Boris Brezillon | c36ff26 | 2018-04-26 18:18:14 +0200 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0+ |
| 2 | /* |
| 3 | * Copyright (C) 2018 Exceet Electronics GmbH |
| 4 | * Copyright (C) 2018 Bootlin |
| 5 | * |
| 6 | * Author: Boris Brezillon <boris.brezillon@bootlin.com> |
| 7 | */ |
| 8 | #include <linux/dmaengine.h> |
| 9 | #include <linux/pm_runtime.h> |
| 10 | #include <linux/spi/spi.h> |
| 11 | #include <linux/spi/spi-mem.h> |
| 12 | |
| 13 | #include "internals.h" |
| 14 | |
Yogesh Narayan Gaur | b12a084 | 2018-12-03 08:39:12 +0000 | [diff] [blame] | 15 | #define SPI_MEM_MAX_BUSWIDTH 8 |
Boris Brezillon | 3805832 | 2018-09-20 09:31:12 +0200 | [diff] [blame] | 16 | |
Boris Brezillon | c36ff26 | 2018-04-26 18:18:14 +0200 | [diff] [blame] | 17 | /** |
| 18 | * spi_controller_dma_map_mem_op_data() - DMA-map the buffer attached to a |
| 19 | * memory operation |
| 20 | * @ctlr: the SPI controller requesting this dma_map() |
| 21 | * @op: the memory operation containing the buffer to map |
| 22 | * @sgt: a pointer to a non-initialized sg_table that will be filled by this |
| 23 | * function |
| 24 | * |
| 25 | * Some controllers might want to do DMA on the data buffer embedded in @op. |
| 26 | * This helper prepares everything for you and provides a ready-to-use |
| 27 | * sg_table. This function is not intended to be called from spi drivers. |
| 28 | * Only SPI controller drivers should use it. |
| 29 | * Note that the caller must ensure the memory region pointed by |
| 30 | * op->data.buf.{in,out} is DMA-able before calling this function. |
| 31 | * |
| 32 | * Return: 0 in case of success, a negative error code otherwise. |
| 33 | */ |
| 34 | int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr, |
| 35 | const struct spi_mem_op *op, |
| 36 | struct sg_table *sgt) |
| 37 | { |
| 38 | struct device *dmadev; |
| 39 | |
| 40 | if (!op->data.nbytes) |
| 41 | return -EINVAL; |
| 42 | |
| 43 | if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx) |
| 44 | dmadev = ctlr->dma_tx->device->dev; |
| 45 | else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx) |
| 46 | dmadev = ctlr->dma_rx->device->dev; |
| 47 | else |
| 48 | dmadev = ctlr->dev.parent; |
| 49 | |
| 50 | if (!dmadev) |
| 51 | return -EINVAL; |
| 52 | |
| 53 | return spi_map_buf(ctlr, dmadev, sgt, op->data.buf.in, op->data.nbytes, |
| 54 | op->data.dir == SPI_MEM_DATA_IN ? |
| 55 | DMA_FROM_DEVICE : DMA_TO_DEVICE); |
| 56 | } |
| 57 | EXPORT_SYMBOL_GPL(spi_controller_dma_map_mem_op_data); |
| 58 | |
| 59 | /** |
| 60 | * spi_controller_dma_unmap_mem_op_data() - DMA-unmap the buffer attached to a |
| 61 | * memory operation |
| 62 | * @ctlr: the SPI controller requesting this dma_unmap() |
| 63 | * @op: the memory operation containing the buffer to unmap |
| 64 | * @sgt: a pointer to an sg_table previously initialized by |
| 65 | * spi_controller_dma_map_mem_op_data() |
| 66 | * |
| 67 | * Some controllers might want to do DMA on the data buffer embedded in @op. |
| 68 | * This helper prepares things so that the CPU can access the |
| 69 | * op->data.buf.{in,out} buffer again. |
| 70 | * |
| 71 | * This function is not intended to be called from SPI drivers. Only SPI |
| 72 | * controller drivers should use it. |
| 73 | * |
| 74 | * This function should be called after the DMA operation has finished and is |
| 75 | * only valid if the previous spi_controller_dma_map_mem_op_data() call |
| 76 | * returned 0. |
| 77 | * |
| 78 | * Return: 0 in case of success, a negative error code otherwise. |
| 79 | */ |
| 80 | void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr, |
| 81 | const struct spi_mem_op *op, |
| 82 | struct sg_table *sgt) |
| 83 | { |
| 84 | struct device *dmadev; |
| 85 | |
| 86 | if (!op->data.nbytes) |
| 87 | return; |
| 88 | |
| 89 | if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx) |
| 90 | dmadev = ctlr->dma_tx->device->dev; |
| 91 | else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx) |
| 92 | dmadev = ctlr->dma_rx->device->dev; |
| 93 | else |
| 94 | dmadev = ctlr->dev.parent; |
| 95 | |
| 96 | spi_unmap_buf(ctlr, dmadev, sgt, |
| 97 | op->data.dir == SPI_MEM_DATA_IN ? |
| 98 | DMA_FROM_DEVICE : DMA_TO_DEVICE); |
| 99 | } |
| 100 | EXPORT_SYMBOL_GPL(spi_controller_dma_unmap_mem_op_data); |
| 101 | |
| 102 | static int spi_check_buswidth_req(struct spi_mem *mem, u8 buswidth, bool tx) |
| 103 | { |
| 104 | u32 mode = mem->spi->mode; |
| 105 | |
| 106 | switch (buswidth) { |
| 107 | case 1: |
| 108 | return 0; |
| 109 | |
| 110 | case 2: |
Geert Uytterhoeven | 80300a7 | 2020-04-16 12:14:18 +0200 | [diff] [blame] | 111 | if ((tx && |
| 112 | (mode & (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL))) || |
| 113 | (!tx && |
| 114 | (mode & (SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))) |
Boris Brezillon | c36ff26 | 2018-04-26 18:18:14 +0200 | [diff] [blame] | 115 | return 0; |
| 116 | |
| 117 | break; |
| 118 | |
| 119 | case 4: |
Geert Uytterhoeven | 80300a7 | 2020-04-16 12:14:18 +0200 | [diff] [blame] | 120 | if ((tx && (mode & (SPI_TX_QUAD | SPI_TX_OCTAL))) || |
| 121 | (!tx && (mode & (SPI_RX_QUAD | SPI_RX_OCTAL)))) |
Boris Brezillon | c36ff26 | 2018-04-26 18:18:14 +0200 | [diff] [blame] | 122 | return 0; |
| 123 | |
| 124 | break; |
| 125 | |
Yogesh Narayan Gaur | b12a084 | 2018-12-03 08:39:12 +0000 | [diff] [blame] | 126 | case 8: |
| 127 | if ((tx && (mode & SPI_TX_OCTAL)) || |
| 128 | (!tx && (mode & SPI_RX_OCTAL))) |
| 129 | return 0; |
| 130 | |
| 131 | break; |
| 132 | |
Boris Brezillon | c36ff26 | 2018-04-26 18:18:14 +0200 | [diff] [blame] | 133 | default: |
| 134 | break; |
| 135 | } |
| 136 | |
| 137 | return -ENOTSUPP; |
| 138 | } |
| 139 | |
Naga Sureshkumar Relli | 4610964 | 2019-04-01 13:29:00 +0530 | [diff] [blame] | 140 | bool spi_mem_default_supports_op(struct spi_mem *mem, |
| 141 | const struct spi_mem_op *op) |
Boris Brezillon | c36ff26 | 2018-04-26 18:18:14 +0200 | [diff] [blame] | 142 | { |
| 143 | if (spi_check_buswidth_req(mem, op->cmd.buswidth, true)) |
| 144 | return false; |
| 145 | |
| 146 | if (op->addr.nbytes && |
| 147 | spi_check_buswidth_req(mem, op->addr.buswidth, true)) |
| 148 | return false; |
| 149 | |
| 150 | if (op->dummy.nbytes && |
| 151 | spi_check_buswidth_req(mem, op->dummy.buswidth, true)) |
| 152 | return false; |
| 153 | |
Boris Brezillon | 0ebb261 | 2018-11-06 17:05:31 +0100 | [diff] [blame] | 154 | if (op->data.dir != SPI_MEM_NO_DATA && |
Boris Brezillon | c36ff26 | 2018-04-26 18:18:14 +0200 | [diff] [blame] | 155 | spi_check_buswidth_req(mem, op->data.buswidth, |
| 156 | op->data.dir == SPI_MEM_DATA_OUT)) |
| 157 | return false; |
| 158 | |
| 159 | return true; |
| 160 | } |
| 161 | EXPORT_SYMBOL_GPL(spi_mem_default_supports_op); |
| 162 | |
Boris Brezillon | 3805832 | 2018-09-20 09:31:12 +0200 | [diff] [blame] | 163 | static bool spi_mem_buswidth_is_valid(u8 buswidth) |
| 164 | { |
| 165 | if (hweight8(buswidth) > 1 || buswidth > SPI_MEM_MAX_BUSWIDTH) |
| 166 | return false; |
| 167 | |
| 168 | return true; |
| 169 | } |
| 170 | |
| 171 | static int spi_mem_check_op(const struct spi_mem_op *op) |
| 172 | { |
| 173 | if (!op->cmd.buswidth) |
| 174 | return -EINVAL; |
| 175 | |
| 176 | if ((op->addr.nbytes && !op->addr.buswidth) || |
| 177 | (op->dummy.nbytes && !op->dummy.buswidth) || |
| 178 | (op->data.nbytes && !op->data.buswidth)) |
| 179 | return -EINVAL; |
| 180 | |
Geert Uytterhoeven | aea3877 | 2018-09-25 11:46:55 +0200 | [diff] [blame] | 181 | if (!spi_mem_buswidth_is_valid(op->cmd.buswidth) || |
| 182 | !spi_mem_buswidth_is_valid(op->addr.buswidth) || |
| 183 | !spi_mem_buswidth_is_valid(op->dummy.buswidth) || |
| 184 | !spi_mem_buswidth_is_valid(op->data.buswidth)) |
Boris Brezillon | 3805832 | 2018-09-20 09:31:12 +0200 | [diff] [blame] | 185 | return -EINVAL; |
| 186 | |
| 187 | return 0; |
| 188 | } |
| 189 | |
| 190 | static bool spi_mem_internal_supports_op(struct spi_mem *mem, |
| 191 | const struct spi_mem_op *op) |
| 192 | { |
| 193 | struct spi_controller *ctlr = mem->spi->controller; |
| 194 | |
| 195 | if (ctlr->mem_ops && ctlr->mem_ops->supports_op) |
| 196 | return ctlr->mem_ops->supports_op(mem, op); |
| 197 | |
| 198 | return spi_mem_default_supports_op(mem, op); |
| 199 | } |
| 200 | |
Boris Brezillon | c36ff26 | 2018-04-26 18:18:14 +0200 | [diff] [blame] | 201 | /** |
| 202 | * spi_mem_supports_op() - Check if a memory device and the controller it is |
| 203 | * connected to support a specific memory operation |
| 204 | * @mem: the SPI memory |
| 205 | * @op: the memory operation to check |
| 206 | * |
| 207 | * Some controllers are only supporting Single or Dual IOs, others might only |
| 208 | * support specific opcodes, or it can even be that the controller and device |
| 209 | * both support Quad IOs but the hardware prevents you from using it because |
| 210 | * only 2 IO lines are connected. |
| 211 | * |
| 212 | * This function checks whether a specific operation is supported. |
| 213 | * |
| 214 | * Return: true if @op is supported, false otherwise. |
| 215 | */ |
| 216 | bool spi_mem_supports_op(struct spi_mem *mem, const struct spi_mem_op *op) |
| 217 | { |
Boris Brezillon | 3805832 | 2018-09-20 09:31:12 +0200 | [diff] [blame] | 218 | if (spi_mem_check_op(op)) |
| 219 | return false; |
Boris Brezillon | c36ff26 | 2018-04-26 18:18:14 +0200 | [diff] [blame] | 220 | |
Boris Brezillon | 3805832 | 2018-09-20 09:31:12 +0200 | [diff] [blame] | 221 | return spi_mem_internal_supports_op(mem, op); |
Boris Brezillon | c36ff26 | 2018-04-26 18:18:14 +0200 | [diff] [blame] | 222 | } |
| 223 | EXPORT_SYMBOL_GPL(spi_mem_supports_op); |
| 224 | |
Boris Brezillon | f86c24f | 2018-11-06 17:05:32 +0100 | [diff] [blame] | 225 | static int spi_mem_access_start(struct spi_mem *mem) |
| 226 | { |
| 227 | struct spi_controller *ctlr = mem->spi->controller; |
| 228 | |
| 229 | /* |
| 230 | * Flush the message queue before executing our SPI memory |
| 231 | * operation to prevent preemption of regular SPI transfers. |
| 232 | */ |
| 233 | spi_flush_queue(ctlr); |
| 234 | |
| 235 | if (ctlr->auto_runtime_pm) { |
| 236 | int ret; |
| 237 | |
| 238 | ret = pm_runtime_get_sync(ctlr->dev.parent); |
| 239 | if (ret < 0) { |
| 240 | dev_err(&ctlr->dev, "Failed to power device: %d\n", |
| 241 | ret); |
| 242 | return ret; |
| 243 | } |
| 244 | } |
| 245 | |
| 246 | mutex_lock(&ctlr->bus_lock_mutex); |
| 247 | mutex_lock(&ctlr->io_mutex); |
| 248 | |
| 249 | return 0; |
| 250 | } |
| 251 | |
| 252 | static void spi_mem_access_end(struct spi_mem *mem) |
| 253 | { |
| 254 | struct spi_controller *ctlr = mem->spi->controller; |
| 255 | |
| 256 | mutex_unlock(&ctlr->io_mutex); |
| 257 | mutex_unlock(&ctlr->bus_lock_mutex); |
| 258 | |
| 259 | if (ctlr->auto_runtime_pm) |
| 260 | pm_runtime_put(ctlr->dev.parent); |
| 261 | } |
| 262 | |
Boris Brezillon | c36ff26 | 2018-04-26 18:18:14 +0200 | [diff] [blame] | 263 | /** |
| 264 | * spi_mem_exec_op() - Execute a memory operation |
| 265 | * @mem: the SPI memory |
| 266 | * @op: the memory operation to execute |
| 267 | * |
| 268 | * Executes a memory operation. |
| 269 | * |
| 270 | * This function first checks that @op is supported and then tries to execute |
| 271 | * it. |
| 272 | * |
| 273 | * Return: 0 in case of success, a negative error code otherwise. |
| 274 | */ |
| 275 | int spi_mem_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) |
| 276 | { |
| 277 | unsigned int tmpbufsize, xferpos = 0, totalxferlen = 0; |
| 278 | struct spi_controller *ctlr = mem->spi->controller; |
| 279 | struct spi_transfer xfers[4] = { }; |
| 280 | struct spi_message msg; |
| 281 | u8 *tmpbuf; |
| 282 | int ret; |
| 283 | |
Boris Brezillon | 3805832 | 2018-09-20 09:31:12 +0200 | [diff] [blame] | 284 | ret = spi_mem_check_op(op); |
| 285 | if (ret) |
| 286 | return ret; |
| 287 | |
| 288 | if (!spi_mem_internal_supports_op(mem, op)) |
Boris Brezillon | c36ff26 | 2018-04-26 18:18:14 +0200 | [diff] [blame] | 289 | return -ENOTSUPP; |
| 290 | |
Chris Packham | 0576605 | 2019-11-07 17:42:35 +1300 | [diff] [blame] | 291 | if (ctlr->mem_ops && !mem->spi->cs_gpiod) { |
Boris Brezillon | f86c24f | 2018-11-06 17:05:32 +0100 | [diff] [blame] | 292 | ret = spi_mem_access_start(mem); |
| 293 | if (ret) |
| 294 | return ret; |
Boris Brezillon | c36ff26 | 2018-04-26 18:18:14 +0200 | [diff] [blame] | 295 | |
Boris Brezillon | c36ff26 | 2018-04-26 18:18:14 +0200 | [diff] [blame] | 296 | ret = ctlr->mem_ops->exec_op(mem, op); |
Boris Brezillon | c36ff26 | 2018-04-26 18:18:14 +0200 | [diff] [blame] | 297 | |
Boris Brezillon | f86c24f | 2018-11-06 17:05:32 +0100 | [diff] [blame] | 298 | spi_mem_access_end(mem); |
Boris Brezillon | c36ff26 | 2018-04-26 18:18:14 +0200 | [diff] [blame] | 299 | |
| 300 | /* |
| 301 | * Some controllers only optimize specific paths (typically the |
| 302 | * read path) and expect the core to use the regular SPI |
| 303 | * interface in other cases. |
| 304 | */ |
| 305 | if (!ret || ret != -ENOTSUPP) |
| 306 | return ret; |
| 307 | } |
| 308 | |
| 309 | tmpbufsize = sizeof(op->cmd.opcode) + op->addr.nbytes + |
| 310 | op->dummy.nbytes; |
| 311 | |
| 312 | /* |
| 313 | * Allocate a buffer to transmit the CMD, ADDR cycles with kmalloc() so |
| 314 | * we're guaranteed that this buffer is DMA-able, as required by the |
| 315 | * SPI layer. |
| 316 | */ |
| 317 | tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA); |
| 318 | if (!tmpbuf) |
| 319 | return -ENOMEM; |
| 320 | |
| 321 | spi_message_init(&msg); |
| 322 | |
| 323 | tmpbuf[0] = op->cmd.opcode; |
| 324 | xfers[xferpos].tx_buf = tmpbuf; |
| 325 | xfers[xferpos].len = sizeof(op->cmd.opcode); |
| 326 | xfers[xferpos].tx_nbits = op->cmd.buswidth; |
| 327 | spi_message_add_tail(&xfers[xferpos], &msg); |
| 328 | xferpos++; |
| 329 | totalxferlen++; |
| 330 | |
| 331 | if (op->addr.nbytes) { |
| 332 | int i; |
| 333 | |
| 334 | for (i = 0; i < op->addr.nbytes; i++) |
| 335 | tmpbuf[i + 1] = op->addr.val >> |
| 336 | (8 * (op->addr.nbytes - i - 1)); |
| 337 | |
| 338 | xfers[xferpos].tx_buf = tmpbuf + 1; |
| 339 | xfers[xferpos].len = op->addr.nbytes; |
| 340 | xfers[xferpos].tx_nbits = op->addr.buswidth; |
| 341 | spi_message_add_tail(&xfers[xferpos], &msg); |
| 342 | xferpos++; |
| 343 | totalxferlen += op->addr.nbytes; |
| 344 | } |
| 345 | |
| 346 | if (op->dummy.nbytes) { |
| 347 | memset(tmpbuf + op->addr.nbytes + 1, 0xff, op->dummy.nbytes); |
| 348 | xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1; |
| 349 | xfers[xferpos].len = op->dummy.nbytes; |
| 350 | xfers[xferpos].tx_nbits = op->dummy.buswidth; |
| 351 | spi_message_add_tail(&xfers[xferpos], &msg); |
| 352 | xferpos++; |
| 353 | totalxferlen += op->dummy.nbytes; |
| 354 | } |
| 355 | |
| 356 | if (op->data.nbytes) { |
| 357 | if (op->data.dir == SPI_MEM_DATA_IN) { |
| 358 | xfers[xferpos].rx_buf = op->data.buf.in; |
| 359 | xfers[xferpos].rx_nbits = op->data.buswidth; |
| 360 | } else { |
| 361 | xfers[xferpos].tx_buf = op->data.buf.out; |
| 362 | xfers[xferpos].tx_nbits = op->data.buswidth; |
| 363 | } |
| 364 | |
| 365 | xfers[xferpos].len = op->data.nbytes; |
| 366 | spi_message_add_tail(&xfers[xferpos], &msg); |
| 367 | xferpos++; |
| 368 | totalxferlen += op->data.nbytes; |
| 369 | } |
| 370 | |
| 371 | ret = spi_sync(mem->spi, &msg); |
| 372 | |
| 373 | kfree(tmpbuf); |
| 374 | |
| 375 | if (ret) |
| 376 | return ret; |
| 377 | |
| 378 | if (msg.actual_length != totalxferlen) |
| 379 | return -EIO; |
| 380 | |
| 381 | return 0; |
| 382 | } |
| 383 | EXPORT_SYMBOL_GPL(spi_mem_exec_op); |
| 384 | |
| 385 | /** |
Frieder Schrempf | 5d27a9c | 2018-08-02 14:53:53 +0200 | [diff] [blame] | 386 | * spi_mem_get_name() - Return the SPI mem device name to be used by the |
| 387 | * upper layer if necessary |
| 388 | * @mem: the SPI memory |
| 389 | * |
| 390 | * This function allows SPI mem users to retrieve the SPI mem device name. |
| 391 | * It is useful if the upper layer needs to expose a custom name for |
| 392 | * compatibility reasons. |
| 393 | * |
| 394 | * Return: a string containing the name of the memory device to be used |
| 395 | * by the SPI mem user |
| 396 | */ |
| 397 | const char *spi_mem_get_name(struct spi_mem *mem) |
| 398 | { |
| 399 | return mem->name; |
| 400 | } |
| 401 | EXPORT_SYMBOL_GPL(spi_mem_get_name); |
| 402 | |
| 403 | /** |
Boris Brezillon | c36ff26 | 2018-04-26 18:18:14 +0200 | [diff] [blame] | 404 | * spi_mem_adjust_op_size() - Adjust the data size of a SPI mem operation to |
| 405 | * match controller limitations |
| 406 | * @mem: the SPI memory |
| 407 | * @op: the operation to adjust |
| 408 | * |
| 409 | * Some controllers have FIFO limitations and must split a data transfer |
| 410 | * operation into multiple ones, others require a specific alignment for |
| 411 | * optimized accesses. This function allows SPI mem drivers to split a single |
| 412 | * operation into multiple sub-operations when required. |
| 413 | * |
| 414 | * Return: a negative error code if the controller can't properly adjust @op, |
| 415 | * 0 otherwise. Note that @op->data.nbytes will be updated if @op |
| 416 | * can't be handled in a single step. |
| 417 | */ |
| 418 | int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op) |
| 419 | { |
| 420 | struct spi_controller *ctlr = mem->spi->controller; |
Chuanhua Han | e757996 | 2018-08-30 16:43:24 +0800 | [diff] [blame] | 421 | size_t len; |
| 422 | |
Boris Brezillon | c36ff26 | 2018-04-26 18:18:14 +0200 | [diff] [blame] | 423 | if (ctlr->mem_ops && ctlr->mem_ops->adjust_op_size) |
| 424 | return ctlr->mem_ops->adjust_op_size(mem, op); |
| 425 | |
Chuanhua Han | e757996 | 2018-08-30 16:43:24 +0800 | [diff] [blame] | 426 | if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) { |
Tudor Ambarus | c0e035a | 2020-02-28 16:07:44 +0000 | [diff] [blame] | 427 | len = sizeof(op->cmd.opcode) + op->addr.nbytes + |
| 428 | op->dummy.nbytes; |
| 429 | |
Chuanhua Han | e757996 | 2018-08-30 16:43:24 +0800 | [diff] [blame] | 430 | if (len > spi_max_transfer_size(mem->spi)) |
| 431 | return -EINVAL; |
| 432 | |
| 433 | op->data.nbytes = min3((size_t)op->data.nbytes, |
| 434 | spi_max_transfer_size(mem->spi), |
| 435 | spi_max_message_size(mem->spi) - |
| 436 | len); |
| 437 | if (!op->data.nbytes) |
| 438 | return -EINVAL; |
| 439 | } |
| 440 | |
Boris Brezillon | c36ff26 | 2018-04-26 18:18:14 +0200 | [diff] [blame] | 441 | return 0; |
| 442 | } |
| 443 | EXPORT_SYMBOL_GPL(spi_mem_adjust_op_size); |
| 444 | |
Boris Brezillon | aa167f3 | 2018-11-06 17:05:33 +0100 | [diff] [blame] | 445 | static ssize_t spi_mem_no_dirmap_read(struct spi_mem_dirmap_desc *desc, |
| 446 | u64 offs, size_t len, void *buf) |
| 447 | { |
| 448 | struct spi_mem_op op = desc->info.op_tmpl; |
| 449 | int ret; |
| 450 | |
| 451 | op.addr.val = desc->info.offset + offs; |
| 452 | op.data.buf.in = buf; |
| 453 | op.data.nbytes = len; |
| 454 | ret = spi_mem_adjust_op_size(desc->mem, &op); |
| 455 | if (ret) |
| 456 | return ret; |
| 457 | |
| 458 | ret = spi_mem_exec_op(desc->mem, &op); |
| 459 | if (ret) |
| 460 | return ret; |
| 461 | |
| 462 | return op.data.nbytes; |
| 463 | } |
| 464 | |
| 465 | static ssize_t spi_mem_no_dirmap_write(struct spi_mem_dirmap_desc *desc, |
| 466 | u64 offs, size_t len, const void *buf) |
| 467 | { |
| 468 | struct spi_mem_op op = desc->info.op_tmpl; |
| 469 | int ret; |
| 470 | |
| 471 | op.addr.val = desc->info.offset + offs; |
| 472 | op.data.buf.out = buf; |
| 473 | op.data.nbytes = len; |
| 474 | ret = spi_mem_adjust_op_size(desc->mem, &op); |
| 475 | if (ret) |
| 476 | return ret; |
| 477 | |
| 478 | ret = spi_mem_exec_op(desc->mem, &op); |
| 479 | if (ret) |
| 480 | return ret; |
| 481 | |
| 482 | return op.data.nbytes; |
| 483 | } |
| 484 | |
| 485 | /** |
| 486 | * spi_mem_dirmap_create() - Create a direct mapping descriptor |
| 487 | * @mem: SPI mem device this direct mapping should be created for |
| 488 | * @info: direct mapping information |
| 489 | * |
| 490 | * This function is creating a direct mapping descriptor which can then be used |
| 491 | * to access the memory using spi_mem_dirmap_read() or spi_mem_dirmap_write(). |
| 492 | * If the SPI controller driver does not support direct mapping, this function |
Tudor Ambarus | 32a9d05 | 2020-02-16 21:40:17 +0000 | [diff] [blame] | 493 | * falls back to an implementation using spi_mem_exec_op(), so that the caller |
Boris Brezillon | aa167f3 | 2018-11-06 17:05:33 +0100 | [diff] [blame] | 494 | * doesn't have to bother implementing a fallback on his own. |
| 495 | * |
| 496 | * Return: a valid pointer in case of success, and ERR_PTR() otherwise. |
| 497 | */ |
| 498 | struct spi_mem_dirmap_desc * |
| 499 | spi_mem_dirmap_create(struct spi_mem *mem, |
| 500 | const struct spi_mem_dirmap_info *info) |
| 501 | { |
| 502 | struct spi_controller *ctlr = mem->spi->controller; |
| 503 | struct spi_mem_dirmap_desc *desc; |
| 504 | int ret = -ENOTSUPP; |
| 505 | |
| 506 | /* Make sure the number of address cycles is between 1 and 8 bytes. */ |
| 507 | if (!info->op_tmpl.addr.nbytes || info->op_tmpl.addr.nbytes > 8) |
| 508 | return ERR_PTR(-EINVAL); |
| 509 | |
| 510 | /* data.dir should either be SPI_MEM_DATA_IN or SPI_MEM_DATA_OUT. */ |
| 511 | if (info->op_tmpl.data.dir == SPI_MEM_NO_DATA) |
| 512 | return ERR_PTR(-EINVAL); |
| 513 | |
| 514 | desc = kzalloc(sizeof(*desc), GFP_KERNEL); |
| 515 | if (!desc) |
| 516 | return ERR_PTR(-ENOMEM); |
| 517 | |
| 518 | desc->mem = mem; |
| 519 | desc->info = *info; |
| 520 | if (ctlr->mem_ops && ctlr->mem_ops->dirmap_create) |
| 521 | ret = ctlr->mem_ops->dirmap_create(desc); |
| 522 | |
| 523 | if (ret) { |
| 524 | desc->nodirmap = true; |
| 525 | if (!spi_mem_supports_op(desc->mem, &desc->info.op_tmpl)) |
| 526 | ret = -ENOTSUPP; |
| 527 | else |
| 528 | ret = 0; |
| 529 | } |
| 530 | |
| 531 | if (ret) { |
| 532 | kfree(desc); |
| 533 | return ERR_PTR(ret); |
| 534 | } |
| 535 | |
| 536 | return desc; |
| 537 | } |
| 538 | EXPORT_SYMBOL_GPL(spi_mem_dirmap_create); |
| 539 | |
| 540 | /** |
| 541 | * spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor |
| 542 | * @desc: the direct mapping descriptor to destroy |
Boris Brezillon | aa167f3 | 2018-11-06 17:05:33 +0100 | [diff] [blame] | 543 | * |
| 544 | * This function destroys a direct mapping descriptor previously created by |
| 545 | * spi_mem_dirmap_create(). |
| 546 | */ |
| 547 | void spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc *desc) |
| 548 | { |
| 549 | struct spi_controller *ctlr = desc->mem->spi->controller; |
| 550 | |
| 551 | if (!desc->nodirmap && ctlr->mem_ops && ctlr->mem_ops->dirmap_destroy) |
| 552 | ctlr->mem_ops->dirmap_destroy(desc); |
Boris Brezillon | bfecfd6 | 2019-01-19 15:57:57 +0100 | [diff] [blame] | 553 | |
| 554 | kfree(desc); |
Boris Brezillon | aa167f3 | 2018-11-06 17:05:33 +0100 | [diff] [blame] | 555 | } |
| 556 | EXPORT_SYMBOL_GPL(spi_mem_dirmap_destroy); |
| 557 | |
Boris Brezillon | 1fc1b63 | 2019-01-19 16:04:12 +0100 | [diff] [blame] | 558 | static void devm_spi_mem_dirmap_release(struct device *dev, void *res) |
| 559 | { |
| 560 | struct spi_mem_dirmap_desc *desc = *(struct spi_mem_dirmap_desc **)res; |
| 561 | |
| 562 | spi_mem_dirmap_destroy(desc); |
| 563 | } |
| 564 | |
| 565 | /** |
| 566 | * devm_spi_mem_dirmap_create() - Create a direct mapping descriptor and attach |
| 567 | * it to a device |
| 568 | * @dev: device the dirmap desc will be attached to |
| 569 | * @mem: SPI mem device this direct mapping should be created for |
| 570 | * @info: direct mapping information |
| 571 | * |
| 572 | * devm_ variant of the spi_mem_dirmap_create() function. See |
| 573 | * spi_mem_dirmap_create() for more details. |
| 574 | * |
| 575 | * Return: a valid pointer in case of success, and ERR_PTR() otherwise. |
| 576 | */ |
| 577 | struct spi_mem_dirmap_desc * |
| 578 | devm_spi_mem_dirmap_create(struct device *dev, struct spi_mem *mem, |
| 579 | const struct spi_mem_dirmap_info *info) |
| 580 | { |
| 581 | struct spi_mem_dirmap_desc **ptr, *desc; |
| 582 | |
| 583 | ptr = devres_alloc(devm_spi_mem_dirmap_release, sizeof(*ptr), |
| 584 | GFP_KERNEL); |
| 585 | if (!ptr) |
| 586 | return ERR_PTR(-ENOMEM); |
| 587 | |
| 588 | desc = spi_mem_dirmap_create(mem, info); |
| 589 | if (IS_ERR(desc)) { |
| 590 | devres_free(ptr); |
| 591 | } else { |
| 592 | *ptr = desc; |
| 593 | devres_add(dev, ptr); |
| 594 | } |
| 595 | |
| 596 | return desc; |
| 597 | } |
| 598 | EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_create); |
| 599 | |
| 600 | static int devm_spi_mem_dirmap_match(struct device *dev, void *res, void *data) |
| 601 | { |
| 602 | struct spi_mem_dirmap_desc **ptr = res; |
| 603 | |
| 604 | if (WARN_ON(!ptr || !*ptr)) |
| 605 | return 0; |
| 606 | |
| 607 | return *ptr == data; |
| 608 | } |
| 609 | |
| 610 | /** |
| 611 | * devm_spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor attached |
| 612 | * to a device |
| 613 | * @dev: device the dirmap desc is attached to |
| 614 | * @desc: the direct mapping descriptor to destroy |
| 615 | * |
| 616 | * devm_ variant of the spi_mem_dirmap_destroy() function. See |
| 617 | * spi_mem_dirmap_destroy() for more details. |
| 618 | */ |
| 619 | void devm_spi_mem_dirmap_destroy(struct device *dev, |
| 620 | struct spi_mem_dirmap_desc *desc) |
| 621 | { |
| 622 | devres_release(dev, devm_spi_mem_dirmap_release, |
| 623 | devm_spi_mem_dirmap_match, desc); |
| 624 | } |
| 625 | EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_destroy); |
| 626 | |
Boris Brezillon | aa167f3 | 2018-11-06 17:05:33 +0100 | [diff] [blame] | 627 | /** |
Sergei Shtylyov | 9d8371e | 2019-04-06 21:33:29 +0300 | [diff] [blame] | 628 | * spi_mem_dirmap_read() - Read data through a direct mapping |
Boris Brezillon | aa167f3 | 2018-11-06 17:05:33 +0100 | [diff] [blame] | 629 | * @desc: direct mapping descriptor |
| 630 | * @offs: offset to start reading from. Note that this is not an absolute |
| 631 | * offset, but the offset within the direct mapping which already has |
| 632 | * its own offset |
| 633 | * @len: length in bytes |
| 634 | * @buf: destination buffer. This buffer must be DMA-able |
| 635 | * |
| 636 | * This function reads data from a memory device using a direct mapping |
| 637 | * previously instantiated with spi_mem_dirmap_create(). |
| 638 | * |
| 639 | * Return: the amount of data read from the memory device or a negative error |
| 640 | * code. Note that the returned size might be smaller than @len, and the caller |
| 641 | * is responsible for calling spi_mem_dirmap_read() again when that happens. |
| 642 | */ |
| 643 | ssize_t spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc, |
| 644 | u64 offs, size_t len, void *buf) |
| 645 | { |
| 646 | struct spi_controller *ctlr = desc->mem->spi->controller; |
| 647 | ssize_t ret; |
| 648 | |
| 649 | if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_IN) |
| 650 | return -EINVAL; |
| 651 | |
| 652 | if (!len) |
| 653 | return 0; |
| 654 | |
| 655 | if (desc->nodirmap) { |
| 656 | ret = spi_mem_no_dirmap_read(desc, offs, len, buf); |
| 657 | } else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_read) { |
| 658 | ret = spi_mem_access_start(desc->mem); |
| 659 | if (ret) |
| 660 | return ret; |
| 661 | |
| 662 | ret = ctlr->mem_ops->dirmap_read(desc, offs, len, buf); |
| 663 | |
| 664 | spi_mem_access_end(desc->mem); |
| 665 | } else { |
| 666 | ret = -ENOTSUPP; |
| 667 | } |
| 668 | |
| 669 | return ret; |
| 670 | } |
| 671 | EXPORT_SYMBOL_GPL(spi_mem_dirmap_read); |
| 672 | |
| 673 | /** |
Sergei Shtylyov | 9d8371e | 2019-04-06 21:33:29 +0300 | [diff] [blame] | 674 | * spi_mem_dirmap_write() - Write data through a direct mapping |
Boris Brezillon | aa167f3 | 2018-11-06 17:05:33 +0100 | [diff] [blame] | 675 | * @desc: direct mapping descriptor |
| 676 | * @offs: offset to start writing from. Note that this is not an absolute |
| 677 | * offset, but the offset within the direct mapping which already has |
| 678 | * its own offset |
| 679 | * @len: length in bytes |
| 680 | * @buf: source buffer. This buffer must be DMA-able |
| 681 | * |
| 682 | * This function writes data to a memory device using a direct mapping |
| 683 | * previously instantiated with spi_mem_dirmap_create(). |
| 684 | * |
| 685 | * Return: the amount of data written to the memory device or a negative error |
| 686 | * code. Note that the returned size might be smaller than @len, and the caller |
| 687 | * is responsible for calling spi_mem_dirmap_write() again when that happens. |
| 688 | */ |
| 689 | ssize_t spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc, |
| 690 | u64 offs, size_t len, const void *buf) |
| 691 | { |
| 692 | struct spi_controller *ctlr = desc->mem->spi->controller; |
| 693 | ssize_t ret; |
| 694 | |
| 695 | if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_OUT) |
| 696 | return -EINVAL; |
| 697 | |
| 698 | if (!len) |
| 699 | return 0; |
| 700 | |
| 701 | if (desc->nodirmap) { |
| 702 | ret = spi_mem_no_dirmap_write(desc, offs, len, buf); |
| 703 | } else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_write) { |
| 704 | ret = spi_mem_access_start(desc->mem); |
| 705 | if (ret) |
| 706 | return ret; |
| 707 | |
| 708 | ret = ctlr->mem_ops->dirmap_write(desc, offs, len, buf); |
| 709 | |
| 710 | spi_mem_access_end(desc->mem); |
| 711 | } else { |
| 712 | ret = -ENOTSUPP; |
| 713 | } |
| 714 | |
| 715 | return ret; |
| 716 | } |
| 717 | EXPORT_SYMBOL_GPL(spi_mem_dirmap_write); |
| 718 | |
Boris Brezillon | c36ff26 | 2018-04-26 18:18:14 +0200 | [diff] [blame] | 719 | static inline struct spi_mem_driver *to_spi_mem_drv(struct device_driver *drv) |
| 720 | { |
| 721 | return container_of(drv, struct spi_mem_driver, spidrv.driver); |
| 722 | } |
| 723 | |
| 724 | static int spi_mem_probe(struct spi_device *spi) |
| 725 | { |
| 726 | struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver); |
Frieder Schrempf | 5d27a9c | 2018-08-02 14:53:53 +0200 | [diff] [blame] | 727 | struct spi_controller *ctlr = spi->controller; |
Boris Brezillon | c36ff26 | 2018-04-26 18:18:14 +0200 | [diff] [blame] | 728 | struct spi_mem *mem; |
| 729 | |
| 730 | mem = devm_kzalloc(&spi->dev, sizeof(*mem), GFP_KERNEL); |
| 731 | if (!mem) |
| 732 | return -ENOMEM; |
| 733 | |
| 734 | mem->spi = spi; |
Frieder Schrempf | 5d27a9c | 2018-08-02 14:53:53 +0200 | [diff] [blame] | 735 | |
| 736 | if (ctlr->mem_ops && ctlr->mem_ops->get_name) |
| 737 | mem->name = ctlr->mem_ops->get_name(mem); |
| 738 | else |
| 739 | mem->name = dev_name(&spi->dev); |
| 740 | |
| 741 | if (IS_ERR_OR_NULL(mem->name)) |
| 742 | return PTR_ERR(mem->name); |
| 743 | |
Boris Brezillon | c36ff26 | 2018-04-26 18:18:14 +0200 | [diff] [blame] | 744 | spi_set_drvdata(spi, mem); |
| 745 | |
| 746 | return memdrv->probe(mem); |
| 747 | } |
| 748 | |
| 749 | static int spi_mem_remove(struct spi_device *spi) |
| 750 | { |
| 751 | struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver); |
| 752 | struct spi_mem *mem = spi_get_drvdata(spi); |
| 753 | |
| 754 | if (memdrv->remove) |
| 755 | return memdrv->remove(mem); |
| 756 | |
| 757 | return 0; |
| 758 | } |
| 759 | |
| 760 | static void spi_mem_shutdown(struct spi_device *spi) |
| 761 | { |
| 762 | struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver); |
| 763 | struct spi_mem *mem = spi_get_drvdata(spi); |
| 764 | |
| 765 | if (memdrv->shutdown) |
| 766 | memdrv->shutdown(mem); |
| 767 | } |
| 768 | |
| 769 | /** |
| 770 | * spi_mem_driver_register_with_owner() - Register a SPI memory driver |
| 771 | * @memdrv: the SPI memory driver to register |
| 772 | * @owner: the owner of this driver |
| 773 | * |
| 774 | * Registers a SPI memory driver. |
| 775 | * |
| 776 | * Return: 0 in case of success, a negative error core otherwise. |
| 777 | */ |
| 778 | |
| 779 | int spi_mem_driver_register_with_owner(struct spi_mem_driver *memdrv, |
| 780 | struct module *owner) |
| 781 | { |
| 782 | memdrv->spidrv.probe = spi_mem_probe; |
| 783 | memdrv->spidrv.remove = spi_mem_remove; |
| 784 | memdrv->spidrv.shutdown = spi_mem_shutdown; |
| 785 | |
| 786 | return __spi_register_driver(owner, &memdrv->spidrv); |
| 787 | } |
| 788 | EXPORT_SYMBOL_GPL(spi_mem_driver_register_with_owner); |
| 789 | |
| 790 | /** |
| 791 | * spi_mem_driver_unregister_with_owner() - Unregister a SPI memory driver |
| 792 | * @memdrv: the SPI memory driver to unregister |
| 793 | * |
| 794 | * Unregisters a SPI memory driver. |
| 795 | */ |
| 796 | void spi_mem_driver_unregister(struct spi_mem_driver *memdrv) |
| 797 | { |
| 798 | spi_unregister_driver(&memdrv->spidrv); |
| 799 | } |
| 800 | EXPORT_SYMBOL_GPL(spi_mem_driver_unregister); |