Logan Gunthorpe | 5291698 | 2018-10-04 15:27:35 -0600 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * PCI Peer 2 Peer DMA support. |
| 4 | * |
| 5 | * Copyright (c) 2016-2018, Logan Gunthorpe |
| 6 | * Copyright (c) 2016-2017, Microsemi Corporation |
| 7 | * Copyright (c) 2017, Christoph Hellwig |
| 8 | * Copyright (c) 2018, Eideticom Inc. |
| 9 | */ |
| 10 | |
| 11 | #include <linux/pci-p2pdma.h> |
| 12 | #include <linux/module.h> |
| 13 | #include <linux/slab.h> |
| 14 | #include <linux/genalloc.h> |
| 15 | #include <linux/memremap.h> |
| 16 | #include <linux/percpu-refcount.h> |
| 17 | #include <linux/random.h> |
| 18 | #include <linux/seq_buf.h> |
| 19 | |
| 20 | struct pci_p2pdma { |
| 21 | struct percpu_ref devmap_ref; |
| 22 | struct completion devmap_ref_done; |
| 23 | struct gen_pool *pool; |
| 24 | bool p2pmem_published; |
| 25 | }; |
| 26 | |
| 27 | static void pci_p2pdma_percpu_release(struct percpu_ref *ref) |
| 28 | { |
| 29 | struct pci_p2pdma *p2p = |
| 30 | container_of(ref, struct pci_p2pdma, devmap_ref); |
| 31 | |
| 32 | complete_all(&p2p->devmap_ref_done); |
| 33 | } |
| 34 | |
| 35 | static void pci_p2pdma_percpu_kill(void *data) |
| 36 | { |
| 37 | struct percpu_ref *ref = data; |
| 38 | |
| 39 | /* |
| 40 | * pci_p2pdma_add_resource() may be called multiple times |
| 41 | * by a driver and may register the percpu_kill devm action multiple |
| 42 | * times. We only want the first action to actually kill the |
| 43 | * percpu_ref. |
| 44 | */ |
| 45 | if (percpu_ref_is_dying(ref)) |
| 46 | return; |
| 47 | |
| 48 | percpu_ref_kill(ref); |
| 49 | } |
| 50 | |
| 51 | static void pci_p2pdma_release(void *data) |
| 52 | { |
| 53 | struct pci_dev *pdev = data; |
| 54 | |
| 55 | if (!pdev->p2pdma) |
| 56 | return; |
| 57 | |
| 58 | wait_for_completion(&pdev->p2pdma->devmap_ref_done); |
| 59 | percpu_ref_exit(&pdev->p2pdma->devmap_ref); |
| 60 | |
| 61 | gen_pool_destroy(pdev->p2pdma->pool); |
| 62 | pdev->p2pdma = NULL; |
| 63 | } |
| 64 | |
| 65 | static int pci_p2pdma_setup(struct pci_dev *pdev) |
| 66 | { |
| 67 | int error = -ENOMEM; |
| 68 | struct pci_p2pdma *p2p; |
| 69 | |
| 70 | p2p = devm_kzalloc(&pdev->dev, sizeof(*p2p), GFP_KERNEL); |
| 71 | if (!p2p) |
| 72 | return -ENOMEM; |
| 73 | |
| 74 | p2p->pool = gen_pool_create(PAGE_SHIFT, dev_to_node(&pdev->dev)); |
| 75 | if (!p2p->pool) |
| 76 | goto out; |
| 77 | |
| 78 | init_completion(&p2p->devmap_ref_done); |
| 79 | error = percpu_ref_init(&p2p->devmap_ref, |
| 80 | pci_p2pdma_percpu_release, 0, GFP_KERNEL); |
| 81 | if (error) |
| 82 | goto out_pool_destroy; |
| 83 | |
| 84 | error = devm_add_action_or_reset(&pdev->dev, pci_p2pdma_release, pdev); |
| 85 | if (error) |
| 86 | goto out_pool_destroy; |
| 87 | |
| 88 | pdev->p2pdma = p2p; |
| 89 | |
| 90 | return 0; |
| 91 | |
| 92 | out_pool_destroy: |
| 93 | gen_pool_destroy(p2p->pool); |
| 94 | out: |
| 95 | devm_kfree(&pdev->dev, p2p); |
| 96 | return error; |
| 97 | } |
| 98 | |
| 99 | /** |
| 100 | * pci_p2pdma_add_resource - add memory for use as p2p memory |
| 101 | * @pdev: the device to add the memory to |
| 102 | * @bar: PCI BAR to add |
| 103 | * @size: size of the memory to add, may be zero to use the whole BAR |
| 104 | * @offset: offset into the PCI BAR |
| 105 | * |
| 106 | * The memory will be given ZONE_DEVICE struct pages so that it may |
| 107 | * be used with any DMA request. |
| 108 | */ |
| 109 | int pci_p2pdma_add_resource(struct pci_dev *pdev, int bar, size_t size, |
| 110 | u64 offset) |
| 111 | { |
| 112 | struct dev_pagemap *pgmap; |
| 113 | void *addr; |
| 114 | int error; |
| 115 | |
| 116 | if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) |
| 117 | return -EINVAL; |
| 118 | |
| 119 | if (offset >= pci_resource_len(pdev, bar)) |
| 120 | return -EINVAL; |
| 121 | |
| 122 | if (!size) |
| 123 | size = pci_resource_len(pdev, bar) - offset; |
| 124 | |
| 125 | if (size + offset > pci_resource_len(pdev, bar)) |
| 126 | return -EINVAL; |
| 127 | |
| 128 | if (!pdev->p2pdma) { |
| 129 | error = pci_p2pdma_setup(pdev); |
| 130 | if (error) |
| 131 | return error; |
| 132 | } |
| 133 | |
| 134 | pgmap = devm_kzalloc(&pdev->dev, sizeof(*pgmap), GFP_KERNEL); |
| 135 | if (!pgmap) |
| 136 | return -ENOMEM; |
| 137 | |
| 138 | pgmap->res.start = pci_resource_start(pdev, bar) + offset; |
| 139 | pgmap->res.end = pgmap->res.start + size - 1; |
| 140 | pgmap->res.flags = pci_resource_flags(pdev, bar); |
| 141 | pgmap->ref = &pdev->p2pdma->devmap_ref; |
| 142 | pgmap->type = MEMORY_DEVICE_PCI_P2PDMA; |
| 143 | |
| 144 | addr = devm_memremap_pages(&pdev->dev, pgmap); |
| 145 | if (IS_ERR(addr)) { |
| 146 | error = PTR_ERR(addr); |
| 147 | goto pgmap_free; |
| 148 | } |
| 149 | |
| 150 | error = gen_pool_add_virt(pdev->p2pdma->pool, (unsigned long)addr, |
| 151 | pci_bus_address(pdev, bar) + offset, |
| 152 | resource_size(&pgmap->res), dev_to_node(&pdev->dev)); |
| 153 | if (error) |
| 154 | goto pgmap_free; |
| 155 | |
| 156 | error = devm_add_action_or_reset(&pdev->dev, pci_p2pdma_percpu_kill, |
| 157 | &pdev->p2pdma->devmap_ref); |
| 158 | if (error) |
| 159 | goto pgmap_free; |
| 160 | |
| 161 | pci_info(pdev, "added peer-to-peer DMA memory %pR\n", |
| 162 | &pgmap->res); |
| 163 | |
| 164 | return 0; |
| 165 | |
| 166 | pgmap_free: |
| 167 | devm_kfree(&pdev->dev, pgmap); |
| 168 | return error; |
| 169 | } |
| 170 | EXPORT_SYMBOL_GPL(pci_p2pdma_add_resource); |
| 171 | |
| 172 | /* |
| 173 | * Note this function returns the parent PCI device with a |
| 174 | * reference taken. It is the caller's responsibily to drop |
| 175 | * the reference. |
| 176 | */ |
| 177 | static struct pci_dev *find_parent_pci_dev(struct device *dev) |
| 178 | { |
| 179 | struct device *parent; |
| 180 | |
| 181 | dev = get_device(dev); |
| 182 | |
| 183 | while (dev) { |
| 184 | if (dev_is_pci(dev)) |
| 185 | return to_pci_dev(dev); |
| 186 | |
| 187 | parent = get_device(dev->parent); |
| 188 | put_device(dev); |
| 189 | dev = parent; |
| 190 | } |
| 191 | |
| 192 | return NULL; |
| 193 | } |
| 194 | |
| 195 | /* |
| 196 | * Check if a PCI bridge has its ACS redirection bits set to redirect P2P |
| 197 | * TLPs upstream via ACS. Returns 1 if the packets will be redirected |
| 198 | * upstream, 0 otherwise. |
| 199 | */ |
| 200 | static int pci_bridge_has_acs_redir(struct pci_dev *pdev) |
| 201 | { |
| 202 | int pos; |
| 203 | u16 ctrl; |
| 204 | |
| 205 | pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS); |
| 206 | if (!pos) |
| 207 | return 0; |
| 208 | |
| 209 | pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); |
| 210 | |
| 211 | if (ctrl & (PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC)) |
| 212 | return 1; |
| 213 | |
| 214 | return 0; |
| 215 | } |
| 216 | |
| 217 | static void seq_buf_print_bus_devfn(struct seq_buf *buf, struct pci_dev *pdev) |
| 218 | { |
| 219 | if (!buf) |
| 220 | return; |
| 221 | |
| 222 | seq_buf_printf(buf, "%s;", pci_name(pdev)); |
| 223 | } |
| 224 | |
| 225 | /* |
| 226 | * Find the distance through the nearest common upstream bridge between |
| 227 | * two PCI devices. |
| 228 | * |
| 229 | * If the two devices are the same device then 0 will be returned. |
| 230 | * |
| 231 | * If there are two virtual functions of the same device behind the same |
| 232 | * bridge port then 2 will be returned (one step down to the PCIe switch, |
| 233 | * then one step back to the same device). |
| 234 | * |
| 235 | * In the case where two devices are connected to the same PCIe switch, the |
| 236 | * value 4 will be returned. This corresponds to the following PCI tree: |
| 237 | * |
| 238 | * -+ Root Port |
| 239 | * \+ Switch Upstream Port |
| 240 | * +-+ Switch Downstream Port |
| 241 | * + \- Device A |
| 242 | * \-+ Switch Downstream Port |
| 243 | * \- Device B |
| 244 | * |
| 245 | * The distance is 4 because we traverse from Device A through the downstream |
| 246 | * port of the switch, to the common upstream port, back up to the second |
| 247 | * downstream port and then to Device B. |
| 248 | * |
| 249 | * Any two devices that don't have a common upstream bridge will return -1. |
| 250 | * In this way devices on separate PCIe root ports will be rejected, which |
| 251 | * is what we want for peer-to-peer seeing each PCIe root port defines a |
| 252 | * separate hierarchy domain and there's no way to determine whether the root |
| 253 | * complex supports forwarding between them. |
| 254 | * |
| 255 | * In the case where two devices are connected to different PCIe switches, |
| 256 | * this function will still return a positive distance as long as both |
| 257 | * switches eventually have a common upstream bridge. Note this covers |
| 258 | * the case of using multiple PCIe switches to achieve a desired level of |
| 259 | * fan-out from a root port. The exact distance will be a function of the |
| 260 | * number of switches between Device A and Device B. |
| 261 | * |
| 262 | * If a bridge which has any ACS redirection bits set is in the path |
| 263 | * then this functions will return -2. This is so we reject any |
| 264 | * cases where the TLPs are forwarded up into the root complex. |
| 265 | * In this case, a list of all infringing bridge addresses will be |
| 266 | * populated in acs_list (assuming it's non-null) for printk purposes. |
| 267 | */ |
| 268 | static int upstream_bridge_distance(struct pci_dev *a, |
| 269 | struct pci_dev *b, |
| 270 | struct seq_buf *acs_list) |
| 271 | { |
| 272 | int dist_a = 0; |
| 273 | int dist_b = 0; |
| 274 | struct pci_dev *bb = NULL; |
| 275 | int acs_cnt = 0; |
| 276 | |
| 277 | /* |
| 278 | * Note, we don't need to take references to devices returned by |
| 279 | * pci_upstream_bridge() seeing we hold a reference to a child |
| 280 | * device which will already hold a reference to the upstream bridge. |
| 281 | */ |
| 282 | |
| 283 | while (a) { |
| 284 | dist_b = 0; |
| 285 | |
| 286 | if (pci_bridge_has_acs_redir(a)) { |
| 287 | seq_buf_print_bus_devfn(acs_list, a); |
| 288 | acs_cnt++; |
| 289 | } |
| 290 | |
| 291 | bb = b; |
| 292 | |
| 293 | while (bb) { |
| 294 | if (a == bb) |
| 295 | goto check_b_path_acs; |
| 296 | |
| 297 | bb = pci_upstream_bridge(bb); |
| 298 | dist_b++; |
| 299 | } |
| 300 | |
| 301 | a = pci_upstream_bridge(a); |
| 302 | dist_a++; |
| 303 | } |
| 304 | |
| 305 | return -1; |
| 306 | |
| 307 | check_b_path_acs: |
| 308 | bb = b; |
| 309 | |
| 310 | while (bb) { |
| 311 | if (a == bb) |
| 312 | break; |
| 313 | |
| 314 | if (pci_bridge_has_acs_redir(bb)) { |
| 315 | seq_buf_print_bus_devfn(acs_list, bb); |
| 316 | acs_cnt++; |
| 317 | } |
| 318 | |
| 319 | bb = pci_upstream_bridge(bb); |
| 320 | } |
| 321 | |
| 322 | if (acs_cnt) |
| 323 | return -2; |
| 324 | |
| 325 | return dist_a + dist_b; |
| 326 | } |
| 327 | |
| 328 | static int upstream_bridge_distance_warn(struct pci_dev *provider, |
| 329 | struct pci_dev *client) |
| 330 | { |
| 331 | struct seq_buf acs_list; |
| 332 | int ret; |
| 333 | |
| 334 | seq_buf_init(&acs_list, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE); |
| 335 | if (!acs_list.buffer) |
| 336 | return -ENOMEM; |
| 337 | |
| 338 | ret = upstream_bridge_distance(provider, client, &acs_list); |
| 339 | if (ret == -2) { |
| 340 | pci_warn(client, "cannot be used for peer-to-peer DMA as ACS redirect is set between the client and provider (%s)\n", |
| 341 | pci_name(provider)); |
| 342 | /* Drop final semicolon */ |
| 343 | acs_list.buffer[acs_list.len-1] = 0; |
| 344 | pci_warn(client, "to disable ACS redirect for this path, add the kernel parameter: pci=disable_acs_redir=%s\n", |
| 345 | acs_list.buffer); |
| 346 | |
| 347 | } else if (ret < 0) { |
| 348 | pci_warn(client, "cannot be used for peer-to-peer DMA as the client and provider (%s) do not share an upstream bridge\n", |
| 349 | pci_name(provider)); |
| 350 | } |
| 351 | |
| 352 | kfree(acs_list.buffer); |
| 353 | |
| 354 | return ret; |
| 355 | } |
| 356 | |
| 357 | /** |
| 358 | * pci_p2pdma_distance_many - Determive the cumulative distance between |
| 359 | * a p2pdma provider and the clients in use. |
| 360 | * @provider: p2pdma provider to check against the client list |
| 361 | * @clients: array of devices to check (NULL-terminated) |
| 362 | * @num_clients: number of clients in the array |
| 363 | * @verbose: if true, print warnings for devices when we return -1 |
| 364 | * |
| 365 | * Returns -1 if any of the clients are not compatible (behind the same |
| 366 | * root port as the provider), otherwise returns a positive number where |
| 367 | * a lower number is the preferrable choice. (If there's one client |
| 368 | * that's the same as the provider it will return 0, which is best choice). |
| 369 | * |
| 370 | * For now, "compatible" means the provider and the clients are all behind |
| 371 | * the same PCI root port. This cuts out cases that may work but is safest |
| 372 | * for the user. Future work can expand this to white-list root complexes that |
| 373 | * can safely forward between each ports. |
| 374 | */ |
| 375 | int pci_p2pdma_distance_many(struct pci_dev *provider, struct device **clients, |
| 376 | int num_clients, bool verbose) |
| 377 | { |
| 378 | bool not_supported = false; |
| 379 | struct pci_dev *pci_client; |
| 380 | int distance = 0; |
| 381 | int i, ret; |
| 382 | |
| 383 | if (num_clients == 0) |
| 384 | return -1; |
| 385 | |
| 386 | for (i = 0; i < num_clients; i++) { |
| 387 | pci_client = find_parent_pci_dev(clients[i]); |
| 388 | if (!pci_client) { |
| 389 | if (verbose) |
| 390 | dev_warn(clients[i], |
| 391 | "cannot be used for peer-to-peer DMA as it is not a PCI device\n"); |
| 392 | return -1; |
| 393 | } |
| 394 | |
| 395 | if (verbose) |
| 396 | ret = upstream_bridge_distance_warn(provider, |
| 397 | pci_client); |
| 398 | else |
| 399 | ret = upstream_bridge_distance(provider, pci_client, |
| 400 | NULL); |
| 401 | |
| 402 | pci_dev_put(pci_client); |
| 403 | |
| 404 | if (ret < 0) |
| 405 | not_supported = true; |
| 406 | |
| 407 | if (not_supported && !verbose) |
| 408 | break; |
| 409 | |
| 410 | distance += ret; |
| 411 | } |
| 412 | |
| 413 | if (not_supported) |
| 414 | return -1; |
| 415 | |
| 416 | return distance; |
| 417 | } |
| 418 | EXPORT_SYMBOL_GPL(pci_p2pdma_distance_many); |
| 419 | |
| 420 | /** |
| 421 | * pci_has_p2pmem - check if a given PCI device has published any p2pmem |
| 422 | * @pdev: PCI device to check |
| 423 | */ |
| 424 | bool pci_has_p2pmem(struct pci_dev *pdev) |
| 425 | { |
| 426 | return pdev->p2pdma && pdev->p2pdma->p2pmem_published; |
| 427 | } |
| 428 | EXPORT_SYMBOL_GPL(pci_has_p2pmem); |
| 429 | |
| 430 | /** |
| 431 | * pci_p2pmem_find - find a peer-to-peer DMA memory device compatible with |
| 432 | * the specified list of clients and shortest distance (as determined |
| 433 | * by pci_p2pmem_dma()) |
| 434 | * @clients: array of devices to check (NULL-terminated) |
| 435 | * @num_clients: number of client devices in the list |
| 436 | * |
| 437 | * If multiple devices are behind the same switch, the one "closest" to the |
| 438 | * client devices in use will be chosen first. (So if one of the providers are |
| 439 | * the same as one of the clients, that provider will be used ahead of any |
| 440 | * other providers that are unrelated). If multiple providers are an equal |
| 441 | * distance away, one will be chosen at random. |
| 442 | * |
| 443 | * Returns a pointer to the PCI device with a reference taken (use pci_dev_put |
| 444 | * to return the reference) or NULL if no compatible device is found. The |
| 445 | * found provider will also be assigned to the client list. |
| 446 | */ |
| 447 | struct pci_dev *pci_p2pmem_find_many(struct device **clients, int num_clients) |
| 448 | { |
| 449 | struct pci_dev *pdev = NULL; |
| 450 | int distance; |
| 451 | int closest_distance = INT_MAX; |
| 452 | struct pci_dev **closest_pdevs; |
| 453 | int dev_cnt = 0; |
| 454 | const int max_devs = PAGE_SIZE / sizeof(*closest_pdevs); |
| 455 | int i; |
| 456 | |
| 457 | closest_pdevs = kmalloc(PAGE_SIZE, GFP_KERNEL); |
| 458 | if (!closest_pdevs) |
| 459 | return NULL; |
| 460 | |
| 461 | while ((pdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, pdev))) { |
| 462 | if (!pci_has_p2pmem(pdev)) |
| 463 | continue; |
| 464 | |
| 465 | distance = pci_p2pdma_distance_many(pdev, clients, |
| 466 | num_clients, false); |
| 467 | if (distance < 0 || distance > closest_distance) |
| 468 | continue; |
| 469 | |
| 470 | if (distance == closest_distance && dev_cnt >= max_devs) |
| 471 | continue; |
| 472 | |
| 473 | if (distance < closest_distance) { |
| 474 | for (i = 0; i < dev_cnt; i++) |
| 475 | pci_dev_put(closest_pdevs[i]); |
| 476 | |
| 477 | dev_cnt = 0; |
| 478 | closest_distance = distance; |
| 479 | } |
| 480 | |
| 481 | closest_pdevs[dev_cnt++] = pci_dev_get(pdev); |
| 482 | } |
| 483 | |
| 484 | if (dev_cnt) |
| 485 | pdev = pci_dev_get(closest_pdevs[prandom_u32_max(dev_cnt)]); |
| 486 | |
| 487 | for (i = 0; i < dev_cnt; i++) |
| 488 | pci_dev_put(closest_pdevs[i]); |
| 489 | |
| 490 | kfree(closest_pdevs); |
| 491 | return pdev; |
| 492 | } |
| 493 | EXPORT_SYMBOL_GPL(pci_p2pmem_find_many); |
| 494 | |
| 495 | /** |
| 496 | * pci_alloc_p2p_mem - allocate peer-to-peer DMA memory |
| 497 | * @pdev: the device to allocate memory from |
| 498 | * @size: number of bytes to allocate |
| 499 | * |
| 500 | * Returns the allocated memory or NULL on error. |
| 501 | */ |
| 502 | void *pci_alloc_p2pmem(struct pci_dev *pdev, size_t size) |
| 503 | { |
| 504 | void *ret; |
| 505 | |
| 506 | if (unlikely(!pdev->p2pdma)) |
| 507 | return NULL; |
| 508 | |
| 509 | if (unlikely(!percpu_ref_tryget_live(&pdev->p2pdma->devmap_ref))) |
| 510 | return NULL; |
| 511 | |
| 512 | ret = (void *)gen_pool_alloc(pdev->p2pdma->pool, size); |
| 513 | |
| 514 | if (unlikely(!ret)) |
| 515 | percpu_ref_put(&pdev->p2pdma->devmap_ref); |
| 516 | |
| 517 | return ret; |
| 518 | } |
| 519 | EXPORT_SYMBOL_GPL(pci_alloc_p2pmem); |
| 520 | |
| 521 | /** |
| 522 | * pci_free_p2pmem - free peer-to-peer DMA memory |
| 523 | * @pdev: the device the memory was allocated from |
| 524 | * @addr: address of the memory that was allocated |
| 525 | * @size: number of bytes that was allocated |
| 526 | */ |
| 527 | void pci_free_p2pmem(struct pci_dev *pdev, void *addr, size_t size) |
| 528 | { |
| 529 | gen_pool_free(pdev->p2pdma->pool, (uintptr_t)addr, size); |
| 530 | percpu_ref_put(&pdev->p2pdma->devmap_ref); |
| 531 | } |
| 532 | EXPORT_SYMBOL_GPL(pci_free_p2pmem); |
| 533 | |
| 534 | /** |
| 535 | * pci_virt_to_bus - return the PCI bus address for a given virtual |
| 536 | * address obtained with pci_alloc_p2pmem() |
| 537 | * @pdev: the device the memory was allocated from |
| 538 | * @addr: address of the memory that was allocated |
| 539 | */ |
| 540 | pci_bus_addr_t pci_p2pmem_virt_to_bus(struct pci_dev *pdev, void *addr) |
| 541 | { |
| 542 | if (!addr) |
| 543 | return 0; |
| 544 | if (!pdev->p2pdma) |
| 545 | return 0; |
| 546 | |
| 547 | /* |
| 548 | * Note: when we added the memory to the pool we used the PCI |
| 549 | * bus address as the physical address. So gen_pool_virt_to_phys() |
| 550 | * actually returns the bus address despite the misleading name. |
| 551 | */ |
| 552 | return gen_pool_virt_to_phys(pdev->p2pdma->pool, (unsigned long)addr); |
| 553 | } |
| 554 | EXPORT_SYMBOL_GPL(pci_p2pmem_virt_to_bus); |
| 555 | |
| 556 | /** |
| 557 | * pci_p2pmem_alloc_sgl - allocate peer-to-peer DMA memory in a scatterlist |
| 558 | * @pdev: the device to allocate memory from |
| 559 | * @nents: the number of SG entries in the list |
| 560 | * @length: number of bytes to allocate |
| 561 | * |
| 562 | * Returns 0 on success |
| 563 | */ |
| 564 | struct scatterlist *pci_p2pmem_alloc_sgl(struct pci_dev *pdev, |
| 565 | unsigned int *nents, u32 length) |
| 566 | { |
| 567 | struct scatterlist *sg; |
| 568 | void *addr; |
| 569 | |
| 570 | sg = kzalloc(sizeof(*sg), GFP_KERNEL); |
| 571 | if (!sg) |
| 572 | return NULL; |
| 573 | |
| 574 | sg_init_table(sg, 1); |
| 575 | |
| 576 | addr = pci_alloc_p2pmem(pdev, length); |
| 577 | if (!addr) |
| 578 | goto out_free_sg; |
| 579 | |
| 580 | sg_set_buf(sg, addr, length); |
| 581 | *nents = 1; |
| 582 | return sg; |
| 583 | |
| 584 | out_free_sg: |
| 585 | kfree(sg); |
| 586 | return NULL; |
| 587 | } |
| 588 | EXPORT_SYMBOL_GPL(pci_p2pmem_alloc_sgl); |
| 589 | |
| 590 | /** |
| 591 | * pci_p2pmem_free_sgl - free a scatterlist allocated by pci_p2pmem_alloc_sgl() |
| 592 | * @pdev: the device to allocate memory from |
| 593 | * @sgl: the allocated scatterlist |
| 594 | */ |
| 595 | void pci_p2pmem_free_sgl(struct pci_dev *pdev, struct scatterlist *sgl) |
| 596 | { |
| 597 | struct scatterlist *sg; |
| 598 | int count; |
| 599 | |
| 600 | for_each_sg(sgl, sg, INT_MAX, count) { |
| 601 | if (!sg) |
| 602 | break; |
| 603 | |
| 604 | pci_free_p2pmem(pdev, sg_virt(sg), sg->length); |
| 605 | } |
| 606 | kfree(sgl); |
| 607 | } |
| 608 | EXPORT_SYMBOL_GPL(pci_p2pmem_free_sgl); |
| 609 | |
| 610 | /** |
| 611 | * pci_p2pmem_publish - publish the peer-to-peer DMA memory for use by |
| 612 | * other devices with pci_p2pmem_find() |
| 613 | * @pdev: the device with peer-to-peer DMA memory to publish |
| 614 | * @publish: set to true to publish the memory, false to unpublish it |
| 615 | * |
| 616 | * Published memory can be used by other PCI device drivers for |
| 617 | * peer-2-peer DMA operations. Non-published memory is reserved for |
| 618 | * exlusive use of the device driver that registers the peer-to-peer |
| 619 | * memory. |
| 620 | */ |
| 621 | void pci_p2pmem_publish(struct pci_dev *pdev, bool publish) |
| 622 | { |
| 623 | if (pdev->p2pdma) |
| 624 | pdev->p2pdma->p2pmem_published = publish; |
| 625 | } |
| 626 | EXPORT_SYMBOL_GPL(pci_p2pmem_publish); |