *
86 * It's unrealistic to expect the cost model to be perfect. There are too
87 * many devices and even on the same device the overall performance
88 * fluctuates depending on numerous factors such as IO mixture and device
89 * internal garbage collection. The controller needs to adapt dynamically.
90 *
91 * This is achieved by adjusting the overall IO rate according to how busy
92 * the device is. If the device becomes overloaded, we're sending down too
93 * many IOs and should generally slow down. If there are waiting issuers
94 * but the device isn't saturated, we're issuing too few and should
95 * generally speed up.
96 *
97 * To slow down, we lower the vrate - the rate at which the device vtime
98 * passes compared to the wall clock. For example, if the vtime is running
99 * at the vrate of 75%, all cgroups added up would only be able to issue
100 * 750ms worth of IOs per second, and vice-versa for speeding up.
101 *
102 * Device business is determined using two criteria - rq wait and
103 * completion latencies.
104 *
105 * When a device gets saturated, the on-device and then the request queues
106 * fill up and a bio which is ready to be issued has to wait for a request
107 * to become available. When this delay becomes noticeable, it's a clear
108 * indication that the device is saturated and we lower the vrate. This
109 * saturation signal is fairly conservative as it only triggers when both
110 * hardware and software queues are filled up, and is used as the default
111 * busy signal.
112 *
113 * As devices can have deep queues and be unfair in how the queued commands
114 * are executed, soley depending on rq wait may not result in satisfactory
115 * control quality. For a better control quality, completion latency QoS
116 * parameters can be configured so that the device is considered saturated
117 * if N'th percentile completion latency rises above the set point.
118 *
119 * The completion latency requirements are a function of both the
120 * underlying device characteristics and the desired IO latency quality of
121 * service. There is an inherent trade-off - the tighter the latency QoS,
122 * the higher the bandwidth lossage. Latency QoS is disabled by default
123 * and can be set through /sys/fs/cgroup/io.cost.qos.
124 *
125 * 2-3. Work Conservation
126 *
127 * Imagine two cgroups A and B with equal weights. A is issuing a small IO
128 * periodically while B is sending out enough parallel IOs to saturate the
129 * device on its own. Let's say A's usage amounts to 100ms worth of IO
130 * cost per second, i.e., 10% of the device capacity. The naive
131 * distribution of half and half would lead to 60% utilization of the
132 * device, a significant reduction in the total amount of work done
133 * compared to free-for-all competition. This is too high a cost to pay
134 * for IO control.
135 *
136 * To conserve the total amount of work done, we keep track of how much
137 * each active cgroup is actually using and yield part of its weight if
138 * there are other cgroups which can make use of it. In the above case,
139 * A's weight will be lowered so that it hovers above the actual usage and
140 * B would be able to use the rest.
141 *
142 * As we don't want to penalize a cgroup for donating its weight, the
143 * surplus weight adjustment factors in a margin and has an immediate
144 * snapback mechanism in case the cgroup needs more IO vtime for itself.
145 *
146 * Note that adjusting down surplus weights has the same effects as
147 * accelerating vtime for other cgroups and work conservation can also be
148 * implemented by adjusting vrate dynamically. However, squaring who can
149 * donate and should take back how much requires hweight propagations
150 * anyway making it easier to implement and understand as a separate
151 * mechanism.
Tejun Heo6954ff12019-08-28 15:05:59 -0700152 *
153 * 3. Monitoring
154 *
155 * Instead of debugfs or other clumsy monitoring mechanisms, this
156 * controller uses a drgn based monitoring script -
157 * tools/cgroup/iocost_monitor.py. For details on drgn, please see
158 * https://github.com/osandov/drgn. The ouput looks like the following.
159 *
160 * sdb RUN per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12%
Tejun Heo7c1ee702019-09-04 12:45:56 -0700161 * active weight hweight% inflt% dbt delay usages%
162 * test/a * 50/ 50 33.33/ 33.33 27.65 2 0*041 033:033:033
163 * test/b * 100/ 100 66.67/ 66.67 17.56 0 0*000 066:079:077
Tejun Heo6954ff12019-08-28 15:05:59 -0700164 *
165 * - per : Timer period
166 * - cur_per : Internal wall and device vtime clock
167 * - vrate : Device virtual time rate against wall clock
168 * - weight : Surplus-adjusted and configured weights
169 * - hweight : Surplus-adjusted and configured hierarchical weights
170 * - inflt : The percentage of in-flight IO cost at the end of last period
171 * - del_ms : Deferred issuer delay induction level and duration
172 * - usages : Usage history
Tejun Heo7caa4712019-08-28 15:05:58 -0700173 */
174
175#include <linux/kernel.h>
176#include <linux/module.h>
177#include <linux/timer.h>
178#include <linux/time64.h>
179#include <linux/parser.h>
180#include <linux/sched/signal.h>
181#include <linux/blk-cgroup.h>
182#include "blk-rq-qos.h"
183#include "blk-stat.h"
184#include "blk-wbt.h"
185
186#ifdef CONFIG_TRACEPOINTS
187
188/* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */
189#define TRACE_IOCG_PATH_LEN 1024
190static DEFINE_SPINLOCK(trace_iocg_path_lock);
191static char trace_iocg_path[TRACE_IOCG_PATH_LEN];
192
193#define TRACE_IOCG_PATH(type, iocg, ...) \
194 do { \
195 unsigned long flags; \
196 if (trace_iocost_##type##_enabled()) { \
197 spin_lock_irqsave(&trace_iocg_path_lock, flags); \
198 cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup, \
199 trace_iocg_path, TRACE_IOCG_PATH_LEN); \
200 trace_iocost_##type(iocg, trace_iocg_path, \
201 ##__VA_ARGS__); \
202 spin_unlock_irqrestore(&trace_iocg_path_lock, flags); \
203 } \
204 } while (0)
205
206#else /* CONFIG_TRACE_POINTS */
207#define TRACE_IOCG_PATH(type, iocg, ...) do { } while (0)
208#endif /* CONFIG_TRACE_POINTS */
209
210enum {
211 MILLION = 1000000,
212
213 /* timer period is calculated from latency requirements, bound it */
214 MIN_PERIOD = USEC_PER_MSEC,
215 MAX_PERIOD = USEC_PER_SEC,
216
217 /*
218 * A cgroup's vtime can run 50% behind the device vtime, which
219 * serves as its IO credit buffer. Surplus weight adjustment is
220 * immediately canceled if the vtime margin runs below 10%.
221 */
222 MARGIN_PCT = 50,
223 INUSE_MARGIN_PCT = 10,
224
225 /* Have some play in waitq timer operations */
226 WAITQ_TIMER_MARGIN_PCT = 5,
227
228 /*
229 * vtime can wrap well within a reasonable uptime when vrate is
230 * consistently raised. Don't trust recorded cgroup vtime if the
231 * period counter indicates that it's older than 5mins.
232 */
233 VTIME_VALID_DUR = 300 * USEC_PER_SEC,
234
235 /*
236 * Remember the past three non-zero usages and use the max for
237 * surplus calculation. Three slots guarantee that we remember one
238 * full period usage from the last active stretch even after
239 * partial deactivation and re-activation periods. Don't start
240 * giving away weight before collecting two data points to prevent
241 * hweight adjustments based on one partial activation period.
242 */
243 NR_USAGE_SLOTS = 3,
244 MIN_VALID_USAGES = 2,
245
246 /* 1/64k is granular enough and can easily be handled w/ u32 */
247 HWEIGHT_WHOLE = 1 << 16,
248
249 /*
250 * As vtime is used to calculate the cost of each IO, it needs to
251 * be fairly high precision. For example, it should be able to
252 * represent the cost of a single page worth of discard with
253 * suffificient accuracy. At the same time, it should be able to
254 * represent reasonably long enough durations to be useful and
255 * convenient during operation.
256 *
257 * 1s worth of vtime is 2^37. This gives us both sub-nanosecond
258 * granularity and days of wrap-around time even at extreme vrates.
259 */
260 VTIME_PER_SEC_SHIFT = 37,
261 VTIME_PER_SEC = 1LLU << VTIME_PER_SEC_SHIFT,
262 VTIME_PER_USEC = VTIME_PER_SEC / USEC_PER_SEC,
263
264 /* bound vrate adjustments within two orders of magnitude */
265 VRATE_MIN_PPM = 10000, /* 1% */
266 VRATE_MAX_PPM = 100000000, /* 10000% */
267
268 VRATE_MIN = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION,
269 VRATE_CLAMP_ADJ_PCT = 4,
270
271 /* if IOs end up waiting for requests, issue less */
272 RQ_WAIT_BUSY_PCT = 5,
273
274 /* unbusy hysterisis */
275 UNBUSY_THR_PCT = 75,
276
277 /* don't let cmds which take a very long time pin lagging for too long */
278 MAX_LAGGING_PERIODS = 10,
279
280 /*
281 * If usage% * 1.25 + 2% is lower than hweight% by more than 3%,
282 * donate the surplus.
283 */
284 SURPLUS_SCALE_PCT = 125, /* * 125% */
285 SURPLUS_SCALE_ABS = HWEIGHT_WHOLE / 50, /* + 2% */
286 SURPLUS_MIN_ADJ_DELTA = HWEIGHT_WHOLE / 33, /* 3% */
287
288 /* switch iff the conditions are met for longer than this */
289 AUTOP_CYCLE_NSEC = 10LLU * NSEC_PER_SEC,
290
291 /*
292 * Count IO size in 4k pages. The 12bit shift helps keeping
293 * size-proportional components of cost calculation in closer
294 * numbers of digits to per-IO cost components.
295 */
296 IOC_PAGE_SHIFT = 12,
297 IOC_PAGE_SIZE = 1 << IOC_PAGE_SHIFT,
298 IOC_SECT_TO_PAGE_SHIFT = IOC_PAGE_SHIFT - SECTOR_SHIFT,
299
300 /* if apart further than 16M, consider randio for linear model */
301 LCOEF_RANDIO_PAGES = 4096,
302};
303
304enum ioc_running {
305 IOC_IDLE,
306 IOC_RUNNING,
307 IOC_STOP,
308};
309
310/* io.cost.qos controls including per-dev enable of the whole controller */
311enum {
312 QOS_ENABLE,
313 QOS_CTRL,
314 NR_QOS_CTRL_PARAMS,
315};
316
317/* io.cost.qos params */
318enum {
319 QOS_RPPM,
320 QOS_RLAT,
321 QOS_WPPM,
322 QOS_WLAT,
323 QOS_MIN,
324 QOS_MAX,
325 NR_QOS_PARAMS,
326};
327
328/* io.cost.model controls */
329enum {
330 COST_CTRL,
331 COST_MODEL,
332 NR_COST_CTRL_PARAMS,
333};
334
335/* builtin linear cost model coefficients */
336enum {
337 I_LCOEF_RBPS,
338 I_LCOEF_RSEQIOPS,
339 I_LCOEF_RRANDIOPS,
340 I_LCOEF_WBPS,
341 I_LCOEF_WSEQIOPS,
342 I_LCOEF_WRANDIOPS,
343 NR_I_LCOEFS,
344};
345
346enum {
347 LCOEF_RPAGE,
348 LCOEF_RSEQIO,
349 LCOEF_RRANDIO,
350 LCOEF_WPAGE,
351 LCOEF_WSEQIO,
352 LCOEF_WRANDIO,
353 NR_LCOEFS,
354};
355
356enum {
357 AUTOP_INVALID,
358 AUTOP_HDD,
359 AUTOP_SSD_QD1,
360 AUTOP_SSD_DFL,
361 AUTOP_SSD_FAST,
362};
363
364struct ioc_gq;
365
366struct ioc_params {
367 u32 qos[NR_QOS_PARAMS];
368 u64 i_lcoefs[NR_I_LCOEFS];
369 u64 lcoefs[NR_LCOEFS];
370 u32 too_fast_vrate_pct;
371 u32 too_slow_vrate_pct;
372};
373
374struct ioc_missed {
375 u32 nr_met;
376 u32 nr_missed;
377 u32 last_met;
378 u32 last_missed;
379};
380
381struct ioc_pcpu_stat {
382 struct ioc_missed missed[2];
383
384 u64 rq_wait_ns;
385 u64 last_rq_wait_ns;
386};
387
388/* per device */
389struct ioc {
390 struct rq_qos rqos;
391
392 bool enabled;
393
394 struct ioc_params params;
395 u32 period_us;
396 u32 margin_us;
397 u64 vrate_min;
398 u64 vrate_max;
399
400 spinlock_t lock;
401 struct timer_list timer;
402 struct list_head active_iocgs; /* active cgroups */
403 struct ioc_pcpu_stat __percpu *pcpu_stat;
404
405 enum ioc_running running;
406 atomic64_t vtime_rate;
407
408 seqcount_t period_seqcount;
409 u32 period_at; /* wallclock starttime */
410 u64 period_at_vtime; /* vtime starttime */
411
412 atomic64_t cur_period; /* inc'd each period */
413 int busy_level; /* saturation history */
414
415 u64 inuse_margin_vtime;
416 bool weights_updated;
417 atomic_t hweight_gen; /* for lazy hweights */
418
419 u64 autop_too_fast_at;
420 u64 autop_too_slow_at;
421 int autop_idx;
422 bool user_qos_params:1;
423 bool user_cost_model:1;
424};
425
426/* per device-cgroup pair */
427struct ioc_gq {
428 struct blkg_policy_data pd;
429 struct ioc *ioc;
430
431 /*
432 * A iocg can get its weight from two sources - an explicit
433 * per-device-cgroup configuration or the default weight of the
434 * cgroup. `cfg_weight` is the explicit per-device-cgroup
435 * configuration. `weight` is the effective considering both
436 * sources.
437 *
438 * When an idle cgroup becomes active its `active` goes from 0 to
439 * `weight`. `inuse` is the surplus adjusted active weight.
440 * `active` and `inuse` are used to calculate `hweight_active` and
441 * `hweight_inuse`.
442 *
443 * `last_inuse` remembers `inuse` while an iocg is idle to persist
444 * surplus adjustments.
445 */
446 u32 cfg_weight;
447 u32 weight;
448 u32 active;
449 u32 inuse;
450 u32 last_inuse;
451
452 sector_t cursor; /* to detect randio */
453
454 /*
455 * `vtime` is this iocg's vtime cursor which progresses as IOs are
456 * issued. If lagging behind device vtime, the delta represents
457 * the currently available IO budget. If runnning ahead, the
458 * overage.
459 *
460 * `vtime_done` is the same but progressed on completion rather
461 * than issue. The delta behind `vtime` represents the cost of
462 * currently in-flight IOs.
463 *
464 * `last_vtime` is used to remember `vtime` at the end of the last
465 * period to calculate utilization.
466 */
467 atomic64_t vtime;
468 atomic64_t done_vtime;
Tejun Heo36a52482019-09-04 12:45:52 -0700469 atomic64_t abs_vdebt;
Tejun Heo7caa4712019-08-28 15:05:58 -0700470 u64 last_vtime;
471
472 /*
473 * The period this iocg was last active in. Used for deactivation
474 * and invalidating `vtime`.
475 */
476 atomic64_t active_period;
477 struct list_head active_list;
478
479 /* see __propagate_active_weight() and current_hweight() for details */
480 u64 child_active_sum;
481 u64 child_inuse_sum;
482 int hweight_gen;
483 u32 hweight_active;
484 u32 hweight_inuse;
485 bool has_surplus;
486
487 struct wait_queue_head waitq;
488 struct hrtimer waitq_timer;
489 struct hrtimer delay_timer;
490
491 /* usage is recorded as fractions of HWEIGHT_WHOLE */
492 int usage_idx;
493 u32 usages[NR_USAGE_SLOTS];
494
495 /* this iocg's depth in the hierarchy and ancestors including self */
496 int level;
497 struct ioc_gq *ancestors[];
498};
499
500/* per cgroup */
501struct ioc_cgrp {
502 struct blkcg_policy_data cpd;
503 unsigned int dfl_weight;
504};
505
506struct ioc_now {
507 u64 now_ns;
508 u32 now;
509 u64 vnow;
510 u64 vrate;
511};
512
513struct iocg_wait {
514 struct wait_queue_entry wait;
515 struct bio *bio;
516 u64 abs_cost;
517 bool committed;
518};
519
520struct iocg_wake_ctx {
521 struct ioc_gq *iocg;
522 u32 hw_inuse;
523 s64 vbudget;
524};
525
526static const struct ioc_params autop[] = {
527 [AUTOP_HDD] = {
528 .qos = {
Tejun Heo7afccca2019-09-25 16:03:35 -0700529 [QOS_RLAT] = 250000, /* 250ms */
530 [QOS_WLAT] = 250000,
Tejun Heo7caa4712019-08-28 15:05:58 -0700531 [QOS_MIN] = VRATE_MIN_PPM,
532 [QOS_MAX] = VRATE_MAX_PPM,
533 },
534 .i_lcoefs = {
535 [I_LCOEF_RBPS] = 174019176,
536 [I_LCOEF_RSEQIOPS] = 41708,
537 [I_LCOEF_RRANDIOPS] = 370,
538 [I_LCOEF_WBPS] = 178075866,
539 [I_LCOEF_WSEQIOPS] = 42705,
540 [I_LCOEF_WRANDIOPS] = 378,
541 },
542 },
543 [AUTOP_SSD_QD1] = {
544 .qos = {
545 [QOS_RLAT] = 25000, /* 25ms */
546 [QOS_WLAT] = 25000,
547 [QOS_MIN] = VRATE_MIN_PPM,
548 [QOS_MAX] = VRATE_MAX_PPM,
549 },
550 .i_lcoefs = {
551 [I_LCOEF_RBPS] = 245855193,
552 [I_LCOEF_RSEQIOPS] = 61575,
553 [I_LCOEF_RRANDIOPS] = 6946,
554 [I_LCOEF_WBPS] = 141365009,
555 [I_LCOEF_WSEQIOPS] = 33716,
556 [I_LCOEF_WRANDIOPS] = 26796,
557 },
558 },
559 [AUTOP_SSD_DFL] = {
560 .qos = {
561 [QOS_RLAT] = 25000, /* 25ms */
562 [QOS_WLAT] = 25000,
563 [QOS_MIN] = VRATE_MIN_PPM,
564 [QOS_MAX] = VRATE_MAX_PPM,
565 },
566 .i_lcoefs = {
567 [I_LCOEF_RBPS] = 488636629,
568 [I_LCOEF_RSEQIOPS] = 8932,
569 [I_LCOEF_RRANDIOPS] = 8518,
570 [I_LCOEF_WBPS] = 427891549,
571 [I_LCOEF_WSEQIOPS] = 28755,
572 [I_LCOEF_WRANDIOPS] = 21940,
573 },
574 .too_fast_vrate_pct = 500,
575 },
576 [AUTOP_SSD_FAST] = {
577 .qos = {
578 [QOS_RLAT] = 5000, /* 5ms */
579 [QOS_WLAT] = 5000,
580 [QOS_MIN] = VRATE_MIN_PPM,
581 [QOS_MAX] = VRATE_MAX_PPM,
582 },
583 .i_lcoefs = {
584 [I_LCOEF_RBPS] = 3102524156LLU,
585 [I_LCOEF_RSEQIOPS] = 724816,
586 [I_LCOEF_RRANDIOPS] = 778122,
587 [I_LCOEF_WBPS] = 1742780862LLU,
588 [I_LCOEF_WSEQIOPS] = 425702,
589 [I_LCOEF_WRANDIOPS] = 443193,
590 },
591 .too_slow_vrate_pct = 10,
592 },
593};
594
595/*
596 * vrate adjust percentages indexed by ioc->busy_level. We adjust up on
597 * vtime credit shortage and down on device saturation.
598 */
599static u32 vrate_adj_pct[] =
600 { 0, 0, 0, 0,
601 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
602 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
603 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 };
604
605static struct blkcg_policy blkcg_policy_iocost;
606
607/* accessors and helpers */
608static struct ioc *rqos_to_ioc(struct rq_qos *rqos)
609{
610 return container_of(rqos, struct ioc, rqos);
611}
612
613static struct ioc *q_to_ioc(struct request_queue *q)
614{
615 return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST));
616}
617
618static const char *q_name(struct request_queue *q)
619{
620 if (test_bit(QUEUE_FLAG_REGISTERED, &q->queue_flags))
621 return kobject_name(q->kobj.parent);
622 else
623 return "<unknown>";
624}
625
626static const char __maybe_unused *ioc_name(struct ioc *ioc)
627{
628 return q_name(ioc->rqos.q);
629}
630
631static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd)
632{
633 return pd ? container_of(pd, struct ioc_gq, pd) : NULL;
634}
635
636static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg)
637{
638 return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost));
639}
640
641static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg)
642{
643 return pd_to_blkg(&iocg->pd);
644}
645
646static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg)
647{
648 return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost),
649 struct ioc_cgrp, cpd);
650}
651
652/*
653 * Scale @abs_cost to the inverse of @hw_inuse. The lower the hierarchical
Tejun Heo36a52482019-09-04 12:45:52 -0700654 * weight, the more expensive each IO. Must round up.
Tejun Heo7caa4712019-08-28 15:05:58 -0700655 */
656static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse)
657{
658 return DIV64_U64_ROUND_UP(abs_cost * HWEIGHT_WHOLE, hw_inuse);
659}
660
Tejun Heo36a52482019-09-04 12:45:52 -0700661/*
662 * The inverse of abs_cost_to_cost(). Must round up.
663 */
664static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse)
665{
666 return DIV64_U64_ROUND_UP(cost * hw_inuse, HWEIGHT_WHOLE);
667}
668
Tejun Heo7caa4712019-08-28 15:05:58 -0700669static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio, u64 cost)
670{
671 bio->bi_iocost_cost = cost;
672 atomic64_add(cost, &iocg->vtime);
673}
674
675#define CREATE_TRACE_POINTS
676#include <trace/events/iocost.h>
677
678/* latency Qos params changed, update period_us and all the dependent params */
679static void ioc_refresh_period_us(struct ioc *ioc)
680{
681 u32 ppm, lat, multi, period_us;
682
683 lockdep_assert_held(&ioc->lock);
684
685 /* pick the higher latency target */
686 if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) {
687 ppm = ioc->params.qos[QOS_RPPM];
688 lat = ioc->params.qos[QOS_RLAT];
689 } else {
690 ppm = ioc->params.qos[QOS_WPPM];
691 lat = ioc->params.qos[QOS_WLAT];
692 }
693
694 /*
695 * We want the period to be long enough to contain a healthy number
696 * of IOs while short enough for granular control. Define it as a
697 * multiple of the latency target. Ideally, the multiplier should
698 * be scaled according to the percentile so that it would nominally
699 * contain a certain number of requests. Let's be simpler and
700 * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50).
701 */
702 if (ppm)
703 multi = max_t(u32, (MILLION - ppm) / 50000, 2);
704 else
705 multi = 2;
706 period_us = multi * lat;
707 period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD);
708
709 /* calculate dependent params */
710 ioc->period_us = period_us;
711 ioc->margin_us = period_us * MARGIN_PCT / 100;
712 ioc->inuse_margin_vtime = DIV64_U64_ROUND_UP(
713 period_us * VTIME_PER_USEC * INUSE_MARGIN_PCT, 100);
714}
715
716static int ioc_autop_idx(struct ioc *ioc)
717{
718 int idx = ioc->autop_idx;
719 const struct ioc_params *p = &autop[idx];
720 u32 vrate_pct;
721 u64 now_ns;
722
723 /* rotational? */
724 if (!blk_queue_nonrot(ioc->rqos.q))
725 return AUTOP_HDD;
726
727 /* handle SATA SSDs w/ broken NCQ */
728 if (blk_queue_depth(ioc->rqos.q) == 1)
729 return AUTOP_SSD_QD1;
730
731 /* use one of the normal ssd sets */
732 if (idx < AUTOP_SSD_DFL)
733 return AUTOP_SSD_DFL;
734
735 /* if user is overriding anything, maintain what was there */
736 if (ioc->user_qos_params || ioc->user_cost_model)
737 return idx;
738
739 /* step up/down based on the vrate */
740 vrate_pct = div64_u64(atomic64_read(&ioc->vtime_rate) * 100,
741 VTIME_PER_USEC);
742 now_ns = ktime_get_ns();
743
744 if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) {
745 if (!ioc->autop_too_fast_at)
746 ioc->autop_too_fast_at = now_ns;
747 if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC)
748 return idx + 1;
749 } else {
750 ioc->autop_too_fast_at = 0;
751 }
752
753 if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) {
754 if (!ioc->autop_too_slow_at)
755 ioc->autop_too_slow_at = now_ns;
756 if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC)
757 return idx - 1;
758 } else {
759 ioc->autop_too_slow_at = 0;
760 }
761
762 return idx;
763}
764
765/*
766 * Take the followings as input
767 *
768 * @bps maximum sequential throughput
769 * @seqiops maximum sequential 4k iops
770 * @randiops maximum random 4k iops
771 *
772 * and calculate the linear model cost coefficients.
773 *
774 * *@page per-page cost 1s / (@bps / 4096)
775 * *@seqio base cost of a seq IO max((1s / @seqiops) - *@page, 0)
776 * @randiops base cost of a rand IO max((1s / @randiops) - *@page, 0)
777 */
778static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops,
779 u64 *page, u64 *seqio, u64 *randio)
780{
781 u64 v;
782
783 *page = *seqio = *randio = 0;
784
785 if (bps)
786 *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC,
787 DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE));
788
789 if (seqiops) {
790 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops);
791 if (v > *page)
792 *seqio = v - *page;
793 }
794
795 if (randiops) {
796 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops);
797 if (v > *page)
798 *randio = v - *page;
799 }
800}
801
802static void ioc_refresh_lcoefs(struct ioc *ioc)
803{
804 u64 *u = ioc->params.i_lcoefs;
805 u64 *c = ioc->params.lcoefs;
806
807 calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
808 &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]);
809 calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS],
810 &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]);
811}
812
813static bool ioc_refresh_params(struct ioc *ioc, bool force)
814{
815 const struct ioc_params *p;
816 int idx;
817
818 lockdep_assert_held(&ioc->lock);
819
820 idx = ioc_autop_idx(ioc);
821 p = &autop[idx];
822
823 if (idx == ioc->autop_idx && !force)
824 return false;
825
826 if (idx != ioc->autop_idx)
827 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
828
829 ioc->autop_idx = idx;
830 ioc->autop_too_fast_at = 0;
831 ioc->autop_too_slow_at = 0;
832
833 if (!ioc->user_qos_params)
834 memcpy(ioc->params.qos, p->qos, sizeof(p->qos));
835 if (!ioc->user_cost_model)
836 memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs));
837
838 ioc_refresh_period_us(ioc);
839 ioc_refresh_lcoefs(ioc);
840
841 ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] *
842 VTIME_PER_USEC, MILLION);
843 ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] *
844 VTIME_PER_USEC, MILLION);
845
846 return true;
847}
848
849/* take a snapshot of the current [v]time and vrate */
850static void ioc_now(struct ioc *ioc, struct ioc_now *now)
851{
852 unsigned seq;
853
854 now->now_ns = ktime_get();
855 now->now = ktime_to_us(now->now_ns);
856 now->vrate = atomic64_read(&ioc->vtime_rate);
857
858 /*
859 * The current vtime is
860 *
861 * vtime at period start + (wallclock time since the start) * vrate
862 *
863 * As a consistent snapshot of `period_at_vtime` and `period_at` is
864 * needed, they're seqcount protected.
865 */
866 do {
867 seq = read_seqcount_begin(&ioc->period_seqcount);
868 now->vnow = ioc->period_at_vtime +
869 (now->now - ioc->period_at) * now->vrate;
870 } while (read_seqcount_retry(&ioc->period_seqcount, seq));
871}
872
873static void ioc_start_period(struct ioc *ioc, struct ioc_now *now)
874{
875 lockdep_assert_held(&ioc->lock);
876 WARN_ON_ONCE(ioc->running != IOC_RUNNING);
877
878 write_seqcount_begin(&ioc->period_seqcount);
879 ioc->period_at = now->now;
880 ioc->period_at_vtime = now->vnow;
881 write_seqcount_end(&ioc->period_seqcount);
882
883 ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us);
884 add_timer(&ioc->timer);
885}
886
887/*
888 * Update @iocg's `active` and `inuse` to @active and @inuse, update level
889 * weight sums and propagate upwards accordingly.
890 */
891static void __propagate_active_weight(struct ioc_gq *iocg, u32 active, u32 inuse)
892{
893 struct ioc *ioc = iocg->ioc;
894 int lvl;
895
896 lockdep_assert_held(&ioc->lock);
897
898 inuse = min(active, inuse);
899
900 for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
901 struct ioc_gq *parent = iocg->ancestors[lvl];
902 struct ioc_gq *child = iocg->ancestors[lvl + 1];
903 u32 parent_active = 0, parent_inuse = 0;
904
905 /* update the level sums */
906 parent->child_active_sum += (s32)(active - child->active);
907 parent->child_inuse_sum += (s32)(inuse - child->inuse);
908 /* apply the udpates */
909 child->active = active;
910 child->inuse = inuse;
911
912 /*
913 * The delta between inuse and active sums indicates that
914 * that much of weight is being given away. Parent's inuse
915 * and active should reflect the ratio.
916 */
917 if (parent->child_active_sum) {
918 parent_active = parent->weight;
919 parent_inuse = DIV64_U64_ROUND_UP(
920 parent_active * parent->child_inuse_sum,
921 parent->child_active_sum);
922 }
923
924 /* do we need to keep walking up? */
925 if (parent_active == parent->active &&
926 parent_inuse == parent->inuse)
927 break;
928
929 active = parent_active;
930 inuse = parent_inuse;
931 }
932
933 ioc->weights_updated = true;
934}
935
936static void commit_active_weights(struct ioc *ioc)
937{
938 lockdep_assert_held(&ioc->lock);
939
940 if (ioc->weights_updated) {
941 /* paired with rmb in current_hweight(), see there */
942 smp_wmb();
943 atomic_inc(&ioc->hweight_gen);
944 ioc->weights_updated = false;
945 }
946}
947
948static void propagate_active_weight(struct ioc_gq *iocg, u32 active, u32 inuse)
949{
950 __propagate_active_weight(iocg, active, inuse);
951 commit_active_weights(iocg->ioc);
952}
953
954static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep)
955{
956 struct ioc *ioc = iocg->ioc;
957 int lvl;
958 u32 hwa, hwi;
959 int ioc_gen;
960
961 /* hot path - if uptodate, use cached */
962 ioc_gen = atomic_read(&ioc->hweight_gen);
963 if (ioc_gen == iocg->hweight_gen)
964 goto out;
965
966 /*
967 * Paired with wmb in commit_active_weights(). If we saw the
968 * updated hweight_gen, all the weight updates from
969 * __propagate_active_weight() are visible too.
970 *
971 * We can race with weight updates during calculation and get it
972 * wrong. However, hweight_gen would have changed and a future
973 * reader will recalculate and we're guaranteed to discard the
974 * wrong result soon.
975 */
976 smp_rmb();
977
978 hwa = hwi = HWEIGHT_WHOLE;
979 for (lvl = 0; lvl <= iocg->level - 1; lvl++) {
980 struct ioc_gq *parent = iocg->ancestors[lvl];
981 struct ioc_gq *child = iocg->ancestors[lvl + 1];
982 u32 active_sum = READ_ONCE(parent->child_active_sum);
983 u32 inuse_sum = READ_ONCE(parent->child_inuse_sum);
984 u32 active = READ_ONCE(child->active);
985 u32 inuse = READ_ONCE(child->inuse);
986
987 /* we can race with deactivations and either may read as zero */
988 if (!active_sum || !inuse_sum)
989 continue;
990
991 active_sum = max(active, active_sum);
992 hwa = hwa * active / active_sum; /* max 16bits * 10000 */
993
994 inuse_sum = max(inuse, inuse_sum);
995 hwi = hwi * inuse / inuse_sum; /* max 16bits * 10000 */
996 }
997
998 iocg->hweight_active = max_t(u32, hwa, 1);
999 iocg->hweight_inuse = max_t(u32, hwi, 1);
1000 iocg->hweight_gen = ioc_gen;
1001out:
1002 if (hw_activep)
1003 *hw_activep = iocg->hweight_active;
1004 if (hw_inusep)
1005 *hw_inusep = iocg->hweight_inuse;
1006}
1007
1008static void weight_updated(struct ioc_gq *iocg)
1009{
1010 struct ioc *ioc = iocg->ioc;
1011 struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1012 struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg);
1013 u32 weight;
1014
1015 lockdep_assert_held(&ioc->lock);
1016
1017 weight = iocg->cfg_weight ?: iocc->dfl_weight;
1018 if (weight != iocg->weight && iocg->active)
1019 propagate_active_weight(iocg, weight,
1020 DIV64_U64_ROUND_UP(iocg->inuse * weight, iocg->weight));
1021 iocg->weight = weight;
1022}
1023
1024static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now)
1025{
1026 struct ioc *ioc = iocg->ioc;
1027 u64 last_period, cur_period, max_period_delta;
1028 u64 vtime, vmargin, vmin;
1029 int i;
1030
1031 /*
1032 * If seem to be already active, just update the stamp to tell the
1033 * timer that we're still active. We don't mind occassional races.
1034 */
1035 if (!list_empty(&iocg->active_list)) {
1036 ioc_now(ioc, now);
1037 cur_period = atomic64_read(&ioc->cur_period);
1038 if (atomic64_read(&iocg->active_period) != cur_period)
1039 atomic64_set(&iocg->active_period, cur_period);
1040 return true;
1041 }
1042
1043 /* racy check on internal node IOs, treat as root level IOs */
1044 if (iocg->child_active_sum)
1045 return false;
1046
1047 spin_lock_irq(&ioc->lock);
1048
1049 ioc_now(ioc, now);
1050
1051 /* update period */
1052 cur_period = atomic64_read(&ioc->cur_period);
1053 last_period = atomic64_read(&iocg->active_period);
1054 atomic64_set(&iocg->active_period, cur_period);
1055
1056 /* already activated or breaking leaf-only constraint? */
Jiufei Xue8b37bc22019-11-13 15:21:31 +08001057 if (!list_empty(&iocg->active_list))
1058 goto succeed_unlock;
1059 for (i = iocg->level - 1; i > 0; i--)
1060 if (!list_empty(&iocg->ancestors[i]->active_list))
Tejun Heo7caa4712019-08-28 15:05:58 -07001061 goto fail_unlock;
Jiufei Xue8b37bc22019-11-13 15:21:31 +08001062
Tejun Heo7caa4712019-08-28 15:05:58 -07001063 if (iocg->child_active_sum)
1064 goto fail_unlock;
1065
1066 /*
1067 * vtime may wrap when vrate is raised substantially due to
1068 * underestimated IO costs. Look at the period and ignore its
1069 * vtime if the iocg has been idle for too long. Also, cap the
1070 * budget it can start with to the margin.
1071 */
1072 max_period_delta = DIV64_U64_ROUND_UP(VTIME_VALID_DUR, ioc->period_us);
1073 vtime = atomic64_read(&iocg->vtime);
1074 vmargin = ioc->margin_us * now->vrate;
1075 vmin = now->vnow - vmargin;
1076
1077 if (last_period + max_period_delta < cur_period ||
1078 time_before64(vtime, vmin)) {
1079 atomic64_add(vmin - vtime, &iocg->vtime);
1080 atomic64_add(vmin - vtime, &iocg->done_vtime);
1081 vtime = vmin;
1082 }
1083
1084 /*
1085 * Activate, propagate weight and start period timer if not
1086 * running. Reset hweight_gen to avoid accidental match from
1087 * wrapping.
1088 */
1089 iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1;
1090 list_add(&iocg->active_list, &ioc->active_iocgs);
1091 propagate_active_weight(iocg, iocg->weight,
1092 iocg->last_inuse ?: iocg->weight);
1093
1094 TRACE_IOCG_PATH(iocg_activate, iocg, now,
1095 last_period, cur_period, vtime);
1096
1097 iocg->last_vtime = vtime;
1098
1099 if (ioc->running == IOC_IDLE) {
1100 ioc->running = IOC_RUNNING;
1101 ioc_start_period(ioc, now);
1102 }
1103
Jiufei Xue8b37bc22019-11-13 15:21:31 +08001104succeed_unlock:
Tejun Heo7caa4712019-08-28 15:05:58 -07001105 spin_unlock_irq(&ioc->lock);
1106 return true;
1107
1108fail_unlock:
1109 spin_unlock_irq(&ioc->lock);
1110 return false;
1111}
1112
1113static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode,
1114 int flags, void *key)
1115{
1116 struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait);
1117 struct iocg_wake_ctx *ctx = (struct iocg_wake_ctx *)key;
1118 u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse);
1119
1120 ctx->vbudget -= cost;
1121
1122 if (ctx->vbudget < 0)
1123 return -1;
1124
1125 iocg_commit_bio(ctx->iocg, wait->bio, cost);
1126
1127 /*
1128 * autoremove_wake_function() removes the wait entry only when it
1129 * actually changed the task state. We want the wait always
1130 * removed. Remove explicitly and use default_wake_function().
1131 */
1132 list_del_init(&wq_entry->entry);
1133 wait->committed = true;
1134
1135 default_wake_function(wq_entry, mode, flags, key);
1136 return 0;
1137}
1138
1139static void iocg_kick_waitq(struct ioc_gq *iocg, struct ioc_now *now)
1140{
1141 struct ioc *ioc = iocg->ioc;
1142 struct iocg_wake_ctx ctx = { .iocg = iocg };
1143 u64 margin_ns = (u64)(ioc->period_us *
1144 WAITQ_TIMER_MARGIN_PCT / 100) * NSEC_PER_USEC;
Tejun Heo36a52482019-09-04 12:45:52 -07001145 u64 abs_vdebt, vdebt, vshortage, expires, oexpires;
1146 s64 vbudget;
1147 u32 hw_inuse;
Tejun Heo7caa4712019-08-28 15:05:58 -07001148
1149 lockdep_assert_held(&iocg->waitq.lock);
1150
Tejun Heo36a52482019-09-04 12:45:52 -07001151 current_hweight(iocg, NULL, &hw_inuse);
1152 vbudget = now->vnow - atomic64_read(&iocg->vtime);
1153
1154 /* pay off debt */
1155 abs_vdebt = atomic64_read(&iocg->abs_vdebt);
1156 vdebt = abs_cost_to_cost(abs_vdebt, hw_inuse);
1157 if (vdebt && vbudget > 0) {
1158 u64 delta = min_t(u64, vbudget, vdebt);
1159 u64 abs_delta = min(cost_to_abs_cost(delta, hw_inuse),
1160 abs_vdebt);
1161
1162 atomic64_add(delta, &iocg->vtime);
1163 atomic64_add(delta, &iocg->done_vtime);
1164 atomic64_sub(abs_delta, &iocg->abs_vdebt);
1165 if (WARN_ON_ONCE(atomic64_read(&iocg->abs_vdebt) < 0))
1166 atomic64_set(&iocg->abs_vdebt, 0);
1167 }
1168
Tejun Heo7caa4712019-08-28 15:05:58 -07001169 /*
1170 * Wake up the ones which are due and see how much vtime we'll need
1171 * for the next one.
1172 */
Tejun Heo36a52482019-09-04 12:45:52 -07001173 ctx.hw_inuse = hw_inuse;
1174 ctx.vbudget = vbudget - vdebt;
Tejun Heo7caa4712019-08-28 15:05:58 -07001175 __wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx);
1176 if (!waitqueue_active(&iocg->waitq))
1177 return;
1178 if (WARN_ON_ONCE(ctx.vbudget >= 0))
1179 return;
1180
1181 /* determine next wakeup, add a quarter margin to guarantee chunking */
1182 vshortage = -ctx.vbudget;
1183 expires = now->now_ns +
1184 DIV64_U64_ROUND_UP(vshortage, now->vrate) * NSEC_PER_USEC;
1185 expires += margin_ns / 4;
1186
1187 /* if already active and close enough, don't bother */
1188 oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer));
1189 if (hrtimer_is_queued(&iocg->waitq_timer) &&
1190 abs(oexpires - expires) <= margin_ns / 4)
1191 return;
1192
1193 hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires),
1194 margin_ns / 4, HRTIMER_MODE_ABS);
1195}
1196
1197static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer)
1198{
1199 struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer);
1200 struct ioc_now now;
1201 unsigned long flags;
1202
1203 ioc_now(iocg->ioc, &now);
1204
1205 spin_lock_irqsave(&iocg->waitq.lock, flags);
1206 iocg_kick_waitq(iocg, &now);
1207 spin_unlock_irqrestore(&iocg->waitq.lock, flags);
1208
1209 return HRTIMER_NORESTART;
1210}
1211
Tejun Heo54c52e12020-04-13 12:27:55 -04001212static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now)
Tejun Heo7caa4712019-08-28 15:05:58 -07001213{
1214 struct ioc *ioc = iocg->ioc;
1215 struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1216 u64 vtime = atomic64_read(&iocg->vtime);
1217 u64 vmargin = ioc->margin_us * now->vrate;
1218 u64 margin_ns = ioc->margin_us * NSEC_PER_USEC;
Tejun Heo54c52e12020-04-13 12:27:55 -04001219 u64 delta_ns, expires, oexpires;
Tejun Heo36a52482019-09-04 12:45:52 -07001220 u32 hw_inuse;
1221
1222 /* debt-adjust vtime */
1223 current_hweight(iocg, NULL, &hw_inuse);
1224 vtime += abs_cost_to_cost(atomic64_read(&iocg->abs_vdebt), hw_inuse);
Tejun Heo7caa4712019-08-28 15:05:58 -07001225
1226 /* clear or maintain depending on the overage */
1227 if (time_before_eq64(vtime, now->vnow)) {
1228 blkcg_clear_delay(blkg);
Tejun Heod7bd15a2019-12-16 13:34:00 -08001229 return false;
Tejun Heo7caa4712019-08-28 15:05:58 -07001230 }
1231 if (!atomic_read(&blkg->use_delay) &&
1232 time_before_eq64(vtime, now->vnow + vmargin))
Tejun Heod7bd15a2019-12-16 13:34:00 -08001233 return false;
Tejun Heo7caa4712019-08-28 15:05:58 -07001234
1235 /* use delay */
Tejun Heo54c52e12020-04-13 12:27:55 -04001236 delta_ns = DIV64_U64_ROUND_UP(vtime - now->vnow,
1237 now->vrate) * NSEC_PER_USEC;
1238 blkcg_set_delay(blkg, delta_ns);
1239 expires = now->now_ns + delta_ns;
Tejun Heo7caa4712019-08-28 15:05:58 -07001240
1241 /* if already active and close enough, don't bother */
1242 oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->delay_timer));
1243 if (hrtimer_is_queued(&iocg->delay_timer) &&
1244 abs(oexpires - expires) <= margin_ns / 4)
Tejun Heod7bd15a2019-12-16 13:34:00 -08001245 return true;
Tejun Heo7caa4712019-08-28 15:05:58 -07001246
1247 hrtimer_start_range_ns(&iocg->delay_timer, ns_to_ktime(expires),
1248 margin_ns / 4, HRTIMER_MODE_ABS);
Tejun Heod7bd15a2019-12-16 13:34:00 -08001249 return true;
Tejun Heo7caa4712019-08-28 15:05:58 -07001250}
1251
1252static enum hrtimer_restart iocg_delay_timer_fn(struct hrtimer *timer)
1253{
1254 struct ioc_gq *iocg = container_of(timer, struct ioc_gq, delay_timer);
1255 struct ioc_now now;
1256
1257 ioc_now(iocg->ioc, &now);
Tejun Heo54c52e12020-04-13 12:27:55 -04001258 iocg_kick_delay(iocg, &now);
Tejun Heo7caa4712019-08-28 15:05:58 -07001259
1260 return HRTIMER_NORESTART;
1261}
1262
1263static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p)
1264{
1265 u32 nr_met[2] = { };
1266 u32 nr_missed[2] = { };
1267 u64 rq_wait_ns = 0;
1268 int cpu, rw;
1269
1270 for_each_online_cpu(cpu) {
1271 struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu);
1272 u64 this_rq_wait_ns;
1273
1274 for (rw = READ; rw <= WRITE; rw++) {
1275 u32 this_met = READ_ONCE(stat->missed[rw].nr_met);
1276 u32 this_missed = READ_ONCE(stat->missed[rw].nr_missed);
1277
1278 nr_met[rw] += this_met - stat->missed[rw].last_met;
1279 nr_missed[rw] += this_missed - stat->missed[rw].last_missed;
1280 stat->missed[rw].last_met = this_met;
1281 stat->missed[rw].last_missed = this_missed;
1282 }
1283
1284 this_rq_wait_ns = READ_ONCE(stat->rq_wait_ns);
1285 rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns;
1286 stat->last_rq_wait_ns = this_rq_wait_ns;
1287 }
1288
1289 for (rw = READ; rw <= WRITE; rw++) {
1290 if (nr_met[rw] + nr_missed[rw])
1291 missed_ppm_ar[rw] =
1292 DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION,
1293 nr_met[rw] + nr_missed[rw]);
1294 else
1295 missed_ppm_ar[rw] = 0;
1296 }
1297
1298 *rq_wait_pct_p = div64_u64(rq_wait_ns * 100,
1299 ioc->period_us * NSEC_PER_USEC);
1300}
1301
1302/* was iocg idle this period? */
1303static bool iocg_is_idle(struct ioc_gq *iocg)
1304{
1305 struct ioc *ioc = iocg->ioc;
1306
1307 /* did something get issued this period? */
1308 if (atomic64_read(&iocg->active_period) ==
1309 atomic64_read(&ioc->cur_period))
1310 return false;
1311
1312 /* is something in flight? */
Tejun Heodcd65892020-03-10 13:07:46 -04001313 if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime))
Tejun Heo7caa4712019-08-28 15:05:58 -07001314 return false;
1315
1316 return true;
1317}
1318
1319/* returns usage with margin added if surplus is large enough */
1320static u32 surplus_adjusted_hweight_inuse(u32 usage, u32 hw_inuse)
1321{
1322 /* add margin */
1323 usage = DIV_ROUND_UP(usage * SURPLUS_SCALE_PCT, 100);
1324 usage += SURPLUS_SCALE_ABS;
1325
1326 /* don't bother if the surplus is too small */
1327 if (usage + SURPLUS_MIN_ADJ_DELTA > hw_inuse)
1328 return 0;
1329
1330 return usage;
1331}
1332
1333static void ioc_timer_fn(struct timer_list *timer)
1334{
1335 struct ioc *ioc = container_of(timer, struct ioc, timer);
1336 struct ioc_gq *iocg, *tiocg;
1337 struct ioc_now now;
1338 int nr_surpluses = 0, nr_shortages = 0, nr_lagging = 0;
1339 u32 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM];
1340 u32 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM];
1341 u32 missed_ppm[2], rq_wait_pct;
1342 u64 period_vtime;
Tejun Heo25d41e42019-09-25 16:02:07 -07001343 int prev_busy_level, i;
Tejun Heo7caa4712019-08-28 15:05:58 -07001344
1345 /* how were the latencies during the period? */
1346 ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct);
1347
1348 /* take care of active iocgs */
1349 spin_lock_irq(&ioc->lock);
1350
1351 ioc_now(ioc, &now);
1352
1353 period_vtime = now.vnow - ioc->period_at_vtime;
1354 if (WARN_ON_ONCE(!period_vtime)) {
1355 spin_unlock_irq(&ioc->lock);
1356 return;
1357 }
1358
1359 /*
1360 * Waiters determine the sleep durations based on the vrate they
1361 * saw at the time of sleep. If vrate has increased, some waiters
1362 * could be sleeping for too long. Wake up tardy waiters which
1363 * should have woken up in the last period and expire idle iocgs.
1364 */
1365 list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) {
Tejun Heo36a52482019-09-04 12:45:52 -07001366 if (!waitqueue_active(&iocg->waitq) &&
1367 !atomic64_read(&iocg->abs_vdebt) && !iocg_is_idle(iocg))
Tejun Heo7caa4712019-08-28 15:05:58 -07001368 continue;
1369
1370 spin_lock(&iocg->waitq.lock);
1371
Tejun Heo36a52482019-09-04 12:45:52 -07001372 if (waitqueue_active(&iocg->waitq) ||
1373 atomic64_read(&iocg->abs_vdebt)) {
Tejun Heo7caa4712019-08-28 15:05:58 -07001374 /* might be oversleeping vtime / hweight changes, kick */
1375 iocg_kick_waitq(iocg, &now);
Tejun Heo54c52e12020-04-13 12:27:55 -04001376 iocg_kick_delay(iocg, &now);
Tejun Heo7caa4712019-08-28 15:05:58 -07001377 } else if (iocg_is_idle(iocg)) {
1378 /* no waiter and idle, deactivate */
1379 iocg->last_inuse = iocg->inuse;
1380 __propagate_active_weight(iocg, 0, 0);
1381 list_del_init(&iocg->active_list);
1382 }
1383
1384 spin_unlock(&iocg->waitq.lock);
1385 }
1386 commit_active_weights(ioc);
1387
1388 /* calc usages and see whether some weights need to be moved around */
1389 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
1390 u64 vdone, vtime, vusage, vmargin, vmin;
1391 u32 hw_active, hw_inuse, usage;
1392
1393 /*
1394 * Collect unused and wind vtime closer to vnow to prevent
1395 * iocgs from accumulating a large amount of budget.
1396 */
1397 vdone = atomic64_read(&iocg->done_vtime);
1398 vtime = atomic64_read(&iocg->vtime);
1399 current_hweight(iocg, &hw_active, &hw_inuse);
1400
1401 /*
1402 * Latency QoS detection doesn't account for IOs which are
1403 * in-flight for longer than a period. Detect them by
1404 * comparing vdone against period start. If lagging behind
1405 * IOs from past periods, don't increase vrate.
1406 */
Tejun Heo7cd806a2019-09-25 16:03:09 -07001407 if ((ppm_rthr != MILLION || ppm_wthr != MILLION) &&
1408 !atomic_read(&iocg_to_blkg(iocg)->use_delay) &&
Tejun Heo7caa4712019-08-28 15:05:58 -07001409 time_after64(vtime, vdone) &&
1410 time_after64(vtime, now.vnow -
1411 MAX_LAGGING_PERIODS * period_vtime) &&
1412 time_before64(vdone, now.vnow - period_vtime))
1413 nr_lagging++;
1414
1415 if (waitqueue_active(&iocg->waitq))
1416 vusage = now.vnow - iocg->last_vtime;
1417 else if (time_before64(iocg->last_vtime, vtime))
1418 vusage = vtime - iocg->last_vtime;
1419 else
1420 vusage = 0;
1421
1422 iocg->last_vtime += vusage;
1423 /*
1424 * Factor in in-flight vtime into vusage to avoid
1425 * high-latency completions appearing as idle. This should
1426 * be done after the above ->last_time adjustment.
1427 */
1428 vusage = max(vusage, vtime - vdone);
1429
1430 /* calculate hweight based usage ratio and record */
1431 if (vusage) {
1432 usage = DIV64_U64_ROUND_UP(vusage * hw_inuse,
1433 period_vtime);
1434 iocg->usage_idx = (iocg->usage_idx + 1) % NR_USAGE_SLOTS;
1435 iocg->usages[iocg->usage_idx] = usage;
1436 } else {
1437 usage = 0;
1438 }
1439
1440 /* see whether there's surplus vtime */
1441 vmargin = ioc->margin_us * now.vrate;
1442 vmin = now.vnow - vmargin;
1443
1444 iocg->has_surplus = false;
1445
1446 if (!waitqueue_active(&iocg->waitq) &&
1447 time_before64(vtime, vmin)) {
1448 u64 delta = vmin - vtime;
1449
1450 /* throw away surplus vtime */
1451 atomic64_add(delta, &iocg->vtime);
1452 atomic64_add(delta, &iocg->done_vtime);
1453 iocg->last_vtime += delta;
1454 /* if usage is sufficiently low, maybe it can donate */
1455 if (surplus_adjusted_hweight_inuse(usage, hw_inuse)) {
1456 iocg->has_surplus = true;
1457 nr_surpluses++;
1458 }
1459 } else if (hw_inuse < hw_active) {
1460 u32 new_hwi, new_inuse;
1461
1462 /* was donating but might need to take back some */
1463 if (waitqueue_active(&iocg->waitq)) {
1464 new_hwi = hw_active;
1465 } else {
1466 new_hwi = max(hw_inuse,
1467 usage * SURPLUS_SCALE_PCT / 100 +
1468 SURPLUS_SCALE_ABS);
1469 }
1470
1471 new_inuse = div64_u64((u64)iocg->inuse * new_hwi,
1472 hw_inuse);
1473 new_inuse = clamp_t(u32, new_inuse, 1, iocg->active);
1474
1475 if (new_inuse > iocg->inuse) {
1476 TRACE_IOCG_PATH(inuse_takeback, iocg, &now,
1477 iocg->inuse, new_inuse,
1478 hw_inuse, new_hwi);
1479 __propagate_active_weight(iocg, iocg->weight,
1480 new_inuse);
1481 }
1482 } else {
1483 /* genuninely out of vtime */
1484 nr_shortages++;
1485 }
1486 }
1487
1488 if (!nr_shortages || !nr_surpluses)
1489 goto skip_surplus_transfers;
1490
1491 /* there are both shortages and surpluses, transfer surpluses */
1492 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
1493 u32 usage, hw_active, hw_inuse, new_hwi, new_inuse;
1494 int nr_valid = 0;
1495
1496 if (!iocg->has_surplus)
1497 continue;
1498
1499 /* base the decision on max historical usage */
1500 for (i = 0, usage = 0; i < NR_USAGE_SLOTS; i++) {
1501 if (iocg->usages[i]) {
1502 usage = max(usage, iocg->usages[i]);
1503 nr_valid++;
1504 }
1505 }
1506 if (nr_valid < MIN_VALID_USAGES)
1507 continue;
1508
1509 current_hweight(iocg, &hw_active, &hw_inuse);
1510 new_hwi = surplus_adjusted_hweight_inuse(usage, hw_inuse);
1511 if (!new_hwi)
1512 continue;
1513
1514 new_inuse = DIV64_U64_ROUND_UP((u64)iocg->inuse * new_hwi,
1515 hw_inuse);
1516 if (new_inuse < iocg->inuse) {
1517 TRACE_IOCG_PATH(inuse_giveaway, iocg, &now,
1518 iocg->inuse, new_inuse,
1519 hw_inuse, new_hwi);
1520 __propagate_active_weight(iocg, iocg->weight, new_inuse);
1521 }
1522 }
1523skip_surplus_transfers:
1524 commit_active_weights(ioc);
1525
1526 /*
1527 * If q is getting clogged or we're missing too much, we're issuing
1528 * too much IO and should lower vtime rate. If we're not missing
1529 * and experiencing shortages but not surpluses, we're too stingy
1530 * and should increase vtime rate.
1531 */
Tejun Heo25d41e42019-09-25 16:02:07 -07001532 prev_busy_level = ioc->busy_level;
Tejun Heo7caa4712019-08-28 15:05:58 -07001533 if (rq_wait_pct > RQ_WAIT_BUSY_PCT ||
1534 missed_ppm[READ] > ppm_rthr ||
1535 missed_ppm[WRITE] > ppm_wthr) {
1536 ioc->busy_level = max(ioc->busy_level, 0);
1537 ioc->busy_level++;
Tejun Heo7cd806a2019-09-25 16:03:09 -07001538 } else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 &&
Tejun Heo7caa4712019-08-28 15:05:58 -07001539 missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 &&
1540 missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) {
Tejun Heo7cd806a2019-09-25 16:03:09 -07001541 /* take action iff there is contention */
1542 if (nr_shortages && !nr_lagging) {
1543 ioc->busy_level = min(ioc->busy_level, 0);
1544 /* redistribute surpluses first */
1545 if (!nr_surpluses)
1546 ioc->busy_level--;
1547 }
Tejun Heo7caa4712019-08-28 15:05:58 -07001548 } else {
1549 ioc->busy_level = 0;
1550 }
1551
1552 ioc->busy_level = clamp(ioc->busy_level, -1000, 1000);
1553
Tejun Heo7cd806a2019-09-25 16:03:09 -07001554 if (ioc->busy_level > 0 || (ioc->busy_level < 0 && !nr_lagging)) {
Tejun Heo7caa4712019-08-28 15:05:58 -07001555 u64 vrate = atomic64_read(&ioc->vtime_rate);
1556 u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max;
1557
1558 /* rq_wait signal is always reliable, ignore user vrate_min */
1559 if (rq_wait_pct > RQ_WAIT_BUSY_PCT)
1560 vrate_min = VRATE_MIN;
1561
1562 /*
1563 * If vrate is out of bounds, apply clamp gradually as the
1564 * bounds can change abruptly. Otherwise, apply busy_level
1565 * based adjustment.
1566 */
1567 if (vrate < vrate_min) {
1568 vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT),
1569 100);
1570 vrate = min(vrate, vrate_min);
1571 } else if (vrate > vrate_max) {
1572 vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT),
1573 100);
1574 vrate = max(vrate, vrate_max);
1575 } else {
1576 int idx = min_t(int, abs(ioc->busy_level),
1577 ARRAY_SIZE(vrate_adj_pct) - 1);
1578 u32 adj_pct = vrate_adj_pct[idx];
1579
1580 if (ioc->busy_level > 0)
1581 adj_pct = 100 - adj_pct;
1582 else
1583 adj_pct = 100 + adj_pct;
1584
1585 vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100),
1586 vrate_min, vrate_max);
1587 }
1588
1589 trace_iocost_ioc_vrate_adj(ioc, vrate, &missed_ppm, rq_wait_pct,
1590 nr_lagging, nr_shortages,
1591 nr_surpluses);
1592
1593 atomic64_set(&ioc->vtime_rate, vrate);
1594 ioc->inuse_margin_vtime = DIV64_U64_ROUND_UP(
1595 ioc->period_us * vrate * INUSE_MARGIN_PCT, 100);
Tejun Heo25d41e42019-09-25 16:02:07 -07001596 } else if (ioc->busy_level != prev_busy_level || nr_lagging) {
1597 trace_iocost_ioc_vrate_adj(ioc, atomic64_read(&ioc->vtime_rate),
1598 &missed_ppm, rq_wait_pct, nr_lagging,
1599 nr_shortages, nr_surpluses);
Tejun Heo7caa4712019-08-28 15:05:58 -07001600 }
1601
1602 ioc_refresh_params(ioc, false);
1603
1604 /*
1605 * This period is done. Move onto the next one. If nothing's
1606 * going on with the device, stop the timer.
1607 */
1608 atomic64_inc(&ioc->cur_period);
1609
1610 if (ioc->running != IOC_STOP) {
1611 if (!list_empty(&ioc->active_iocgs)) {
1612 ioc_start_period(ioc, &now);
1613 } else {
1614 ioc->busy_level = 0;
1615 ioc->running = IOC_IDLE;
1616 }
1617 }
1618
1619 spin_unlock_irq(&ioc->lock);
1620}
1621
1622static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg,
1623 bool is_merge, u64 *costp)
1624{
1625 struct ioc *ioc = iocg->ioc;
1626 u64 coef_seqio, coef_randio, coef_page;
1627 u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1);
1628 u64 seek_pages = 0;
1629 u64 cost = 0;
1630
1631 switch (bio_op(bio)) {
1632 case REQ_OP_READ:
1633 coef_seqio = ioc->params.lcoefs[LCOEF_RSEQIO];
1634 coef_randio = ioc->params.lcoefs[LCOEF_RRANDIO];
1635 coef_page = ioc->params.lcoefs[LCOEF_RPAGE];
1636 break;
1637 case REQ_OP_WRITE:
1638 coef_seqio = ioc->params.lcoefs[LCOEF_WSEQIO];
1639 coef_randio = ioc->params.lcoefs[LCOEF_WRANDIO];
1640 coef_page = ioc->params.lcoefs[LCOEF_WPAGE];
1641 break;
1642 default:
1643 goto out;
1644 }
1645
1646 if (iocg->cursor) {
1647 seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor);
1648 seek_pages >>= IOC_SECT_TO_PAGE_SHIFT;
1649 }
1650
1651 if (!is_merge) {
1652 if (seek_pages > LCOEF_RANDIO_PAGES) {
1653 cost += coef_randio;
1654 } else {
1655 cost += coef_seqio;
1656 }
1657 }
1658 cost += pages * coef_page;
1659out:
1660 *costp = cost;
1661}
1662
1663static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge)
1664{
1665 u64 cost;
1666
1667 calc_vtime_cost_builtin(bio, iocg, is_merge, &cost);
1668 return cost;
1669}
1670
1671static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio)
1672{
1673 struct blkcg_gq *blkg = bio->bi_blkg;
1674 struct ioc *ioc = rqos_to_ioc(rqos);
1675 struct ioc_gq *iocg = blkg_to_iocg(blkg);
1676 struct ioc_now now;
1677 struct iocg_wait wait;
1678 u32 hw_active, hw_inuse;
1679 u64 abs_cost, cost, vtime;
1680
1681 /* bypass IOs if disabled or for root cgroup */
1682 if (!ioc->enabled || !iocg->level)
1683 return;
1684
1685 /* always activate so that even 0 cost IOs get protected to some level */
1686 if (!iocg_activate(iocg, &now))
1687 return;
1688
1689 /* calculate the absolute vtime cost */
1690 abs_cost = calc_vtime_cost(bio, iocg, false);
1691 if (!abs_cost)
1692 return;
1693
1694 iocg->cursor = bio_end_sector(bio);
1695
1696 vtime = atomic64_read(&iocg->vtime);
1697 current_hweight(iocg, &hw_active, &hw_inuse);
1698
1699 if (hw_inuse < hw_active &&
1700 time_after_eq64(vtime + ioc->inuse_margin_vtime, now.vnow)) {
1701 TRACE_IOCG_PATH(inuse_reset, iocg, &now,
1702 iocg->inuse, iocg->weight, hw_inuse, hw_active);
1703 spin_lock_irq(&ioc->lock);
1704 propagate_active_weight(iocg, iocg->weight, iocg->weight);
1705 spin_unlock_irq(&ioc->lock);
1706 current_hweight(iocg, &hw_active, &hw_inuse);
1707 }
1708
1709 cost = abs_cost_to_cost(abs_cost, hw_inuse);
1710
1711 /*
1712 * If no one's waiting and within budget, issue right away. The
1713 * tests are racy but the races aren't systemic - we only miss once
1714 * in a while which is fine.
1715 */
1716 if (!waitqueue_active(&iocg->waitq) &&
Tejun Heo36a52482019-09-04 12:45:52 -07001717 !atomic64_read(&iocg->abs_vdebt) &&
Tejun Heo7caa4712019-08-28 15:05:58 -07001718 time_before_eq64(vtime + cost, now.vnow)) {
1719 iocg_commit_bio(iocg, bio, cost);
1720 return;
1721 }
1722
Tejun Heo36a52482019-09-04 12:45:52 -07001723 /*
1724 * We're over budget. If @bio has to be issued regardless,
1725 * remember the abs_cost instead of advancing vtime.
1726 * iocg_kick_waitq() will pay off the debt before waking more IOs.
1727 * This way, the debt is continuously paid off each period with the
1728 * actual budget available to the cgroup. If we just wound vtime,
1729 * we would incorrectly use the current hw_inuse for the entire
1730 * amount which, for example, can lead to the cgroup staying
1731 * blocked for a long time even with substantially raised hw_inuse.
1732 */
Tejun Heo7caa4712019-08-28 15:05:58 -07001733 if (bio_issue_as_root_blkg(bio) || fatal_signal_pending(current)) {
Tejun Heo36a52482019-09-04 12:45:52 -07001734 atomic64_add(abs_cost, &iocg->abs_vdebt);
Tejun Heo54c52e12020-04-13 12:27:55 -04001735 if (iocg_kick_delay(iocg, &now))
Tejun Heod7bd15a2019-12-16 13:34:00 -08001736 blkcg_schedule_throttle(rqos->q,
1737 (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
Tejun Heo7caa4712019-08-28 15:05:58 -07001738 return;
1739 }
1740
1741 /*
1742 * Append self to the waitq and schedule the wakeup timer if we're
1743 * the first waiter. The timer duration is calculated based on the
1744 * current vrate. vtime and hweight changes can make it too short
1745 * or too long. Each wait entry records the absolute cost it's
1746 * waiting for to allow re-evaluation using a custom wait entry.
1747 *
1748 * If too short, the timer simply reschedules itself. If too long,
1749 * the period timer will notice and trigger wakeups.
1750 *
1751 * All waiters are on iocg->waitq and the wait states are
1752 * synchronized using waitq.lock.
1753 */
1754 spin_lock_irq(&iocg->waitq.lock);
1755
1756 /*
1757 * We activated above but w/o any synchronization. Deactivation is
1758 * synchronized with waitq.lock and we won't get deactivated as
1759 * long as we're waiting, so we're good if we're activated here.
1760 * In the unlikely case that we are deactivated, just issue the IO.
1761 */
1762 if (unlikely(list_empty(&iocg->active_list))) {
1763 spin_unlock_irq(&iocg->waitq.lock);
1764 iocg_commit_bio(iocg, bio, cost);
1765 return;
1766 }
1767
1768 init_waitqueue_func_entry(&wait.wait, iocg_wake_fn);
1769 wait.wait.private = current;
1770 wait.bio = bio;
1771 wait.abs_cost = abs_cost;
1772 wait.committed = false; /* will be set true by waker */
1773
1774 __add_wait_queue_entry_tail(&iocg->waitq, &wait.wait);
1775 iocg_kick_waitq(iocg, &now);
1776
1777 spin_unlock_irq(&iocg->waitq.lock);
1778
1779 while (true) {
1780 set_current_state(TASK_UNINTERRUPTIBLE);
1781 if (wait.committed)
1782 break;
1783 io_schedule();
1784 }
1785
1786 /* waker already committed us, proceed */
1787 finish_wait(&iocg->waitq, &wait.wait);
1788}
1789
1790static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq,
1791 struct bio *bio)
1792{
1793 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
Tejun Heoe1518f62019-09-04 12:45:53 -07001794 struct ioc *ioc = iocg->ioc;
Tejun Heo7caa4712019-08-28 15:05:58 -07001795 sector_t bio_end = bio_end_sector(bio);
Tejun Heoe1518f62019-09-04 12:45:53 -07001796 struct ioc_now now;
Tejun Heo7caa4712019-08-28 15:05:58 -07001797 u32 hw_inuse;
1798 u64 abs_cost, cost;
1799
Tejun Heoe1518f62019-09-04 12:45:53 -07001800 /* bypass if disabled or for root cgroup */
1801 if (!ioc->enabled || !iocg->level)
Tejun Heo7caa4712019-08-28 15:05:58 -07001802 return;
1803
1804 abs_cost = calc_vtime_cost(bio, iocg, true);
1805 if (!abs_cost)
1806 return;
1807
Tejun Heoe1518f62019-09-04 12:45:53 -07001808 ioc_now(ioc, &now);
1809 current_hweight(iocg, NULL, &hw_inuse);
1810 cost = abs_cost_to_cost(abs_cost, hw_inuse);
1811
Tejun Heo7caa4712019-08-28 15:05:58 -07001812 /* update cursor if backmerging into the request at the cursor */
1813 if (blk_rq_pos(rq) < bio_end &&
1814 blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor)
1815 iocg->cursor = bio_end;
1816
Tejun Heoe1518f62019-09-04 12:45:53 -07001817 /*
1818 * Charge if there's enough vtime budget and the existing request
1819 * has cost assigned. Otherwise, account it as debt. See debt
1820 * handling in ioc_rqos_throttle() for details.
1821 */
1822 if (rq->bio && rq->bio->bi_iocost_cost &&
1823 time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow))
1824 iocg_commit_bio(iocg, bio, cost);
1825 else
1826 atomic64_add(abs_cost, &iocg->abs_vdebt);
Tejun Heo7caa4712019-08-28 15:05:58 -07001827}
1828
1829static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio)
1830{
1831 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
1832
1833 if (iocg && bio->bi_iocost_cost)
1834 atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime);
1835}
1836
1837static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq)
1838{
1839 struct ioc *ioc = rqos_to_ioc(rqos);
1840 u64 on_q_ns, rq_wait_ns;
1841 int pidx, rw;
1842
1843 if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns)
1844 return;
1845
1846 switch (req_op(rq) & REQ_OP_MASK) {
1847 case REQ_OP_READ:
1848 pidx = QOS_RLAT;
1849 rw = READ;
1850 break;
1851 case REQ_OP_WRITE:
1852 pidx = QOS_WLAT;
1853 rw = WRITE;
1854 break;
1855 default:
1856 return;
1857 }
1858
1859 on_q_ns = ktime_get_ns() - rq->alloc_time_ns;
1860 rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns;
1861
1862 if (on_q_ns <= ioc->params.qos[pidx] * NSEC_PER_USEC)
1863 this_cpu_inc(ioc->pcpu_stat->missed[rw].nr_met);
1864 else
1865 this_cpu_inc(ioc->pcpu_stat->missed[rw].nr_missed);
1866
1867 this_cpu_add(ioc->pcpu_stat->rq_wait_ns, rq_wait_ns);
1868}
1869
1870static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos)
1871{
1872 struct ioc *ioc = rqos_to_ioc(rqos);
1873
1874 spin_lock_irq(&ioc->lock);
1875 ioc_refresh_params(ioc, false);
1876 spin_unlock_irq(&ioc->lock);
1877}
1878
1879static void ioc_rqos_exit(struct rq_qos *rqos)
1880{
1881 struct ioc *ioc = rqos_to_ioc(rqos);
1882
1883 blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost);
1884
1885 spin_lock_irq(&ioc->lock);
1886 ioc->running = IOC_STOP;
1887 spin_unlock_irq(&ioc->lock);
1888
1889 del_timer_sync(&ioc->timer);
1890 free_percpu(ioc->pcpu_stat);
1891 kfree(ioc);
1892}
1893
1894static struct rq_qos_ops ioc_rqos_ops = {
1895 .throttle = ioc_rqos_throttle,
1896 .merge = ioc_rqos_merge,
1897 .done_bio = ioc_rqos_done_bio,
1898 .done = ioc_rqos_done,
1899 .queue_depth_changed = ioc_rqos_queue_depth_changed,
1900 .exit = ioc_rqos_exit,
1901};
1902
1903static int blk_iocost_init(struct request_queue *q)
1904{
1905 struct ioc *ioc;
1906 struct rq_qos *rqos;
1907 int ret;
1908
1909 ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
1910 if (!ioc)
1911 return -ENOMEM;
1912
1913 ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat);
1914 if (!ioc->pcpu_stat) {
1915 kfree(ioc);
1916 return -ENOMEM;
1917 }
1918
1919 rqos = &ioc->rqos;
1920 rqos->id = RQ_QOS_COST;
1921 rqos->ops = &ioc_rqos_ops;
1922 rqos->q = q;
1923
1924 spin_lock_init(&ioc->lock);
1925 timer_setup(&ioc->timer, ioc_timer_fn, 0);
1926 INIT_LIST_HEAD(&ioc->active_iocgs);
1927
1928 ioc->running = IOC_IDLE;
1929 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
1930 seqcount_init(&ioc->period_seqcount);
1931 ioc->period_at = ktime_to_us(ktime_get());
1932 atomic64_set(&ioc->cur_period, 0);
1933 atomic_set(&ioc->hweight_gen, 0);
1934
1935 spin_lock_irq(&ioc->lock);
1936 ioc->autop_idx = AUTOP_INVALID;
1937 ioc_refresh_params(ioc, true);
1938 spin_unlock_irq(&ioc->lock);
1939
1940 rq_qos_add(q, rqos);
1941 ret = blkcg_activate_policy(q, &blkcg_policy_iocost);
1942 if (ret) {
1943 rq_qos_del(q, rqos);
Tejun Heo3532e722019-08-29 08:53:06 -07001944 free_percpu(ioc->pcpu_stat);
Tejun Heo7caa4712019-08-28 15:05:58 -07001945 kfree(ioc);
1946 return ret;
1947 }
1948 return 0;
1949}
1950
1951static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp)
1952{
1953 struct ioc_cgrp *iocc;
1954
1955 iocc = kzalloc(sizeof(struct ioc_cgrp), gfp);
Tejun Heoe916ad22019-08-30 06:10:58 -07001956 if (!iocc)
1957 return NULL;
Tejun Heo7caa4712019-08-28 15:05:58 -07001958
Tejun Heoe916ad22019-08-30 06:10:58 -07001959 iocc->dfl_weight = CGROUP_WEIGHT_DFL;
Tejun Heo7caa4712019-08-28 15:05:58 -07001960 return &iocc->cpd;
1961}
1962
1963static void ioc_cpd_free(struct blkcg_policy_data *cpd)
1964{
1965 kfree(container_of(cpd, struct ioc_cgrp, cpd));
1966}
1967
1968static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q,
1969 struct blkcg *blkcg)
1970{
1971 int levels = blkcg->css.cgroup->level + 1;
1972 struct ioc_gq *iocg;
1973
1974 iocg = kzalloc_node(sizeof(*iocg) + levels * sizeof(iocg->ancestors[0]),
1975 gfp, q->node);
1976 if (!iocg)
1977 return NULL;
1978
1979 return &iocg->pd;
1980}
1981
1982static void ioc_pd_init(struct blkg_policy_data *pd)
1983{
1984 struct ioc_gq *iocg = pd_to_iocg(pd);
1985 struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd);
1986 struct ioc *ioc = q_to_ioc(blkg->q);
1987 struct ioc_now now;
1988 struct blkcg_gq *tblkg;
1989 unsigned long flags;
1990
1991 ioc_now(ioc, &now);
1992
1993 iocg->ioc = ioc;
1994 atomic64_set(&iocg->vtime, now.vnow);
1995 atomic64_set(&iocg->done_vtime, now.vnow);
Tejun Heo36a52482019-09-04 12:45:52 -07001996 atomic64_set(&iocg->abs_vdebt, 0);
Tejun Heo7caa4712019-08-28 15:05:58 -07001997 atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period));
1998 INIT_LIST_HEAD(&iocg->active_list);
1999 iocg->hweight_active = HWEIGHT_WHOLE;
2000 iocg->hweight_inuse = HWEIGHT_WHOLE;
2001
2002 init_waitqueue_head(&iocg->waitq);
2003 hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2004 iocg->waitq_timer.function = iocg_waitq_timer_fn;
2005 hrtimer_init(&iocg->delay_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2006 iocg->delay_timer.function = iocg_delay_timer_fn;
2007
2008 iocg->level = blkg->blkcg->css.cgroup->level;
2009
2010 for (tblkg = blkg; tblkg; tblkg = tblkg->parent) {
2011 struct ioc_gq *tiocg = blkg_to_iocg(tblkg);
2012 iocg->ancestors[tiocg->level] = tiocg;
2013 }
2014
2015 spin_lock_irqsave(&ioc->lock, flags);
2016 weight_updated(iocg);
2017 spin_unlock_irqrestore(&ioc->lock, flags);
2018}
2019
2020static void ioc_pd_free(struct blkg_policy_data *pd)
2021{
2022 struct ioc_gq *iocg = pd_to_iocg(pd);
2023 struct ioc *ioc = iocg->ioc;
2024
2025 if (ioc) {
Tejun Heo7caa4712019-08-28 15:05:58 -07002026 spin_lock(&ioc->lock);
2027 if (!list_empty(&iocg->active_list)) {
2028 propagate_active_weight(iocg, 0, 0);
2029 list_del_init(&iocg->active_list);
2030 }
2031 spin_unlock(&ioc->lock);
Tejun Heoe036c4c2019-09-10 09:15:25 -07002032
2033 hrtimer_cancel(&iocg->waitq_timer);
2034 hrtimer_cancel(&iocg->delay_timer);
Tejun Heo7caa4712019-08-28 15:05:58 -07002035 }
2036 kfree(iocg);
2037}
2038
2039static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
2040 int off)
2041{
2042 const char *dname = blkg_dev_name(pd->blkg);
2043 struct ioc_gq *iocg = pd_to_iocg(pd);
2044
2045 if (dname && iocg->cfg_weight)
2046 seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight);
2047 return 0;
2048}
2049
2050
2051static int ioc_weight_show(struct seq_file *sf, void *v)
2052{
2053 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
2054 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
2055
2056 seq_printf(sf, "default %u\n", iocc->dfl_weight);
2057 blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill,
2058 &blkcg_policy_iocost, seq_cft(sf)->private, false);
2059 return 0;
2060}
2061
2062static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf,
2063 size_t nbytes, loff_t off)
2064{
2065 struct blkcg *blkcg = css_to_blkcg(of_css(of));
2066 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
2067 struct blkg_conf_ctx ctx;
2068 struct ioc_gq *iocg;
2069 u32 v;
2070 int ret;
2071
2072 if (!strchr(buf, ':')) {
2073 struct blkcg_gq *blkg;
2074
2075 if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v))
2076 return -EINVAL;
2077
2078 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
2079 return -EINVAL;
2080
2081 spin_lock(&blkcg->lock);
2082 iocc->dfl_weight = v;
2083 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
2084 struct ioc_gq *iocg = blkg_to_iocg(blkg);
2085
2086 if (iocg) {
2087 spin_lock_irq(&iocg->ioc->lock);
2088 weight_updated(iocg);
2089 spin_unlock_irq(&iocg->ioc->lock);
2090 }
2091 }
2092 spin_unlock(&blkcg->lock);
2093
2094 return nbytes;
2095 }
2096
2097 ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx);
2098 if (ret)
2099 return ret;
2100
2101 iocg = blkg_to_iocg(ctx.blkg);
2102
2103 if (!strncmp(ctx.body, "default", 7)) {
2104 v = 0;
2105 } else {
2106 if (!sscanf(ctx.body, "%u", &v))
2107 goto einval;
2108 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
2109 goto einval;
2110 }
2111
Dan Carpenter41591a52019-10-31 13:53:41 +03002112 spin_lock(&iocg->ioc->lock);
Tejun Heo7caa4712019-08-28 15:05:58 -07002113 iocg->cfg_weight = v;
2114 weight_updated(iocg);
Dan Carpenter41591a52019-10-31 13:53:41 +03002115 spin_unlock(&iocg->ioc->lock);
Tejun Heo7caa4712019-08-28 15:05:58 -07002116
2117 blkg_conf_finish(&ctx);
2118 return nbytes;
2119
2120einval:
2121 blkg_conf_finish(&ctx);
2122 return -EINVAL;
2123}
2124
2125static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
2126 int off)
2127{
2128 const char *dname = blkg_dev_name(pd->blkg);
2129 struct ioc *ioc = pd_to_iocg(pd)->ioc;
2130
2131 if (!dname)
2132 return 0;
2133
2134 seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n",
2135 dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto",
2136 ioc->params.qos[QOS_RPPM] / 10000,
2137 ioc->params.qos[QOS_RPPM] % 10000 / 100,
2138 ioc->params.qos[QOS_RLAT],
2139 ioc->params.qos[QOS_WPPM] / 10000,
2140 ioc->params.qos[QOS_WPPM] % 10000 / 100,
2141 ioc->params.qos[QOS_WLAT],
2142 ioc->params.qos[QOS_MIN] / 10000,
2143 ioc->params.qos[QOS_MIN] % 10000 / 100,
2144 ioc->params.qos[QOS_MAX] / 10000,
2145 ioc->params.qos[QOS_MAX] % 10000 / 100);
2146 return 0;
2147}
2148
2149static int ioc_qos_show(struct seq_file *sf, void *v)
2150{
2151 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
2152
2153 blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill,
2154 &blkcg_policy_iocost, seq_cft(sf)->private, false);
2155 return 0;
2156}
2157
2158static const match_table_t qos_ctrl_tokens = {
2159 { QOS_ENABLE, "enable=%u" },
2160 { QOS_CTRL, "ctrl=%s" },
2161 { NR_QOS_CTRL_PARAMS, NULL },
2162};
2163
2164static const match_table_t qos_tokens = {
2165 { QOS_RPPM, "rpct=%s" },
2166 { QOS_RLAT, "rlat=%u" },
2167 { QOS_WPPM, "wpct=%s" },
2168 { QOS_WLAT, "wlat=%u" },
2169 { QOS_MIN, "min=%s" },
2170 { QOS_MAX, "max=%s" },
2171 { NR_QOS_PARAMS, NULL },
2172};
2173
2174static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input,
2175 size_t nbytes, loff_t off)
2176{
2177 struct gendisk *disk;
2178 struct ioc *ioc;
2179 u32 qos[NR_QOS_PARAMS];
2180 bool enable, user;
2181 char *p;
2182 int ret;
2183
2184 disk = blkcg_conf_get_disk(&input);
2185 if (IS_ERR(disk))
2186 return PTR_ERR(disk);
2187
2188 ioc = q_to_ioc(disk->queue);
2189 if (!ioc) {
2190 ret = blk_iocost_init(disk->queue);
2191 if (ret)
2192 goto err;
2193 ioc = q_to_ioc(disk->queue);
2194 }
2195
2196 spin_lock_irq(&ioc->lock);
2197 memcpy(qos, ioc->params.qos, sizeof(qos));
2198 enable = ioc->enabled;
2199 user = ioc->user_qos_params;
2200 spin_unlock_irq(&ioc->lock);
2201
2202 while ((p = strsep(&input, " \t\n"))) {
2203 substring_t args[MAX_OPT_ARGS];
2204 char buf[32];
2205 int tok;
2206 s64 v;
2207
2208 if (!*p)
2209 continue;
2210
2211 switch (match_token(p, qos_ctrl_tokens, args)) {
2212 case QOS_ENABLE:
2213 match_u64(&args[0], &v);
2214 enable = v;
2215 continue;
2216 case QOS_CTRL:
2217 match_strlcpy(buf, &args[0], sizeof(buf));
2218 if (!strcmp(buf, "auto"))
2219 user = false;
2220 else if (!strcmp(buf, "user"))
2221 user = true;
2222 else
2223 goto einval;
2224 continue;
2225 }
2226
2227 tok = match_token(p, qos_tokens, args);
2228 switch (tok) {
2229 case QOS_RPPM:
2230 case QOS_WPPM:
2231 if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
2232 sizeof(buf))
2233 goto einval;
2234 if (cgroup_parse_float(buf, 2, &v))
2235 goto einval;
2236 if (v < 0 || v > 10000)
2237 goto einval;
2238 qos[tok] = v * 100;
2239 break;
2240 case QOS_RLAT:
2241 case QOS_WLAT:
2242 if (match_u64(&args[0], &v))
2243 goto einval;
2244 qos[tok] = v;
2245 break;
2246 case QOS_MIN:
2247 case QOS_MAX:
2248 if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
2249 sizeof(buf))
2250 goto einval;
2251 if (cgroup_parse_float(buf, 2, &v))
2252 goto einval;
2253 if (v < 0)
2254 goto einval;
2255 qos[tok] = clamp_t(s64, v * 100,
2256 VRATE_MIN_PPM, VRATE_MAX_PPM);
2257 break;
2258 default:
2259 goto einval;
2260 }
2261 user = true;
2262 }
2263
2264 if (qos[QOS_MIN] > qos[QOS_MAX])
2265 goto einval;
2266
2267 spin_lock_irq(&ioc->lock);
2268
2269 if (enable) {
2270 blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
2271 ioc->enabled = true;
2272 } else {
2273 blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
2274 ioc->enabled = false;
2275 }
2276
2277 if (user) {
2278 memcpy(ioc->params.qos, qos, sizeof(qos));
2279 ioc->user_qos_params = true;
2280 } else {
2281 ioc->user_qos_params = false;
2282 }
2283
2284 ioc_refresh_params(ioc, true);
2285 spin_unlock_irq(&ioc->lock);
2286
2287 put_disk_and_module(disk);
2288 return nbytes;
2289einval:
2290 ret = -EINVAL;
2291err:
2292 put_disk_and_module(disk);
2293 return ret;
2294}
2295
2296static u64 ioc_cost_model_prfill(struct seq_file *sf,
2297 struct blkg_policy_data *pd, int off)
2298{
2299 const char *dname = blkg_dev_name(pd->blkg);
2300 struct ioc *ioc = pd_to_iocg(pd)->ioc;
2301 u64 *u = ioc->params.i_lcoefs;
2302
2303 if (!dname)
2304 return 0;
2305
2306 seq_printf(sf, "%s ctrl=%s model=linear "
2307 "rbps=%llu rseqiops=%llu rrandiops=%llu "
2308 "wbps=%llu wseqiops=%llu wrandiops=%llu\n",
2309 dname, ioc->user_cost_model ? "user" : "auto",
2310 u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
2311 u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]);
2312 return 0;
2313}
2314
2315static int ioc_cost_model_show(struct seq_file *sf, void *v)
2316{
2317 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
2318
2319 blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill,
2320 &blkcg_policy_iocost, seq_cft(sf)->private, false);
2321 return 0;
2322}
2323
2324static const match_table_t cost_ctrl_tokens = {
2325 { COST_CTRL, "ctrl=%s" },
2326 { COST_MODEL, "model=%s" },
2327 { NR_COST_CTRL_PARAMS, NULL },
2328};
2329
2330static const match_table_t i_lcoef_tokens = {
2331 { I_LCOEF_RBPS, "rbps=%u" },
2332 { I_LCOEF_RSEQIOPS, "rseqiops=%u" },
2333 { I_LCOEF_RRANDIOPS, "rrandiops=%u" },
2334 { I_LCOEF_WBPS, "wbps=%u" },
2335 { I_LCOEF_WSEQIOPS, "wseqiops=%u" },
2336 { I_LCOEF_WRANDIOPS, "wrandiops=%u" },
2337 { NR_I_LCOEFS, NULL },
2338};
2339
2340static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input,
2341 size_t nbytes, loff_t off)
2342{
2343 struct gendisk *disk;
2344 struct ioc *ioc;
2345 u64 u[NR_I_LCOEFS];
2346 bool user;
2347 char *p;
2348 int ret;
2349
2350 disk = blkcg_conf_get_disk(&input);
2351 if (IS_ERR(disk))
2352 return PTR_ERR(disk);
2353
2354 ioc = q_to_ioc(disk->queue);
2355 if (!ioc) {
2356 ret = blk_iocost_init(disk->queue);
2357 if (ret)
2358 goto err;
2359 ioc = q_to_ioc(disk->queue);
2360 }
2361
2362 spin_lock_irq(&ioc->lock);
2363 memcpy(u, ioc->params.i_lcoefs, sizeof(u));
2364 user = ioc->user_cost_model;
2365 spin_unlock_irq(&ioc->lock);
2366
2367 while ((p = strsep(&input, " \t\n"))) {
2368 substring_t args[MAX_OPT_ARGS];
2369 char buf[32];
2370 int tok;
2371 u64 v;
2372
2373 if (!*p)
2374 continue;
2375
2376 switch (match_token(p, cost_ctrl_tokens, args)) {
2377 case COST_CTRL:
2378 match_strlcpy(buf, &args[0], sizeof(buf));
2379 if (!strcmp(buf, "auto"))
2380 user = false;
2381 else if (!strcmp(buf, "user"))
2382 user = true;
2383 else
2384 goto einval;
2385 continue;
2386 case COST_MODEL:
2387 match_strlcpy(buf, &args[0], sizeof(buf));
2388 if (strcmp(buf, "linear"))
2389 goto einval;
2390 continue;
2391 }
2392
2393 tok = match_token(p, i_lcoef_tokens, args);
2394 if (tok == NR_I_LCOEFS)
2395 goto einval;
2396 if (match_u64(&args[0], &v))
2397 goto einval;
2398 u[tok] = v;
2399 user = true;
2400 }
2401
2402 spin_lock_irq(&ioc->lock);
2403 if (user) {
2404 memcpy(ioc->params.i_lcoefs, u, sizeof(u));
2405 ioc->user_cost_model = true;
2406 } else {
2407 ioc->user_cost_model = false;
2408 }
2409 ioc_refresh_params(ioc, true);
2410 spin_unlock_irq(&ioc->lock);
2411
2412 put_disk_and_module(disk);
2413 return nbytes;
2414
2415einval:
2416 ret = -EINVAL;
2417err:
2418 put_disk_and_module(disk);
2419 return ret;
2420}
2421
2422static struct cftype ioc_files[] = {
2423 {
2424 .name = "weight",
2425 .flags = CFTYPE_NOT_ON_ROOT,
2426 .seq_show = ioc_weight_show,
2427 .write = ioc_weight_write,
2428 },
2429 {
2430 .name = "cost.qos",
2431 .flags = CFTYPE_ONLY_ON_ROOT,
2432 .seq_show = ioc_qos_show,
2433 .write = ioc_qos_write,
2434 },
2435 {
2436 .name = "cost.model",
2437 .flags = CFTYPE_ONLY_ON_ROOT,
2438 .seq_show = ioc_cost_model_show,
2439 .write = ioc_cost_model_write,
2440 },
2441 {}
2442};
2443
2444static struct blkcg_policy blkcg_policy_iocost = {
2445 .dfl_cftypes = ioc_files,
2446 .cpd_alloc_fn = ioc_cpd_alloc,
2447 .cpd_free_fn = ioc_cpd_free,
2448 .pd_alloc_fn = ioc_pd_alloc,
2449 .pd_init_fn = ioc_pd_init,
2450 .pd_free_fn = ioc_pd_free,
2451};
2452
2453static int __init ioc_init(void)
2454{
2455 return blkcg_policy_register(&blkcg_policy_iocost);
2456}
2457
2458static void __exit ioc_exit(void)
2459{
2460 return blkcg_policy_unregister(&blkcg_policy_iocost);
2461}
2462
2463module_init(ioc_init);
2464module_exit(ioc_exit);