Xie Yongji | 7bc7f61 | 2021-08-31 18:36:34 +0800 | [diff] [blame] | 1 | ================================== |
| 2 | VDUSE - "vDPA Device in Userspace" |
| 3 | ================================== |
| 4 | |
| 5 | vDPA (virtio data path acceleration) device is a device that uses a |
| 6 | datapath which complies with the virtio specifications with vendor |
| 7 | specific control path. vDPA devices can be both physically located on |
| 8 | the hardware or emulated by software. VDUSE is a framework that makes it |
| 9 | possible to implement software-emulated vDPA devices in userspace. And |
| 10 | to make the device emulation more secure, the emulated vDPA device's |
| 11 | control path is handled in the kernel and only the data path is |
| 12 | implemented in the userspace. |
| 13 | |
| 14 | Note that only virtio block device is supported by VDUSE framework now, |
| 15 | which can reduce security risks when the userspace process that implements |
| 16 | the data path is run by an unprivileged user. The support for other device |
| 17 | types can be added after the security issue of corresponding device driver |
| 18 | is clarified or fixed in the future. |
| 19 | |
| 20 | Create/Destroy VDUSE devices |
Randy Dunlap | 09b6add | 2021-10-06 13:29:04 -0700 | [diff] [blame] | 21 | ---------------------------- |
Xie Yongji | 7bc7f61 | 2021-08-31 18:36:34 +0800 | [diff] [blame] | 22 | |
| 23 | VDUSE devices are created as follows: |
| 24 | |
| 25 | 1. Create a new VDUSE instance with ioctl(VDUSE_CREATE_DEV) on |
| 26 | /dev/vduse/control. |
| 27 | |
| 28 | 2. Setup each virtqueue with ioctl(VDUSE_VQ_SETUP) on /dev/vduse/$NAME. |
| 29 | |
| 30 | 3. Begin processing VDUSE messages from /dev/vduse/$NAME. The first |
| 31 | messages will arrive while attaching the VDUSE instance to vDPA bus. |
| 32 | |
| 33 | 4. Send the VDPA_CMD_DEV_NEW netlink message to attach the VDUSE |
| 34 | instance to vDPA bus. |
| 35 | |
| 36 | VDUSE devices are destroyed as follows: |
| 37 | |
| 38 | 1. Send the VDPA_CMD_DEV_DEL netlink message to detach the VDUSE |
| 39 | instance from vDPA bus. |
| 40 | |
| 41 | 2. Close the file descriptor referring to /dev/vduse/$NAME. |
| 42 | |
| 43 | 3. Destroy the VDUSE instance with ioctl(VDUSE_DESTROY_DEV) on |
| 44 | /dev/vduse/control. |
| 45 | |
| 46 | The netlink messages can be sent via vdpa tool in iproute2 or use the |
| 47 | below sample codes: |
| 48 | |
| 49 | .. code-block:: c |
| 50 | |
| 51 | static int netlink_add_vduse(const char *name, enum vdpa_command cmd) |
| 52 | { |
| 53 | struct nl_sock *nlsock; |
| 54 | struct nl_msg *msg; |
| 55 | int famid; |
| 56 | |
| 57 | nlsock = nl_socket_alloc(); |
| 58 | if (!nlsock) |
| 59 | return -ENOMEM; |
| 60 | |
| 61 | if (genl_connect(nlsock)) |
| 62 | goto free_sock; |
| 63 | |
| 64 | famid = genl_ctrl_resolve(nlsock, VDPA_GENL_NAME); |
| 65 | if (famid < 0) |
| 66 | goto close_sock; |
| 67 | |
| 68 | msg = nlmsg_alloc(); |
| 69 | if (!msg) |
| 70 | goto close_sock; |
| 71 | |
| 72 | if (!genlmsg_put(msg, NL_AUTO_PORT, NL_AUTO_SEQ, famid, 0, 0, cmd, 0)) |
| 73 | goto nla_put_failure; |
| 74 | |
| 75 | NLA_PUT_STRING(msg, VDPA_ATTR_DEV_NAME, name); |
| 76 | if (cmd == VDPA_CMD_DEV_NEW) |
| 77 | NLA_PUT_STRING(msg, VDPA_ATTR_MGMTDEV_DEV_NAME, "vduse"); |
| 78 | |
| 79 | if (nl_send_sync(nlsock, msg)) |
| 80 | goto close_sock; |
| 81 | |
| 82 | nl_close(nlsock); |
| 83 | nl_socket_free(nlsock); |
| 84 | |
| 85 | return 0; |
| 86 | nla_put_failure: |
| 87 | nlmsg_free(msg); |
| 88 | close_sock: |
| 89 | nl_close(nlsock); |
| 90 | free_sock: |
| 91 | nl_socket_free(nlsock); |
| 92 | return -1; |
| 93 | } |
| 94 | |
| 95 | How VDUSE works |
| 96 | --------------- |
| 97 | |
| 98 | As mentioned above, a VDUSE device is created by ioctl(VDUSE_CREATE_DEV) on |
| 99 | /dev/vduse/control. With this ioctl, userspace can specify some basic configuration |
| 100 | such as device name (uniquely identify a VDUSE device), virtio features, virtio |
| 101 | configuration space, the number of virtqueues and so on for this emulated device. |
| 102 | Then a char device interface (/dev/vduse/$NAME) is exported to userspace for device |
| 103 | emulation. Userspace can use the VDUSE_VQ_SETUP ioctl on /dev/vduse/$NAME to |
| 104 | add per-virtqueue configuration such as the max size of virtqueue to the device. |
| 105 | |
| 106 | After the initialization, the VDUSE device can be attached to vDPA bus via |
| 107 | the VDPA_CMD_DEV_NEW netlink message. Userspace needs to read()/write() on |
| 108 | /dev/vduse/$NAME to receive/reply some control messages from/to VDUSE kernel |
| 109 | module as follows: |
| 110 | |
| 111 | .. code-block:: c |
| 112 | |
| 113 | static int vduse_message_handler(int dev_fd) |
| 114 | { |
| 115 | int len; |
| 116 | struct vduse_dev_request req; |
| 117 | struct vduse_dev_response resp; |
| 118 | |
| 119 | len = read(dev_fd, &req, sizeof(req)); |
| 120 | if (len != sizeof(req)) |
| 121 | return -1; |
| 122 | |
| 123 | resp.request_id = req.request_id; |
| 124 | |
| 125 | switch (req.type) { |
| 126 | |
| 127 | /* handle different types of messages */ |
| 128 | |
| 129 | } |
| 130 | |
| 131 | len = write(dev_fd, &resp, sizeof(resp)); |
| 132 | if (len != sizeof(resp)) |
| 133 | return -1; |
| 134 | |
| 135 | return 0; |
| 136 | } |
| 137 | |
| 138 | There are now three types of messages introduced by VDUSE framework: |
| 139 | |
| 140 | - VDUSE_GET_VQ_STATE: Get the state for virtqueue, userspace should return |
| 141 | avail index for split virtqueue or the device/driver ring wrap counters and |
| 142 | the avail and used index for packed virtqueue. |
| 143 | |
| 144 | - VDUSE_SET_STATUS: Set the device status, userspace should follow |
| 145 | the virtio spec: https://docs.oasis-open.org/virtio/virtio/v1.1/virtio-v1.1.html |
| 146 | to process this message. For example, fail to set the FEATURES_OK device |
| 147 | status bit if the device can not accept the negotiated virtio features |
| 148 | get from the VDUSE_DEV_GET_FEATURES ioctl. |
| 149 | |
| 150 | - VDUSE_UPDATE_IOTLB: Notify userspace to update the memory mapping for specified |
| 151 | IOVA range, userspace should firstly remove the old mapping, then setup the new |
| 152 | mapping via the VDUSE_IOTLB_GET_FD ioctl. |
| 153 | |
| 154 | After DRIVER_OK status bit is set via the VDUSE_SET_STATUS message, userspace is |
| 155 | able to start the dataplane processing as follows: |
| 156 | |
| 157 | 1. Get the specified virtqueue's information with the VDUSE_VQ_GET_INFO ioctl, |
| 158 | including the size, the IOVAs of descriptor table, available ring and used ring, |
| 159 | the state and the ready status. |
| 160 | |
| 161 | 2. Pass the above IOVAs to the VDUSE_IOTLB_GET_FD ioctl so that those IOVA regions |
| 162 | can be mapped into userspace. Some sample codes is shown below: |
| 163 | |
| 164 | .. code-block:: c |
| 165 | |
| 166 | static int perm_to_prot(uint8_t perm) |
| 167 | { |
| 168 | int prot = 0; |
| 169 | |
| 170 | switch (perm) { |
| 171 | case VDUSE_ACCESS_WO: |
| 172 | prot |= PROT_WRITE; |
| 173 | break; |
| 174 | case VDUSE_ACCESS_RO: |
| 175 | prot |= PROT_READ; |
| 176 | break; |
| 177 | case VDUSE_ACCESS_RW: |
| 178 | prot |= PROT_READ | PROT_WRITE; |
| 179 | break; |
| 180 | } |
| 181 | |
| 182 | return prot; |
| 183 | } |
| 184 | |
| 185 | static void *iova_to_va(int dev_fd, uint64_t iova, uint64_t *len) |
| 186 | { |
| 187 | int fd; |
| 188 | void *addr; |
| 189 | size_t size; |
| 190 | struct vduse_iotlb_entry entry; |
| 191 | |
| 192 | entry.start = iova; |
| 193 | entry.last = iova; |
| 194 | |
| 195 | /* |
| 196 | * Find the first IOVA region that overlaps with the specified |
| 197 | * range [start, last] and return the corresponding file descriptor. |
| 198 | */ |
| 199 | fd = ioctl(dev_fd, VDUSE_IOTLB_GET_FD, &entry); |
| 200 | if (fd < 0) |
| 201 | return NULL; |
| 202 | |
| 203 | size = entry.last - entry.start + 1; |
| 204 | *len = entry.last - iova + 1; |
| 205 | addr = mmap(0, size, perm_to_prot(entry.perm), MAP_SHARED, |
| 206 | fd, entry.offset); |
| 207 | close(fd); |
| 208 | if (addr == MAP_FAILED) |
| 209 | return NULL; |
| 210 | |
| 211 | /* |
| 212 | * Using some data structures such as linked list to store |
| 213 | * the iotlb mapping. The munmap(2) should be called for the |
| 214 | * cached mapping when the corresponding VDUSE_UPDATE_IOTLB |
| 215 | * message is received or the device is reset. |
| 216 | */ |
| 217 | |
| 218 | return addr + iova - entry.start; |
| 219 | } |
| 220 | |
| 221 | 3. Setup the kick eventfd for the specified virtqueues with the VDUSE_VQ_SETUP_KICKFD |
| 222 | ioctl. The kick eventfd is used by VDUSE kernel module to notify userspace to |
| 223 | consume the available ring. This is optional since userspace can choose to poll the |
| 224 | available ring instead. |
| 225 | |
| 226 | 4. Listen to the kick eventfd (optional) and consume the available ring. The buffer |
| 227 | described by the descriptors in the descriptor table should be also mapped into |
| 228 | userspace via the VDUSE_IOTLB_GET_FD ioctl before accessing. |
| 229 | |
| 230 | 5. Inject an interrupt for specific virtqueue with the VDUSE_INJECT_VQ_IRQ ioctl |
| 231 | after the used ring is filled. |
| 232 | |
| 233 | For more details on the uAPI, please see include/uapi/linux/vduse.h. |