Ben Skeggs | 6ee7386 | 2009-12-11 19:24:15 +1000 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2006 Dave Airlie |
| 3 | * Copyright 2007 Maarten Maathuis |
| 4 | * Copyright 2007-2009 Stuart Bennett |
| 5 | * |
| 6 | * Permission is hereby granted, free of charge, to any person obtaining a |
| 7 | * copy of this software and associated documentation files (the "Software"), |
| 8 | * to deal in the Software without restriction, including without limitation |
| 9 | * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| 10 | * and/or sell copies of the Software, and to permit persons to whom the |
| 11 | * Software is furnished to do so, subject to the following conditions: |
| 12 | * |
| 13 | * The above copyright notice and this permission notice shall be included in |
| 14 | * all copies or substantial portions of the Software. |
| 15 | * |
| 16 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 17 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 18 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| 19 | * THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, |
| 20 | * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF |
| 21 | * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| 22 | * SOFTWARE. |
| 23 | */ |
| 24 | |
| 25 | #include "drmP.h" |
| 26 | #include "nouveau_drv.h" |
| 27 | #include "nouveau_hw.h" |
| 28 | |
| 29 | #define CHIPSET_NFORCE 0x01a0 |
| 30 | #define CHIPSET_NFORCE2 0x01f0 |
| 31 | |
| 32 | /* |
| 33 | * misc hw access wrappers/control functions |
| 34 | */ |
| 35 | |
| 36 | void |
| 37 | NVWriteVgaSeq(struct drm_device *dev, int head, uint8_t index, uint8_t value) |
| 38 | { |
| 39 | NVWritePRMVIO(dev, head, NV_PRMVIO_SRX, index); |
| 40 | NVWritePRMVIO(dev, head, NV_PRMVIO_SR, value); |
| 41 | } |
| 42 | |
| 43 | uint8_t |
| 44 | NVReadVgaSeq(struct drm_device *dev, int head, uint8_t index) |
| 45 | { |
| 46 | NVWritePRMVIO(dev, head, NV_PRMVIO_SRX, index); |
| 47 | return NVReadPRMVIO(dev, head, NV_PRMVIO_SR); |
| 48 | } |
| 49 | |
| 50 | void |
| 51 | NVWriteVgaGr(struct drm_device *dev, int head, uint8_t index, uint8_t value) |
| 52 | { |
| 53 | NVWritePRMVIO(dev, head, NV_PRMVIO_GRX, index); |
| 54 | NVWritePRMVIO(dev, head, NV_PRMVIO_GX, value); |
| 55 | } |
| 56 | |
| 57 | uint8_t |
| 58 | NVReadVgaGr(struct drm_device *dev, int head, uint8_t index) |
| 59 | { |
| 60 | NVWritePRMVIO(dev, head, NV_PRMVIO_GRX, index); |
| 61 | return NVReadPRMVIO(dev, head, NV_PRMVIO_GX); |
| 62 | } |
| 63 | |
| 64 | /* CR44 takes values 0 (head A), 3 (head B) and 4 (heads tied) |
| 65 | * it affects only the 8 bit vga io regs, which we access using mmio at |
| 66 | * 0xc{0,2}3c*, 0x60{1,3}3*, and 0x68{1,3}3d* |
| 67 | * in general, the set value of cr44 does not matter: reg access works as |
| 68 | * expected and values can be set for the appropriate head by using a 0x2000 |
| 69 | * offset as required |
| 70 | * however: |
| 71 | * a) pre nv40, the head B range of PRMVIO regs at 0xc23c* was not exposed and |
| 72 | * cr44 must be set to 0 or 3 for accessing values on the correct head |
| 73 | * through the common 0xc03c* addresses |
| 74 | * b) in tied mode (4) head B is programmed to the values set on head A, and |
| 75 | * access using the head B addresses can have strange results, ergo we leave |
| 76 | * tied mode in init once we know to what cr44 should be restored on exit |
| 77 | * |
| 78 | * the owner parameter is slightly abused: |
| 79 | * 0 and 1 are treated as head values and so the set value is (owner * 3) |
| 80 | * other values are treated as literal values to set |
| 81 | */ |
| 82 | void |
| 83 | NVSetOwner(struct drm_device *dev, int owner) |
| 84 | { |
| 85 | struct drm_nouveau_private *dev_priv = dev->dev_private; |
| 86 | |
| 87 | if (owner == 1) |
| 88 | owner *= 3; |
| 89 | |
| 90 | if (dev_priv->chipset == 0x11) { |
| 91 | /* This might seem stupid, but the blob does it and |
| 92 | * omitting it often locks the system up. |
| 93 | */ |
| 94 | NVReadVgaCrtc(dev, 0, NV_CIO_SR_LOCK_INDEX); |
| 95 | NVReadVgaCrtc(dev, 1, NV_CIO_SR_LOCK_INDEX); |
| 96 | } |
| 97 | |
| 98 | /* CR44 is always changed on CRTC0 */ |
| 99 | NVWriteVgaCrtc(dev, 0, NV_CIO_CRE_44, owner); |
| 100 | |
| 101 | if (dev_priv->chipset == 0x11) { /* set me harder */ |
| 102 | NVWriteVgaCrtc(dev, 0, NV_CIO_CRE_2E, owner); |
| 103 | NVWriteVgaCrtc(dev, 0, NV_CIO_CRE_2E, owner); |
| 104 | } |
| 105 | } |
| 106 | |
| 107 | void |
| 108 | NVBlankScreen(struct drm_device *dev, int head, bool blank) |
| 109 | { |
| 110 | unsigned char seq1; |
| 111 | |
| 112 | if (nv_two_heads(dev)) |
| 113 | NVSetOwner(dev, head); |
| 114 | |
| 115 | seq1 = NVReadVgaSeq(dev, head, NV_VIO_SR_CLOCK_INDEX); |
| 116 | |
| 117 | NVVgaSeqReset(dev, head, true); |
| 118 | if (blank) |
| 119 | NVWriteVgaSeq(dev, head, NV_VIO_SR_CLOCK_INDEX, seq1 | 0x20); |
| 120 | else |
| 121 | NVWriteVgaSeq(dev, head, NV_VIO_SR_CLOCK_INDEX, seq1 & ~0x20); |
| 122 | NVVgaSeqReset(dev, head, false); |
| 123 | } |
| 124 | |
| 125 | /* |
| 126 | * PLL setting |
| 127 | */ |
| 128 | |
| 129 | static int |
| 130 | powerctrl_1_shift(int chip_version, int reg) |
| 131 | { |
| 132 | int shift = -4; |
| 133 | |
| 134 | if (chip_version < 0x17 || chip_version == 0x1a || chip_version == 0x20) |
| 135 | return shift; |
| 136 | |
| 137 | switch (reg) { |
| 138 | case NV_RAMDAC_VPLL2: |
| 139 | shift += 4; |
| 140 | case NV_PRAMDAC_VPLL_COEFF: |
| 141 | shift += 4; |
| 142 | case NV_PRAMDAC_MPLL_COEFF: |
| 143 | shift += 4; |
| 144 | case NV_PRAMDAC_NVPLL_COEFF: |
| 145 | shift += 4; |
| 146 | } |
| 147 | |
| 148 | /* |
| 149 | * the shift for vpll regs is only used for nv3x chips with a single |
| 150 | * stage pll |
| 151 | */ |
| 152 | if (shift > 4 && (chip_version < 0x32 || chip_version == 0x35 || |
| 153 | chip_version == 0x36 || chip_version >= 0x40)) |
| 154 | shift = -4; |
| 155 | |
| 156 | return shift; |
| 157 | } |
| 158 | |
| 159 | static void |
| 160 | setPLL_single(struct drm_device *dev, uint32_t reg, struct nouveau_pll_vals *pv) |
| 161 | { |
| 162 | struct drm_nouveau_private *dev_priv = dev->dev_private; |
| 163 | int chip_version = dev_priv->vbios->chip_version; |
| 164 | uint32_t oldpll = NVReadRAMDAC(dev, 0, reg); |
| 165 | int oldN = (oldpll >> 8) & 0xff, oldM = oldpll & 0xff; |
| 166 | uint32_t pll = (oldpll & 0xfff80000) | pv->log2P << 16 | pv->NM1; |
| 167 | uint32_t saved_powerctrl_1 = 0; |
| 168 | int shift_powerctrl_1 = powerctrl_1_shift(chip_version, reg); |
| 169 | |
| 170 | if (oldpll == pll) |
| 171 | return; /* already set */ |
| 172 | |
| 173 | if (shift_powerctrl_1 >= 0) { |
| 174 | saved_powerctrl_1 = nvReadMC(dev, NV_PBUS_POWERCTRL_1); |
| 175 | nvWriteMC(dev, NV_PBUS_POWERCTRL_1, |
| 176 | (saved_powerctrl_1 & ~(0xf << shift_powerctrl_1)) | |
| 177 | 1 << shift_powerctrl_1); |
| 178 | } |
| 179 | |
| 180 | if (oldM && pv->M1 && (oldN / oldM < pv->N1 / pv->M1)) |
| 181 | /* upclock -- write new post divider first */ |
| 182 | NVWriteRAMDAC(dev, 0, reg, pv->log2P << 16 | (oldpll & 0xffff)); |
| 183 | else |
| 184 | /* downclock -- write new NM first */ |
| 185 | NVWriteRAMDAC(dev, 0, reg, (oldpll & 0xffff0000) | pv->NM1); |
| 186 | |
| 187 | if (chip_version < 0x17 && chip_version != 0x11) |
| 188 | /* wait a bit on older chips */ |
| 189 | msleep(64); |
| 190 | NVReadRAMDAC(dev, 0, reg); |
| 191 | |
| 192 | /* then write the other half as well */ |
| 193 | NVWriteRAMDAC(dev, 0, reg, pll); |
| 194 | |
| 195 | if (shift_powerctrl_1 >= 0) |
| 196 | nvWriteMC(dev, NV_PBUS_POWERCTRL_1, saved_powerctrl_1); |
| 197 | } |
| 198 | |
| 199 | static uint32_t |
| 200 | new_ramdac580(uint32_t reg1, bool ss, uint32_t ramdac580) |
| 201 | { |
| 202 | bool head_a = (reg1 == NV_PRAMDAC_VPLL_COEFF); |
| 203 | |
| 204 | if (ss) /* single stage pll mode */ |
| 205 | ramdac580 |= head_a ? NV_RAMDAC_580_VPLL1_ACTIVE : |
| 206 | NV_RAMDAC_580_VPLL2_ACTIVE; |
| 207 | else |
| 208 | ramdac580 &= head_a ? ~NV_RAMDAC_580_VPLL1_ACTIVE : |
| 209 | ~NV_RAMDAC_580_VPLL2_ACTIVE; |
| 210 | |
| 211 | return ramdac580; |
| 212 | } |
| 213 | |
| 214 | static void |
| 215 | setPLL_double_highregs(struct drm_device *dev, uint32_t reg1, |
| 216 | struct nouveau_pll_vals *pv) |
| 217 | { |
| 218 | struct drm_nouveau_private *dev_priv = dev->dev_private; |
| 219 | int chip_version = dev_priv->vbios->chip_version; |
| 220 | bool nv3035 = chip_version == 0x30 || chip_version == 0x35; |
| 221 | uint32_t reg2 = reg1 + ((reg1 == NV_RAMDAC_VPLL2) ? 0x5c : 0x70); |
| 222 | uint32_t oldpll1 = NVReadRAMDAC(dev, 0, reg1); |
| 223 | uint32_t oldpll2 = !nv3035 ? NVReadRAMDAC(dev, 0, reg2) : 0; |
| 224 | uint32_t pll1 = (oldpll1 & 0xfff80000) | pv->log2P << 16 | pv->NM1; |
| 225 | uint32_t pll2 = (oldpll2 & 0x7fff0000) | 1 << 31 | pv->NM2; |
| 226 | uint32_t oldramdac580 = 0, ramdac580 = 0; |
| 227 | bool single_stage = !pv->NM2 || pv->N2 == pv->M2; /* nv41+ only */ |
| 228 | uint32_t saved_powerctrl_1 = 0, savedc040 = 0; |
| 229 | int shift_powerctrl_1 = powerctrl_1_shift(chip_version, reg1); |
| 230 | |
| 231 | /* model specific additions to generic pll1 and pll2 set up above */ |
| 232 | if (nv3035) { |
| 233 | pll1 = (pll1 & 0xfcc7ffff) | (pv->N2 & 0x18) << 21 | |
| 234 | (pv->N2 & 0x7) << 19 | 8 << 4 | (pv->M2 & 7) << 4; |
| 235 | pll2 = 0; |
| 236 | } |
| 237 | if (chip_version > 0x40 && reg1 >= NV_PRAMDAC_VPLL_COEFF) { /* !nv40 */ |
| 238 | oldramdac580 = NVReadRAMDAC(dev, 0, NV_PRAMDAC_580); |
| 239 | ramdac580 = new_ramdac580(reg1, single_stage, oldramdac580); |
| 240 | if (oldramdac580 != ramdac580) |
| 241 | oldpll1 = ~0; /* force mismatch */ |
| 242 | if (single_stage) |
| 243 | /* magic value used by nvidia in single stage mode */ |
| 244 | pll2 |= 0x011f; |
| 245 | } |
| 246 | if (chip_version > 0x70) |
| 247 | /* magic bits set by the blob (but not the bios) on g71-73 */ |
| 248 | pll1 = (pll1 & 0x7fffffff) | (single_stage ? 0x4 : 0xc) << 28; |
| 249 | |
| 250 | if (oldpll1 == pll1 && oldpll2 == pll2) |
| 251 | return; /* already set */ |
| 252 | |
| 253 | if (shift_powerctrl_1 >= 0) { |
| 254 | saved_powerctrl_1 = nvReadMC(dev, NV_PBUS_POWERCTRL_1); |
| 255 | nvWriteMC(dev, NV_PBUS_POWERCTRL_1, |
| 256 | (saved_powerctrl_1 & ~(0xf << shift_powerctrl_1)) | |
| 257 | 1 << shift_powerctrl_1); |
| 258 | } |
| 259 | |
| 260 | if (chip_version >= 0x40) { |
| 261 | int shift_c040 = 14; |
| 262 | |
| 263 | switch (reg1) { |
| 264 | case NV_PRAMDAC_MPLL_COEFF: |
| 265 | shift_c040 += 2; |
| 266 | case NV_PRAMDAC_NVPLL_COEFF: |
| 267 | shift_c040 += 2; |
| 268 | case NV_RAMDAC_VPLL2: |
| 269 | shift_c040 += 2; |
| 270 | case NV_PRAMDAC_VPLL_COEFF: |
| 271 | shift_c040 += 2; |
| 272 | } |
| 273 | |
| 274 | savedc040 = nvReadMC(dev, 0xc040); |
| 275 | if (shift_c040 != 14) |
| 276 | nvWriteMC(dev, 0xc040, savedc040 & ~(3 << shift_c040)); |
| 277 | } |
| 278 | |
| 279 | if (oldramdac580 != ramdac580) |
| 280 | NVWriteRAMDAC(dev, 0, NV_PRAMDAC_580, ramdac580); |
| 281 | |
| 282 | if (!nv3035) |
| 283 | NVWriteRAMDAC(dev, 0, reg2, pll2); |
| 284 | NVWriteRAMDAC(dev, 0, reg1, pll1); |
| 285 | |
| 286 | if (shift_powerctrl_1 >= 0) |
| 287 | nvWriteMC(dev, NV_PBUS_POWERCTRL_1, saved_powerctrl_1); |
| 288 | if (chip_version >= 0x40) |
| 289 | nvWriteMC(dev, 0xc040, savedc040); |
| 290 | } |
| 291 | |
| 292 | static void |
| 293 | setPLL_double_lowregs(struct drm_device *dev, uint32_t NMNMreg, |
| 294 | struct nouveau_pll_vals *pv) |
| 295 | { |
| 296 | /* When setting PLLs, there is a merry game of disabling and enabling |
| 297 | * various bits of hardware during the process. This function is a |
| 298 | * synthesis of six nv4x traces, nearly each card doing a subtly |
| 299 | * different thing. With luck all the necessary bits for each card are |
| 300 | * combined herein. Without luck it deviates from each card's formula |
| 301 | * so as to not work on any :) |
| 302 | */ |
| 303 | |
| 304 | uint32_t Preg = NMNMreg - 4; |
| 305 | bool mpll = Preg == 0x4020; |
| 306 | uint32_t oldPval = nvReadMC(dev, Preg); |
| 307 | uint32_t NMNM = pv->NM2 << 16 | pv->NM1; |
| 308 | uint32_t Pval = (oldPval & (mpll ? ~(0x11 << 16) : ~(1 << 16))) | |
| 309 | 0xc << 28 | pv->log2P << 16; |
| 310 | uint32_t saved4600 = 0; |
| 311 | /* some cards have different maskc040s */ |
| 312 | uint32_t maskc040 = ~(3 << 14), savedc040; |
| 313 | bool single_stage = !pv->NM2 || pv->N2 == pv->M2; |
| 314 | |
| 315 | if (nvReadMC(dev, NMNMreg) == NMNM && (oldPval & 0xc0070000) == Pval) |
| 316 | return; |
| 317 | |
| 318 | if (Preg == 0x4000) |
| 319 | maskc040 = ~0x333; |
| 320 | if (Preg == 0x4058) |
| 321 | maskc040 = ~(0xc << 24); |
| 322 | |
| 323 | if (mpll) { |
| 324 | struct pll_lims pll_lim; |
| 325 | uint8_t Pval2; |
| 326 | |
| 327 | if (get_pll_limits(dev, Preg, &pll_lim)) |
| 328 | return; |
| 329 | |
| 330 | Pval2 = pv->log2P + pll_lim.log2p_bias; |
| 331 | if (Pval2 > pll_lim.max_log2p) |
| 332 | Pval2 = pll_lim.max_log2p; |
| 333 | Pval |= 1 << 28 | Pval2 << 20; |
| 334 | |
| 335 | saved4600 = nvReadMC(dev, 0x4600); |
| 336 | nvWriteMC(dev, 0x4600, saved4600 | 8 << 28); |
| 337 | } |
| 338 | if (single_stage) |
| 339 | Pval |= mpll ? 1 << 12 : 1 << 8; |
| 340 | |
| 341 | nvWriteMC(dev, Preg, oldPval | 1 << 28); |
| 342 | nvWriteMC(dev, Preg, Pval & ~(4 << 28)); |
| 343 | if (mpll) { |
| 344 | Pval |= 8 << 20; |
| 345 | nvWriteMC(dev, 0x4020, Pval & ~(0xc << 28)); |
| 346 | nvWriteMC(dev, 0x4038, Pval & ~(0xc << 28)); |
| 347 | } |
| 348 | |
| 349 | savedc040 = nvReadMC(dev, 0xc040); |
| 350 | nvWriteMC(dev, 0xc040, savedc040 & maskc040); |
| 351 | |
| 352 | nvWriteMC(dev, NMNMreg, NMNM); |
| 353 | if (NMNMreg == 0x4024) |
| 354 | nvWriteMC(dev, 0x403c, NMNM); |
| 355 | |
| 356 | nvWriteMC(dev, Preg, Pval); |
| 357 | if (mpll) { |
| 358 | Pval &= ~(8 << 20); |
| 359 | nvWriteMC(dev, 0x4020, Pval); |
| 360 | nvWriteMC(dev, 0x4038, Pval); |
| 361 | nvWriteMC(dev, 0x4600, saved4600); |
| 362 | } |
| 363 | |
| 364 | nvWriteMC(dev, 0xc040, savedc040); |
| 365 | |
| 366 | if (mpll) { |
| 367 | nvWriteMC(dev, 0x4020, Pval & ~(1 << 28)); |
| 368 | nvWriteMC(dev, 0x4038, Pval & ~(1 << 28)); |
| 369 | } |
| 370 | } |
| 371 | |
| 372 | void |
| 373 | nouveau_hw_setpll(struct drm_device *dev, uint32_t reg1, |
| 374 | struct nouveau_pll_vals *pv) |
| 375 | { |
| 376 | struct drm_nouveau_private *dev_priv = dev->dev_private; |
| 377 | int cv = dev_priv->vbios->chip_version; |
| 378 | |
| 379 | if (cv == 0x30 || cv == 0x31 || cv == 0x35 || cv == 0x36 || |
| 380 | cv >= 0x40) { |
| 381 | if (reg1 > 0x405c) |
| 382 | setPLL_double_highregs(dev, reg1, pv); |
| 383 | else |
| 384 | setPLL_double_lowregs(dev, reg1, pv); |
| 385 | } else |
| 386 | setPLL_single(dev, reg1, pv); |
| 387 | } |
| 388 | |
| 389 | /* |
| 390 | * PLL getting |
| 391 | */ |
| 392 | |
| 393 | static void |
| 394 | nouveau_hw_decode_pll(struct drm_device *dev, uint32_t reg1, uint32_t pll1, |
| 395 | uint32_t pll2, struct nouveau_pll_vals *pllvals) |
| 396 | { |
| 397 | struct drm_nouveau_private *dev_priv = dev->dev_private; |
| 398 | |
| 399 | /* to force parsing as single stage (i.e. nv40 vplls) pass pll2 as 0 */ |
| 400 | |
| 401 | /* log2P is & 0x7 as never more than 7, and nv30/35 only uses 3 bits */ |
| 402 | pllvals->log2P = (pll1 >> 16) & 0x7; |
| 403 | pllvals->N2 = pllvals->M2 = 1; |
| 404 | |
| 405 | if (reg1 <= 0x405c) { |
| 406 | pllvals->NM1 = pll2 & 0xffff; |
| 407 | /* single stage NVPLL and VPLLs use 1 << 8, MPLL uses 1 << 12 */ |
| 408 | if (!(pll1 & 0x1100)) |
| 409 | pllvals->NM2 = pll2 >> 16; |
| 410 | } else { |
| 411 | pllvals->NM1 = pll1 & 0xffff; |
| 412 | if (nv_two_reg_pll(dev) && pll2 & NV31_RAMDAC_ENABLE_VCO2) |
| 413 | pllvals->NM2 = pll2 & 0xffff; |
| 414 | else if (dev_priv->chipset == 0x30 || dev_priv->chipset == 0x35) { |
| 415 | pllvals->M1 &= 0xf; /* only 4 bits */ |
| 416 | if (pll1 & NV30_RAMDAC_ENABLE_VCO2) { |
| 417 | pllvals->M2 = (pll1 >> 4) & 0x7; |
| 418 | pllvals->N2 = ((pll1 >> 21) & 0x18) | |
| 419 | ((pll1 >> 19) & 0x7); |
| 420 | } |
| 421 | } |
| 422 | } |
| 423 | } |
| 424 | |
| 425 | int |
| 426 | nouveau_hw_get_pllvals(struct drm_device *dev, enum pll_types plltype, |
| 427 | struct nouveau_pll_vals *pllvals) |
| 428 | { |
| 429 | struct drm_nouveau_private *dev_priv = dev->dev_private; |
| 430 | const uint32_t nv04_regs[MAX_PLL_TYPES] = { NV_PRAMDAC_NVPLL_COEFF, |
| 431 | NV_PRAMDAC_MPLL_COEFF, |
| 432 | NV_PRAMDAC_VPLL_COEFF, |
| 433 | NV_RAMDAC_VPLL2 }; |
| 434 | const uint32_t nv40_regs[MAX_PLL_TYPES] = { 0x4000, |
| 435 | 0x4020, |
| 436 | NV_PRAMDAC_VPLL_COEFF, |
| 437 | NV_RAMDAC_VPLL2 }; |
| 438 | uint32_t reg1, pll1, pll2 = 0; |
| 439 | struct pll_lims pll_lim; |
| 440 | int ret; |
| 441 | |
| 442 | if (dev_priv->card_type < NV_40) |
| 443 | reg1 = nv04_regs[plltype]; |
| 444 | else |
| 445 | reg1 = nv40_regs[plltype]; |
| 446 | |
| 447 | pll1 = nvReadMC(dev, reg1); |
| 448 | |
| 449 | if (reg1 <= 0x405c) |
| 450 | pll2 = nvReadMC(dev, reg1 + 4); |
| 451 | else if (nv_two_reg_pll(dev)) { |
| 452 | uint32_t reg2 = reg1 + (reg1 == NV_RAMDAC_VPLL2 ? 0x5c : 0x70); |
| 453 | |
| 454 | pll2 = nvReadMC(dev, reg2); |
| 455 | } |
| 456 | |
| 457 | if (dev_priv->card_type == 0x40 && reg1 >= NV_PRAMDAC_VPLL_COEFF) { |
| 458 | uint32_t ramdac580 = NVReadRAMDAC(dev, 0, NV_PRAMDAC_580); |
| 459 | |
| 460 | /* check whether vpll has been forced into single stage mode */ |
| 461 | if (reg1 == NV_PRAMDAC_VPLL_COEFF) { |
| 462 | if (ramdac580 & NV_RAMDAC_580_VPLL1_ACTIVE) |
| 463 | pll2 = 0; |
| 464 | } else |
| 465 | if (ramdac580 & NV_RAMDAC_580_VPLL2_ACTIVE) |
| 466 | pll2 = 0; |
| 467 | } |
| 468 | |
| 469 | nouveau_hw_decode_pll(dev, reg1, pll1, pll2, pllvals); |
| 470 | |
| 471 | ret = get_pll_limits(dev, plltype, &pll_lim); |
| 472 | if (ret) |
| 473 | return ret; |
| 474 | |
| 475 | pllvals->refclk = pll_lim.refclk; |
| 476 | |
| 477 | return 0; |
| 478 | } |
| 479 | |
| 480 | int |
| 481 | nouveau_hw_pllvals_to_clk(struct nouveau_pll_vals *pv) |
| 482 | { |
| 483 | /* Avoid divide by zero if called at an inappropriate time */ |
| 484 | if (!pv->M1 || !pv->M2) |
| 485 | return 0; |
| 486 | |
| 487 | return pv->N1 * pv->N2 * pv->refclk / (pv->M1 * pv->M2) >> pv->log2P; |
| 488 | } |
| 489 | |
| 490 | int |
| 491 | nouveau_hw_get_clock(struct drm_device *dev, enum pll_types plltype) |
| 492 | { |
| 493 | struct nouveau_pll_vals pllvals; |
| 494 | |
| 495 | if (plltype == MPLL && (dev->pci_device & 0x0ff0) == CHIPSET_NFORCE) { |
| 496 | uint32_t mpllP; |
| 497 | |
| 498 | pci_read_config_dword(pci_get_bus_and_slot(0, 3), 0x6c, &mpllP); |
| 499 | if (!mpllP) |
| 500 | mpllP = 4; |
| 501 | |
| 502 | return 400000 / mpllP; |
| 503 | } else |
| 504 | if (plltype == MPLL && (dev->pci_device & 0xff0) == CHIPSET_NFORCE2) { |
| 505 | uint32_t clock; |
| 506 | |
| 507 | pci_read_config_dword(pci_get_bus_and_slot(0, 5), 0x4c, &clock); |
| 508 | return clock; |
| 509 | } |
| 510 | |
| 511 | nouveau_hw_get_pllvals(dev, plltype, &pllvals); |
| 512 | |
| 513 | return nouveau_hw_pllvals_to_clk(&pllvals); |
| 514 | } |
| 515 | |
| 516 | static void |
| 517 | nouveau_hw_fix_bad_vpll(struct drm_device *dev, int head) |
| 518 | { |
| 519 | /* the vpll on an unused head can come up with a random value, way |
| 520 | * beyond the pll limits. for some reason this causes the chip to |
| 521 | * lock up when reading the dac palette regs, so set a valid pll here |
| 522 | * when such a condition detected. only seen on nv11 to date |
| 523 | */ |
| 524 | |
| 525 | struct pll_lims pll_lim; |
| 526 | struct nouveau_pll_vals pv; |
| 527 | uint32_t pllreg = head ? NV_RAMDAC_VPLL2 : NV_PRAMDAC_VPLL_COEFF; |
| 528 | |
| 529 | if (get_pll_limits(dev, head ? VPLL2 : VPLL1, &pll_lim)) |
| 530 | return; |
| 531 | nouveau_hw_get_pllvals(dev, head ? VPLL2 : VPLL1, &pv); |
| 532 | |
| 533 | if (pv.M1 >= pll_lim.vco1.min_m && pv.M1 <= pll_lim.vco1.max_m && |
| 534 | pv.N1 >= pll_lim.vco1.min_n && pv.N1 <= pll_lim.vco1.max_n && |
| 535 | pv.log2P <= pll_lim.max_log2p) |
| 536 | return; |
| 537 | |
| 538 | NV_WARN(dev, "VPLL %d outwith limits, attempting to fix\n", head + 1); |
| 539 | |
| 540 | /* set lowest clock within static limits */ |
| 541 | pv.M1 = pll_lim.vco1.max_m; |
| 542 | pv.N1 = pll_lim.vco1.min_n; |
| 543 | pv.log2P = pll_lim.max_usable_log2p; |
| 544 | nouveau_hw_setpll(dev, pllreg, &pv); |
| 545 | } |
| 546 | |
| 547 | /* |
| 548 | * vga font save/restore |
| 549 | */ |
| 550 | |
| 551 | static void nouveau_vga_font_io(struct drm_device *dev, |
| 552 | void __iomem *iovram, |
| 553 | bool save, unsigned plane) |
| 554 | { |
| 555 | struct drm_nouveau_private *dev_priv = dev->dev_private; |
| 556 | unsigned i; |
| 557 | |
| 558 | NVWriteVgaSeq(dev, 0, NV_VIO_SR_PLANE_MASK_INDEX, 1 << plane); |
| 559 | NVWriteVgaGr(dev, 0, NV_VIO_GX_READ_MAP_INDEX, plane); |
| 560 | for (i = 0; i < 16384; i++) { |
| 561 | if (save) { |
| 562 | dev_priv->saved_vga_font[plane][i] = |
| 563 | ioread32_native(iovram + i * 4); |
| 564 | } else { |
| 565 | iowrite32_native(dev_priv->saved_vga_font[plane][i], |
| 566 | iovram + i * 4); |
| 567 | } |
| 568 | } |
| 569 | } |
| 570 | |
| 571 | void |
| 572 | nouveau_hw_save_vga_fonts(struct drm_device *dev, bool save) |
| 573 | { |
| 574 | uint8_t misc, gr4, gr5, gr6, seq2, seq4; |
| 575 | bool graphicsmode; |
| 576 | unsigned plane; |
| 577 | void __iomem *iovram; |
| 578 | |
| 579 | if (nv_two_heads(dev)) |
| 580 | NVSetOwner(dev, 0); |
| 581 | |
| 582 | NVSetEnablePalette(dev, 0, true); |
| 583 | graphicsmode = NVReadVgaAttr(dev, 0, NV_CIO_AR_MODE_INDEX) & 1; |
| 584 | NVSetEnablePalette(dev, 0, false); |
| 585 | |
| 586 | if (graphicsmode) /* graphics mode => framebuffer => no need to save */ |
| 587 | return; |
| 588 | |
| 589 | NV_INFO(dev, "%sing VGA fonts\n", save ? "Sav" : "Restor"); |
| 590 | |
| 591 | /* map first 64KiB of VRAM, holds VGA fonts etc */ |
| 592 | iovram = ioremap(pci_resource_start(dev->pdev, 1), 65536); |
| 593 | if (!iovram) { |
| 594 | NV_ERROR(dev, "Failed to map VRAM, " |
| 595 | "cannot save/restore VGA fonts.\n"); |
| 596 | return; |
| 597 | } |
| 598 | |
| 599 | if (nv_two_heads(dev)) |
| 600 | NVBlankScreen(dev, 1, true); |
| 601 | NVBlankScreen(dev, 0, true); |
| 602 | |
| 603 | /* save control regs */ |
| 604 | misc = NVReadPRMVIO(dev, 0, NV_PRMVIO_MISC__READ); |
| 605 | seq2 = NVReadVgaSeq(dev, 0, NV_VIO_SR_PLANE_MASK_INDEX); |
| 606 | seq4 = NVReadVgaSeq(dev, 0, NV_VIO_SR_MEM_MODE_INDEX); |
| 607 | gr4 = NVReadVgaGr(dev, 0, NV_VIO_GX_READ_MAP_INDEX); |
| 608 | gr5 = NVReadVgaGr(dev, 0, NV_VIO_GX_MODE_INDEX); |
| 609 | gr6 = NVReadVgaGr(dev, 0, NV_VIO_GX_MISC_INDEX); |
| 610 | |
| 611 | NVWritePRMVIO(dev, 0, NV_PRMVIO_MISC__WRITE, 0x67); |
| 612 | NVWriteVgaSeq(dev, 0, NV_VIO_SR_MEM_MODE_INDEX, 0x6); |
| 613 | NVWriteVgaGr(dev, 0, NV_VIO_GX_MODE_INDEX, 0x0); |
| 614 | NVWriteVgaGr(dev, 0, NV_VIO_GX_MISC_INDEX, 0x5); |
| 615 | |
| 616 | /* store font in planes 0..3 */ |
| 617 | for (plane = 0; plane < 4; plane++) |
| 618 | nouveau_vga_font_io(dev, iovram, save, plane); |
| 619 | |
| 620 | /* restore control regs */ |
| 621 | NVWritePRMVIO(dev, 0, NV_PRMVIO_MISC__WRITE, misc); |
| 622 | NVWriteVgaGr(dev, 0, NV_VIO_GX_READ_MAP_INDEX, gr4); |
| 623 | NVWriteVgaGr(dev, 0, NV_VIO_GX_MODE_INDEX, gr5); |
| 624 | NVWriteVgaGr(dev, 0, NV_VIO_GX_MISC_INDEX, gr6); |
| 625 | NVWriteVgaSeq(dev, 0, NV_VIO_SR_PLANE_MASK_INDEX, seq2); |
| 626 | NVWriteVgaSeq(dev, 0, NV_VIO_SR_MEM_MODE_INDEX, seq4); |
| 627 | |
| 628 | if (nv_two_heads(dev)) |
| 629 | NVBlankScreen(dev, 1, false); |
| 630 | NVBlankScreen(dev, 0, false); |
| 631 | |
| 632 | iounmap(iovram); |
| 633 | } |
| 634 | |
| 635 | /* |
| 636 | * mode state save/load |
| 637 | */ |
| 638 | |
| 639 | static void |
| 640 | rd_cio_state(struct drm_device *dev, int head, |
| 641 | struct nv04_crtc_reg *crtcstate, int index) |
| 642 | { |
| 643 | crtcstate->CRTC[index] = NVReadVgaCrtc(dev, head, index); |
| 644 | } |
| 645 | |
| 646 | static void |
| 647 | wr_cio_state(struct drm_device *dev, int head, |
| 648 | struct nv04_crtc_reg *crtcstate, int index) |
| 649 | { |
| 650 | NVWriteVgaCrtc(dev, head, index, crtcstate->CRTC[index]); |
| 651 | } |
| 652 | |
| 653 | static void |
| 654 | nv_save_state_ramdac(struct drm_device *dev, int head, |
| 655 | struct nv04_mode_state *state) |
| 656 | { |
| 657 | struct drm_nouveau_private *dev_priv = dev->dev_private; |
| 658 | struct nv04_crtc_reg *regp = &state->crtc_reg[head]; |
| 659 | int i; |
| 660 | |
| 661 | if (dev_priv->card_type >= NV_10) |
| 662 | regp->nv10_cursync = NVReadRAMDAC(dev, head, NV_RAMDAC_NV10_CURSYNC); |
| 663 | |
| 664 | nouveau_hw_get_pllvals(dev, head ? VPLL2 : VPLL1, ®p->pllvals); |
| 665 | state->pllsel = NVReadRAMDAC(dev, 0, NV_PRAMDAC_PLL_COEFF_SELECT); |
| 666 | if (nv_two_heads(dev)) |
| 667 | state->sel_clk = NVReadRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK); |
| 668 | if (dev_priv->chipset == 0x11) |
| 669 | regp->dither = NVReadRAMDAC(dev, head, NV_RAMDAC_DITHER_NV11); |
| 670 | |
| 671 | regp->ramdac_gen_ctrl = NVReadRAMDAC(dev, head, NV_PRAMDAC_GENERAL_CONTROL); |
| 672 | |
| 673 | if (nv_gf4_disp_arch(dev)) |
| 674 | regp->ramdac_630 = NVReadRAMDAC(dev, head, NV_PRAMDAC_630); |
| 675 | if (dev_priv->chipset >= 0x30) |
| 676 | regp->ramdac_634 = NVReadRAMDAC(dev, head, NV_PRAMDAC_634); |
| 677 | |
| 678 | regp->tv_setup = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_SETUP); |
| 679 | regp->tv_vtotal = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_VTOTAL); |
| 680 | regp->tv_vskew = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_VSKEW); |
| 681 | regp->tv_vsync_delay = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_VSYNC_DELAY); |
| 682 | regp->tv_htotal = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_HTOTAL); |
| 683 | regp->tv_hskew = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_HSKEW); |
| 684 | regp->tv_hsync_delay = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_HSYNC_DELAY); |
| 685 | regp->tv_hsync_delay2 = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_HSYNC_DELAY2); |
| 686 | |
| 687 | for (i = 0; i < 7; i++) { |
| 688 | uint32_t ramdac_reg = NV_PRAMDAC_FP_VDISPLAY_END + (i * 4); |
| 689 | regp->fp_vert_regs[i] = NVReadRAMDAC(dev, head, ramdac_reg); |
| 690 | regp->fp_horiz_regs[i] = NVReadRAMDAC(dev, head, ramdac_reg + 0x20); |
| 691 | } |
| 692 | |
| 693 | if (nv_gf4_disp_arch(dev)) { |
| 694 | regp->dither = NVReadRAMDAC(dev, head, NV_RAMDAC_FP_DITHER); |
| 695 | for (i = 0; i < 3; i++) { |
| 696 | regp->dither_regs[i] = NVReadRAMDAC(dev, head, NV_PRAMDAC_850 + i * 4); |
| 697 | regp->dither_regs[i + 3] = NVReadRAMDAC(dev, head, NV_PRAMDAC_85C + i * 4); |
| 698 | } |
| 699 | } |
| 700 | |
| 701 | regp->fp_control = NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL); |
| 702 | regp->fp_debug_0 = NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_DEBUG_0); |
| 703 | if (!nv_gf4_disp_arch(dev) && head == 0) { |
| 704 | /* early chips don't allow access to PRAMDAC_TMDS_* without |
| 705 | * the head A FPCLK on (nv11 even locks up) */ |
| 706 | NVWriteRAMDAC(dev, 0, NV_PRAMDAC_FP_DEBUG_0, regp->fp_debug_0 & |
| 707 | ~NV_PRAMDAC_FP_DEBUG_0_PWRDOWN_FPCLK); |
| 708 | } |
| 709 | regp->fp_debug_1 = NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_DEBUG_1); |
| 710 | regp->fp_debug_2 = NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_DEBUG_2); |
| 711 | |
| 712 | regp->fp_margin_color = NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_MARGIN_COLOR); |
| 713 | |
| 714 | if (nv_gf4_disp_arch(dev)) |
| 715 | regp->ramdac_8c0 = NVReadRAMDAC(dev, head, NV_PRAMDAC_8C0); |
| 716 | |
| 717 | if (dev_priv->card_type == NV_40) { |
| 718 | regp->ramdac_a20 = NVReadRAMDAC(dev, head, NV_PRAMDAC_A20); |
| 719 | regp->ramdac_a24 = NVReadRAMDAC(dev, head, NV_PRAMDAC_A24); |
| 720 | regp->ramdac_a34 = NVReadRAMDAC(dev, head, NV_PRAMDAC_A34); |
| 721 | |
| 722 | for (i = 0; i < 38; i++) |
| 723 | regp->ctv_regs[i] = NVReadRAMDAC(dev, head, |
| 724 | NV_PRAMDAC_CTV + 4*i); |
| 725 | } |
| 726 | } |
| 727 | |
| 728 | static void |
| 729 | nv_load_state_ramdac(struct drm_device *dev, int head, |
| 730 | struct nv04_mode_state *state) |
| 731 | { |
| 732 | struct drm_nouveau_private *dev_priv = dev->dev_private; |
| 733 | struct nv04_crtc_reg *regp = &state->crtc_reg[head]; |
| 734 | uint32_t pllreg = head ? NV_RAMDAC_VPLL2 : NV_PRAMDAC_VPLL_COEFF; |
| 735 | int i; |
| 736 | |
| 737 | if (dev_priv->card_type >= NV_10) |
| 738 | NVWriteRAMDAC(dev, head, NV_RAMDAC_NV10_CURSYNC, regp->nv10_cursync); |
| 739 | |
| 740 | nouveau_hw_setpll(dev, pllreg, ®p->pllvals); |
| 741 | NVWriteRAMDAC(dev, 0, NV_PRAMDAC_PLL_COEFF_SELECT, state->pllsel); |
| 742 | if (nv_two_heads(dev)) |
| 743 | NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, state->sel_clk); |
| 744 | if (dev_priv->chipset == 0x11) |
| 745 | NVWriteRAMDAC(dev, head, NV_RAMDAC_DITHER_NV11, regp->dither); |
| 746 | |
| 747 | NVWriteRAMDAC(dev, head, NV_PRAMDAC_GENERAL_CONTROL, regp->ramdac_gen_ctrl); |
| 748 | |
| 749 | if (nv_gf4_disp_arch(dev)) |
| 750 | NVWriteRAMDAC(dev, head, NV_PRAMDAC_630, regp->ramdac_630); |
| 751 | if (dev_priv->chipset >= 0x30) |
| 752 | NVWriteRAMDAC(dev, head, NV_PRAMDAC_634, regp->ramdac_634); |
| 753 | |
| 754 | NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_SETUP, regp->tv_setup); |
| 755 | NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_VTOTAL, regp->tv_vtotal); |
| 756 | NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_VSKEW, regp->tv_vskew); |
| 757 | NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_VSYNC_DELAY, regp->tv_vsync_delay); |
| 758 | NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_HTOTAL, regp->tv_htotal); |
| 759 | NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_HSKEW, regp->tv_hskew); |
| 760 | NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_HSYNC_DELAY, regp->tv_hsync_delay); |
| 761 | NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_HSYNC_DELAY2, regp->tv_hsync_delay2); |
| 762 | |
| 763 | for (i = 0; i < 7; i++) { |
| 764 | uint32_t ramdac_reg = NV_PRAMDAC_FP_VDISPLAY_END + (i * 4); |
| 765 | |
| 766 | NVWriteRAMDAC(dev, head, ramdac_reg, regp->fp_vert_regs[i]); |
| 767 | NVWriteRAMDAC(dev, head, ramdac_reg + 0x20, regp->fp_horiz_regs[i]); |
| 768 | } |
| 769 | |
| 770 | if (nv_gf4_disp_arch(dev)) { |
| 771 | NVWriteRAMDAC(dev, head, NV_RAMDAC_FP_DITHER, regp->dither); |
| 772 | for (i = 0; i < 3; i++) { |
| 773 | NVWriteRAMDAC(dev, head, NV_PRAMDAC_850 + i * 4, regp->dither_regs[i]); |
| 774 | NVWriteRAMDAC(dev, head, NV_PRAMDAC_85C + i * 4, regp->dither_regs[i + 3]); |
| 775 | } |
| 776 | } |
| 777 | |
| 778 | NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL, regp->fp_control); |
| 779 | NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_DEBUG_0, regp->fp_debug_0); |
| 780 | NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_DEBUG_1, regp->fp_debug_1); |
| 781 | NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_DEBUG_2, regp->fp_debug_2); |
| 782 | |
| 783 | NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_MARGIN_COLOR, regp->fp_margin_color); |
| 784 | |
| 785 | if (nv_gf4_disp_arch(dev)) |
| 786 | NVWriteRAMDAC(dev, head, NV_PRAMDAC_8C0, regp->ramdac_8c0); |
| 787 | |
| 788 | if (dev_priv->card_type == NV_40) { |
| 789 | NVWriteRAMDAC(dev, head, NV_PRAMDAC_A20, regp->ramdac_a20); |
| 790 | NVWriteRAMDAC(dev, head, NV_PRAMDAC_A24, regp->ramdac_a24); |
| 791 | NVWriteRAMDAC(dev, head, NV_PRAMDAC_A34, regp->ramdac_a34); |
| 792 | |
| 793 | for (i = 0; i < 38; i++) |
| 794 | NVWriteRAMDAC(dev, head, |
| 795 | NV_PRAMDAC_CTV + 4*i, regp->ctv_regs[i]); |
| 796 | } |
| 797 | } |
| 798 | |
| 799 | static void |
| 800 | nv_save_state_vga(struct drm_device *dev, int head, |
| 801 | struct nv04_mode_state *state) |
| 802 | { |
| 803 | struct nv04_crtc_reg *regp = &state->crtc_reg[head]; |
| 804 | int i; |
| 805 | |
| 806 | regp->MiscOutReg = NVReadPRMVIO(dev, head, NV_PRMVIO_MISC__READ); |
| 807 | |
| 808 | for (i = 0; i < 25; i++) |
| 809 | rd_cio_state(dev, head, regp, i); |
| 810 | |
| 811 | NVSetEnablePalette(dev, head, true); |
| 812 | for (i = 0; i < 21; i++) |
| 813 | regp->Attribute[i] = NVReadVgaAttr(dev, head, i); |
| 814 | NVSetEnablePalette(dev, head, false); |
| 815 | |
| 816 | for (i = 0; i < 9; i++) |
| 817 | regp->Graphics[i] = NVReadVgaGr(dev, head, i); |
| 818 | |
| 819 | for (i = 0; i < 5; i++) |
| 820 | regp->Sequencer[i] = NVReadVgaSeq(dev, head, i); |
| 821 | } |
| 822 | |
| 823 | static void |
| 824 | nv_load_state_vga(struct drm_device *dev, int head, |
| 825 | struct nv04_mode_state *state) |
| 826 | { |
| 827 | struct nv04_crtc_reg *regp = &state->crtc_reg[head]; |
| 828 | int i; |
| 829 | |
| 830 | NVWritePRMVIO(dev, head, NV_PRMVIO_MISC__WRITE, regp->MiscOutReg); |
| 831 | |
| 832 | for (i = 0; i < 5; i++) |
| 833 | NVWriteVgaSeq(dev, head, i, regp->Sequencer[i]); |
| 834 | |
| 835 | nv_lock_vga_crtc_base(dev, head, false); |
| 836 | for (i = 0; i < 25; i++) |
| 837 | wr_cio_state(dev, head, regp, i); |
| 838 | nv_lock_vga_crtc_base(dev, head, true); |
| 839 | |
| 840 | for (i = 0; i < 9; i++) |
| 841 | NVWriteVgaGr(dev, head, i, regp->Graphics[i]); |
| 842 | |
| 843 | NVSetEnablePalette(dev, head, true); |
| 844 | for (i = 0; i < 21; i++) |
| 845 | NVWriteVgaAttr(dev, head, i, regp->Attribute[i]); |
| 846 | NVSetEnablePalette(dev, head, false); |
| 847 | } |
| 848 | |
| 849 | static void |
| 850 | nv_save_state_ext(struct drm_device *dev, int head, |
| 851 | struct nv04_mode_state *state) |
| 852 | { |
| 853 | struct drm_nouveau_private *dev_priv = dev->dev_private; |
| 854 | struct nv04_crtc_reg *regp = &state->crtc_reg[head]; |
| 855 | int i; |
| 856 | |
| 857 | rd_cio_state(dev, head, regp, NV_CIO_CRE_LCD__INDEX); |
| 858 | rd_cio_state(dev, head, regp, NV_CIO_CRE_RPC0_INDEX); |
| 859 | rd_cio_state(dev, head, regp, NV_CIO_CRE_RPC1_INDEX); |
| 860 | rd_cio_state(dev, head, regp, NV_CIO_CRE_LSR_INDEX); |
| 861 | rd_cio_state(dev, head, regp, NV_CIO_CRE_PIXEL_INDEX); |
| 862 | rd_cio_state(dev, head, regp, NV_CIO_CRE_HEB__INDEX); |
| 863 | rd_cio_state(dev, head, regp, NV_CIO_CRE_ENH_INDEX); |
| 864 | |
| 865 | rd_cio_state(dev, head, regp, NV_CIO_CRE_FF_INDEX); |
| 866 | rd_cio_state(dev, head, regp, NV_CIO_CRE_FFLWM__INDEX); |
| 867 | rd_cio_state(dev, head, regp, NV_CIO_CRE_21); |
| 868 | if (dev_priv->card_type >= NV_30) |
| 869 | rd_cio_state(dev, head, regp, NV_CIO_CRE_47); |
| 870 | rd_cio_state(dev, head, regp, NV_CIO_CRE_49); |
| 871 | rd_cio_state(dev, head, regp, NV_CIO_CRE_HCUR_ADDR0_INDEX); |
| 872 | rd_cio_state(dev, head, regp, NV_CIO_CRE_HCUR_ADDR1_INDEX); |
| 873 | rd_cio_state(dev, head, regp, NV_CIO_CRE_HCUR_ADDR2_INDEX); |
| 874 | rd_cio_state(dev, head, regp, NV_CIO_CRE_ILACE__INDEX); |
| 875 | |
| 876 | if (dev_priv->card_type >= NV_10) { |
| 877 | regp->crtc_830 = NVReadCRTC(dev, head, NV_PCRTC_830); |
| 878 | regp->crtc_834 = NVReadCRTC(dev, head, NV_PCRTC_834); |
| 879 | |
| 880 | if (dev_priv->card_type >= NV_30) |
| 881 | regp->gpio_ext = NVReadCRTC(dev, head, NV_PCRTC_GPIO_EXT); |
| 882 | |
| 883 | if (dev_priv->card_type == NV_40) |
| 884 | regp->crtc_850 = NVReadCRTC(dev, head, NV_PCRTC_850); |
| 885 | |
| 886 | if (nv_two_heads(dev)) |
| 887 | regp->crtc_eng_ctrl = NVReadCRTC(dev, head, NV_PCRTC_ENGINE_CTRL); |
| 888 | regp->cursor_cfg = NVReadCRTC(dev, head, NV_PCRTC_CURSOR_CONFIG); |
| 889 | } |
| 890 | |
| 891 | regp->crtc_cfg = NVReadCRTC(dev, head, NV_PCRTC_CONFIG); |
| 892 | |
| 893 | rd_cio_state(dev, head, regp, NV_CIO_CRE_SCRATCH3__INDEX); |
| 894 | rd_cio_state(dev, head, regp, NV_CIO_CRE_SCRATCH4__INDEX); |
| 895 | if (dev_priv->card_type >= NV_10) { |
| 896 | rd_cio_state(dev, head, regp, NV_CIO_CRE_EBR_INDEX); |
| 897 | rd_cio_state(dev, head, regp, NV_CIO_CRE_CSB); |
| 898 | rd_cio_state(dev, head, regp, NV_CIO_CRE_4B); |
| 899 | rd_cio_state(dev, head, regp, NV_CIO_CRE_TVOUT_LATENCY); |
| 900 | } |
| 901 | /* NV11 and NV20 don't have this, they stop at 0x52. */ |
| 902 | if (nv_gf4_disp_arch(dev)) { |
| 903 | rd_cio_state(dev, head, regp, NV_CIO_CRE_53); |
| 904 | rd_cio_state(dev, head, regp, NV_CIO_CRE_54); |
| 905 | |
| 906 | for (i = 0; i < 0x10; i++) |
| 907 | regp->CR58[i] = NVReadVgaCrtc5758(dev, head, i); |
| 908 | rd_cio_state(dev, head, regp, NV_CIO_CRE_59); |
| 909 | rd_cio_state(dev, head, regp, NV_CIO_CRE_5B); |
| 910 | |
| 911 | rd_cio_state(dev, head, regp, NV_CIO_CRE_85); |
| 912 | rd_cio_state(dev, head, regp, NV_CIO_CRE_86); |
| 913 | } |
| 914 | |
| 915 | regp->fb_start = NVReadCRTC(dev, head, NV_PCRTC_START); |
| 916 | } |
| 917 | |
| 918 | static void |
| 919 | nv_load_state_ext(struct drm_device *dev, int head, |
| 920 | struct nv04_mode_state *state) |
| 921 | { |
| 922 | struct drm_nouveau_private *dev_priv = dev->dev_private; |
| 923 | struct nv04_crtc_reg *regp = &state->crtc_reg[head]; |
| 924 | uint32_t reg900; |
| 925 | int i; |
| 926 | |
| 927 | if (dev_priv->card_type >= NV_10) { |
| 928 | if (nv_two_heads(dev)) |
| 929 | /* setting ENGINE_CTRL (EC) *must* come before |
| 930 | * CIO_CRE_LCD, as writing CRE_LCD sets bits 16 & 17 in |
| 931 | * EC that should not be overwritten by writing stale EC |
| 932 | */ |
| 933 | NVWriteCRTC(dev, head, NV_PCRTC_ENGINE_CTRL, regp->crtc_eng_ctrl); |
| 934 | |
| 935 | nvWriteVIDEO(dev, NV_PVIDEO_STOP, 1); |
| 936 | nvWriteVIDEO(dev, NV_PVIDEO_INTR_EN, 0); |
| 937 | nvWriteVIDEO(dev, NV_PVIDEO_OFFSET_BUFF(0), 0); |
| 938 | nvWriteVIDEO(dev, NV_PVIDEO_OFFSET_BUFF(1), 0); |
| 939 | nvWriteVIDEO(dev, NV_PVIDEO_LIMIT(0), dev_priv->fb_available_size - 1); |
| 940 | nvWriteVIDEO(dev, NV_PVIDEO_LIMIT(1), dev_priv->fb_available_size - 1); |
| 941 | nvWriteVIDEO(dev, NV_PVIDEO_UVPLANE_LIMIT(0), dev_priv->fb_available_size - 1); |
| 942 | nvWriteVIDEO(dev, NV_PVIDEO_UVPLANE_LIMIT(1), dev_priv->fb_available_size - 1); |
| 943 | nvWriteMC(dev, NV_PBUS_POWERCTRL_2, 0); |
| 944 | |
| 945 | NVWriteCRTC(dev, head, NV_PCRTC_CURSOR_CONFIG, regp->cursor_cfg); |
| 946 | NVWriteCRTC(dev, head, NV_PCRTC_830, regp->crtc_830); |
| 947 | NVWriteCRTC(dev, head, NV_PCRTC_834, regp->crtc_834); |
| 948 | |
| 949 | if (dev_priv->card_type >= NV_30) |
| 950 | NVWriteCRTC(dev, head, NV_PCRTC_GPIO_EXT, regp->gpio_ext); |
| 951 | |
| 952 | if (dev_priv->card_type == NV_40) { |
| 953 | NVWriteCRTC(dev, head, NV_PCRTC_850, regp->crtc_850); |
| 954 | |
| 955 | reg900 = NVReadRAMDAC(dev, head, NV_PRAMDAC_900); |
| 956 | if (regp->crtc_cfg == NV_PCRTC_CONFIG_START_ADDRESS_HSYNC) |
| 957 | NVWriteRAMDAC(dev, head, NV_PRAMDAC_900, reg900 | 0x10000); |
| 958 | else |
| 959 | NVWriteRAMDAC(dev, head, NV_PRAMDAC_900, reg900 & ~0x10000); |
| 960 | } |
| 961 | } |
| 962 | |
| 963 | NVWriteCRTC(dev, head, NV_PCRTC_CONFIG, regp->crtc_cfg); |
| 964 | |
| 965 | wr_cio_state(dev, head, regp, NV_CIO_CRE_RPC0_INDEX); |
| 966 | wr_cio_state(dev, head, regp, NV_CIO_CRE_RPC1_INDEX); |
| 967 | wr_cio_state(dev, head, regp, NV_CIO_CRE_LSR_INDEX); |
| 968 | wr_cio_state(dev, head, regp, NV_CIO_CRE_PIXEL_INDEX); |
| 969 | wr_cio_state(dev, head, regp, NV_CIO_CRE_LCD__INDEX); |
| 970 | wr_cio_state(dev, head, regp, NV_CIO_CRE_HEB__INDEX); |
| 971 | wr_cio_state(dev, head, regp, NV_CIO_CRE_ENH_INDEX); |
| 972 | wr_cio_state(dev, head, regp, NV_CIO_CRE_FF_INDEX); |
| 973 | wr_cio_state(dev, head, regp, NV_CIO_CRE_FFLWM__INDEX); |
| 974 | if (dev_priv->card_type >= NV_30) |
| 975 | wr_cio_state(dev, head, regp, NV_CIO_CRE_47); |
| 976 | |
| 977 | wr_cio_state(dev, head, regp, NV_CIO_CRE_49); |
| 978 | wr_cio_state(dev, head, regp, NV_CIO_CRE_HCUR_ADDR0_INDEX); |
| 979 | wr_cio_state(dev, head, regp, NV_CIO_CRE_HCUR_ADDR1_INDEX); |
| 980 | wr_cio_state(dev, head, regp, NV_CIO_CRE_HCUR_ADDR2_INDEX); |
| 981 | if (dev_priv->card_type == NV_40) |
| 982 | nv_fix_nv40_hw_cursor(dev, head); |
| 983 | wr_cio_state(dev, head, regp, NV_CIO_CRE_ILACE__INDEX); |
| 984 | |
| 985 | wr_cio_state(dev, head, regp, NV_CIO_CRE_SCRATCH3__INDEX); |
| 986 | wr_cio_state(dev, head, regp, NV_CIO_CRE_SCRATCH4__INDEX); |
| 987 | if (dev_priv->card_type >= NV_10) { |
| 988 | wr_cio_state(dev, head, regp, NV_CIO_CRE_EBR_INDEX); |
| 989 | wr_cio_state(dev, head, regp, NV_CIO_CRE_CSB); |
| 990 | wr_cio_state(dev, head, regp, NV_CIO_CRE_4B); |
| 991 | wr_cio_state(dev, head, regp, NV_CIO_CRE_TVOUT_LATENCY); |
| 992 | } |
| 993 | /* NV11 and NV20 stop at 0x52. */ |
| 994 | if (nv_gf4_disp_arch(dev)) { |
| 995 | if (dev_priv->card_type == NV_10) { |
| 996 | /* Not waiting for vertical retrace before modifying |
| 997 | CRE_53/CRE_54 causes lockups. */ |
| 998 | nouveau_wait_until(dev, 650000000, NV_PRMCIO_INP0__COLOR, 0x8, 0x8); |
| 999 | nouveau_wait_until(dev, 650000000, NV_PRMCIO_INP0__COLOR, 0x8, 0x0); |
| 1000 | } |
| 1001 | |
| 1002 | wr_cio_state(dev, head, regp, NV_CIO_CRE_53); |
| 1003 | wr_cio_state(dev, head, regp, NV_CIO_CRE_54); |
| 1004 | |
| 1005 | for (i = 0; i < 0x10; i++) |
| 1006 | NVWriteVgaCrtc5758(dev, head, i, regp->CR58[i]); |
| 1007 | wr_cio_state(dev, head, regp, NV_CIO_CRE_59); |
| 1008 | wr_cio_state(dev, head, regp, NV_CIO_CRE_5B); |
| 1009 | |
| 1010 | wr_cio_state(dev, head, regp, NV_CIO_CRE_85); |
| 1011 | wr_cio_state(dev, head, regp, NV_CIO_CRE_86); |
| 1012 | } |
| 1013 | |
| 1014 | NVWriteCRTC(dev, head, NV_PCRTC_START, regp->fb_start); |
| 1015 | |
| 1016 | /* Setting 1 on this value gives you interrupts for every vblank period. */ |
| 1017 | NVWriteCRTC(dev, head, NV_PCRTC_INTR_EN_0, 0); |
| 1018 | NVWriteCRTC(dev, head, NV_PCRTC_INTR_0, NV_PCRTC_INTR_0_VBLANK); |
| 1019 | } |
| 1020 | |
| 1021 | static void |
| 1022 | nv_save_state_palette(struct drm_device *dev, int head, |
| 1023 | struct nv04_mode_state *state) |
| 1024 | { |
| 1025 | int head_offset = head * NV_PRMDIO_SIZE, i; |
| 1026 | |
| 1027 | nv_wr08(dev, NV_PRMDIO_PIXEL_MASK + head_offset, |
| 1028 | NV_PRMDIO_PIXEL_MASK_MASK); |
| 1029 | nv_wr08(dev, NV_PRMDIO_READ_MODE_ADDRESS + head_offset, 0x0); |
| 1030 | |
| 1031 | for (i = 0; i < 768; i++) { |
| 1032 | state->crtc_reg[head].DAC[i] = nv_rd08(dev, |
| 1033 | NV_PRMDIO_PALETTE_DATA + head_offset); |
| 1034 | } |
| 1035 | |
| 1036 | NVSetEnablePalette(dev, head, false); |
| 1037 | } |
| 1038 | |
| 1039 | void |
| 1040 | nouveau_hw_load_state_palette(struct drm_device *dev, int head, |
| 1041 | struct nv04_mode_state *state) |
| 1042 | { |
| 1043 | int head_offset = head * NV_PRMDIO_SIZE, i; |
| 1044 | |
| 1045 | nv_wr08(dev, NV_PRMDIO_PIXEL_MASK + head_offset, |
| 1046 | NV_PRMDIO_PIXEL_MASK_MASK); |
| 1047 | nv_wr08(dev, NV_PRMDIO_WRITE_MODE_ADDRESS + head_offset, 0x0); |
| 1048 | |
| 1049 | for (i = 0; i < 768; i++) { |
| 1050 | nv_wr08(dev, NV_PRMDIO_PALETTE_DATA + head_offset, |
| 1051 | state->crtc_reg[head].DAC[i]); |
| 1052 | } |
| 1053 | |
| 1054 | NVSetEnablePalette(dev, head, false); |
| 1055 | } |
| 1056 | |
| 1057 | void nouveau_hw_save_state(struct drm_device *dev, int head, |
| 1058 | struct nv04_mode_state *state) |
| 1059 | { |
| 1060 | struct drm_nouveau_private *dev_priv = dev->dev_private; |
| 1061 | |
| 1062 | if (dev_priv->chipset == 0x11) |
| 1063 | /* NB: no attempt is made to restore the bad pll later on */ |
| 1064 | nouveau_hw_fix_bad_vpll(dev, head); |
| 1065 | nv_save_state_ramdac(dev, head, state); |
| 1066 | nv_save_state_vga(dev, head, state); |
| 1067 | nv_save_state_palette(dev, head, state); |
| 1068 | nv_save_state_ext(dev, head, state); |
| 1069 | } |
| 1070 | |
| 1071 | void nouveau_hw_load_state(struct drm_device *dev, int head, |
| 1072 | struct nv04_mode_state *state) |
| 1073 | { |
| 1074 | NVVgaProtect(dev, head, true); |
| 1075 | nv_load_state_ramdac(dev, head, state); |
| 1076 | nv_load_state_ext(dev, head, state); |
| 1077 | nouveau_hw_load_state_palette(dev, head, state); |
| 1078 | nv_load_state_vga(dev, head, state); |
| 1079 | NVVgaProtect(dev, head, false); |
| 1080 | } |