Yash Shah | 9e37a53 | 2019-06-11 11:14:44 +0530 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Copyright (C) 2017-2018 SiFive |
| 4 | * For SiFive's PWM IP block documentation please refer Chapter 14 of |
| 5 | * Reference Manual : https://static.dev.sifive.com/FU540-C000-v1.0.pdf |
| 6 | * |
| 7 | * Limitations: |
| 8 | * - When changing both duty cycle and period, we cannot prevent in |
| 9 | * software that the output might produce a period with mixed |
| 10 | * settings (new period length and old duty cycle). |
| 11 | * - The hardware cannot generate a 100% duty cycle. |
| 12 | * - The hardware generates only inverted output. |
| 13 | */ |
| 14 | #include <linux/clk.h> |
| 15 | #include <linux/io.h> |
| 16 | #include <linux/module.h> |
| 17 | #include <linux/platform_device.h> |
| 18 | #include <linux/pwm.h> |
| 19 | #include <linux/slab.h> |
| 20 | #include <linux/bitfield.h> |
| 21 | |
| 22 | /* Register offsets */ |
| 23 | #define PWM_SIFIVE_PWMCFG 0x0 |
| 24 | #define PWM_SIFIVE_PWMCOUNT 0x8 |
| 25 | #define PWM_SIFIVE_PWMS 0x10 |
| 26 | #define PWM_SIFIVE_PWMCMP0 0x20 |
| 27 | |
| 28 | /* PWMCFG fields */ |
| 29 | #define PWM_SIFIVE_PWMCFG_SCALE GENMASK(3, 0) |
| 30 | #define PWM_SIFIVE_PWMCFG_STICKY BIT(8) |
| 31 | #define PWM_SIFIVE_PWMCFG_ZERO_CMP BIT(9) |
| 32 | #define PWM_SIFIVE_PWMCFG_DEGLITCH BIT(10) |
| 33 | #define PWM_SIFIVE_PWMCFG_EN_ALWAYS BIT(12) |
| 34 | #define PWM_SIFIVE_PWMCFG_EN_ONCE BIT(13) |
| 35 | #define PWM_SIFIVE_PWMCFG_CENTER BIT(16) |
| 36 | #define PWM_SIFIVE_PWMCFG_GANG BIT(24) |
| 37 | #define PWM_SIFIVE_PWMCFG_IP BIT(28) |
| 38 | |
| 39 | /* PWM_SIFIVE_SIZE_PWMCMP is used to calculate offset for pwmcmpX registers */ |
| 40 | #define PWM_SIFIVE_SIZE_PWMCMP 4 |
| 41 | #define PWM_SIFIVE_CMPWIDTH 16 |
| 42 | #define PWM_SIFIVE_DEFAULT_PERIOD 10000000 |
| 43 | |
| 44 | struct pwm_sifive_ddata { |
| 45 | struct pwm_chip chip; |
| 46 | struct mutex lock; /* lock to protect user_count */ |
| 47 | struct notifier_block notifier; |
| 48 | struct clk *clk; |
| 49 | void __iomem *regs; |
| 50 | unsigned int real_period; |
| 51 | unsigned int approx_period; |
| 52 | int user_count; |
| 53 | }; |
| 54 | |
| 55 | static inline |
| 56 | struct pwm_sifive_ddata *pwm_sifive_chip_to_ddata(struct pwm_chip *c) |
| 57 | { |
| 58 | return container_of(c, struct pwm_sifive_ddata, chip); |
| 59 | } |
| 60 | |
| 61 | static int pwm_sifive_request(struct pwm_chip *chip, struct pwm_device *pwm) |
| 62 | { |
| 63 | struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip); |
| 64 | |
| 65 | mutex_lock(&ddata->lock); |
| 66 | ddata->user_count++; |
| 67 | mutex_unlock(&ddata->lock); |
| 68 | |
| 69 | return 0; |
| 70 | } |
| 71 | |
| 72 | static void pwm_sifive_free(struct pwm_chip *chip, struct pwm_device *pwm) |
| 73 | { |
| 74 | struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip); |
| 75 | |
| 76 | mutex_lock(&ddata->lock); |
| 77 | ddata->user_count--; |
| 78 | mutex_unlock(&ddata->lock); |
| 79 | } |
| 80 | |
| 81 | static void pwm_sifive_update_clock(struct pwm_sifive_ddata *ddata, |
| 82 | unsigned long rate) |
| 83 | { |
| 84 | unsigned long long num; |
| 85 | unsigned long scale_pow; |
| 86 | int scale; |
| 87 | u32 val; |
| 88 | /* |
| 89 | * The PWM unit is used with pwmzerocmp=0, so the only way to modify the |
| 90 | * period length is using pwmscale which provides the number of bits the |
| 91 | * counter is shifted before being feed to the comparators. A period |
| 92 | * lasts (1 << (PWM_SIFIVE_CMPWIDTH + pwmscale)) clock ticks. |
| 93 | * (1 << (PWM_SIFIVE_CMPWIDTH + scale)) * 10^9/rate = period |
| 94 | */ |
| 95 | scale_pow = div64_ul(ddata->approx_period * (u64)rate, NSEC_PER_SEC); |
| 96 | scale = clamp(ilog2(scale_pow) - PWM_SIFIVE_CMPWIDTH, 0, 0xf); |
| 97 | |
| 98 | val = PWM_SIFIVE_PWMCFG_EN_ALWAYS | |
| 99 | FIELD_PREP(PWM_SIFIVE_PWMCFG_SCALE, scale); |
| 100 | writel(val, ddata->regs + PWM_SIFIVE_PWMCFG); |
| 101 | |
| 102 | /* As scale <= 15 the shift operation cannot overflow. */ |
| 103 | num = (unsigned long long)NSEC_PER_SEC << (PWM_SIFIVE_CMPWIDTH + scale); |
| 104 | ddata->real_period = div64_ul(num, rate); |
| 105 | dev_dbg(ddata->chip.dev, |
| 106 | "New real_period = %u ns\n", ddata->real_period); |
| 107 | } |
| 108 | |
| 109 | static void pwm_sifive_get_state(struct pwm_chip *chip, struct pwm_device *pwm, |
| 110 | struct pwm_state *state) |
| 111 | { |
| 112 | struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip); |
| 113 | u32 duty, val; |
| 114 | |
| 115 | duty = readl(ddata->regs + PWM_SIFIVE_PWMCMP0 + |
| 116 | pwm->hwpwm * PWM_SIFIVE_SIZE_PWMCMP); |
| 117 | |
| 118 | state->enabled = duty > 0; |
| 119 | |
| 120 | val = readl(ddata->regs + PWM_SIFIVE_PWMCFG); |
| 121 | if (!(val & PWM_SIFIVE_PWMCFG_EN_ALWAYS)) |
| 122 | state->enabled = false; |
| 123 | |
| 124 | state->period = ddata->real_period; |
| 125 | state->duty_cycle = |
| 126 | (u64)duty * ddata->real_period >> PWM_SIFIVE_CMPWIDTH; |
| 127 | state->polarity = PWM_POLARITY_INVERSED; |
| 128 | } |
| 129 | |
| 130 | static int pwm_sifive_enable(struct pwm_chip *chip, bool enable) |
| 131 | { |
| 132 | struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip); |
| 133 | int ret; |
| 134 | |
| 135 | if (enable) { |
| 136 | ret = clk_enable(ddata->clk); |
| 137 | if (ret) { |
| 138 | dev_err(ddata->chip.dev, "Enable clk failed\n"); |
| 139 | return ret; |
| 140 | } |
| 141 | } |
| 142 | |
| 143 | if (!enable) |
| 144 | clk_disable(ddata->clk); |
| 145 | |
| 146 | return 0; |
| 147 | } |
| 148 | |
| 149 | static int pwm_sifive_apply(struct pwm_chip *chip, struct pwm_device *pwm, |
Uwe Kleine-König | 71523d1 | 2019-08-24 17:37:07 +0200 | [diff] [blame] | 150 | const struct pwm_state *state) |
Yash Shah | 9e37a53 | 2019-06-11 11:14:44 +0530 | [diff] [blame] | 151 | { |
| 152 | struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip); |
| 153 | struct pwm_state cur_state; |
| 154 | unsigned int duty_cycle; |
| 155 | unsigned long long num; |
| 156 | bool enabled; |
| 157 | int ret = 0; |
| 158 | u32 frac; |
| 159 | |
| 160 | if (state->polarity != PWM_POLARITY_INVERSED) |
| 161 | return -EINVAL; |
| 162 | |
| 163 | ret = clk_enable(ddata->clk); |
| 164 | if (ret) { |
| 165 | dev_err(ddata->chip.dev, "Enable clk failed\n"); |
| 166 | return ret; |
| 167 | } |
| 168 | |
| 169 | mutex_lock(&ddata->lock); |
| 170 | cur_state = pwm->state; |
| 171 | enabled = cur_state.enabled; |
| 172 | |
| 173 | duty_cycle = state->duty_cycle; |
| 174 | if (!state->enabled) |
| 175 | duty_cycle = 0; |
| 176 | |
| 177 | /* |
| 178 | * The problem of output producing mixed setting as mentioned at top, |
| 179 | * occurs here. To minimize the window for this problem, we are |
| 180 | * calculating the register values first and then writing them |
| 181 | * consecutively |
| 182 | */ |
| 183 | num = (u64)duty_cycle * (1U << PWM_SIFIVE_CMPWIDTH); |
| 184 | frac = DIV_ROUND_CLOSEST_ULL(num, state->period); |
| 185 | /* The hardware cannot generate a 100% duty cycle */ |
| 186 | frac = min(frac, (1U << PWM_SIFIVE_CMPWIDTH) - 1); |
| 187 | |
| 188 | if (state->period != ddata->approx_period) { |
| 189 | if (ddata->user_count != 1) { |
| 190 | ret = -EBUSY; |
| 191 | goto exit; |
| 192 | } |
| 193 | ddata->approx_period = state->period; |
| 194 | pwm_sifive_update_clock(ddata, clk_get_rate(ddata->clk)); |
| 195 | } |
| 196 | |
| 197 | writel(frac, ddata->regs + PWM_SIFIVE_PWMCMP0 + |
| 198 | pwm->hwpwm * PWM_SIFIVE_SIZE_PWMCMP); |
| 199 | |
| 200 | if (state->enabled != enabled) |
| 201 | pwm_sifive_enable(chip, state->enabled); |
| 202 | |
| 203 | exit: |
| 204 | clk_disable(ddata->clk); |
| 205 | mutex_unlock(&ddata->lock); |
| 206 | return ret; |
| 207 | } |
| 208 | |
| 209 | static const struct pwm_ops pwm_sifive_ops = { |
| 210 | .request = pwm_sifive_request, |
| 211 | .free = pwm_sifive_free, |
| 212 | .get_state = pwm_sifive_get_state, |
| 213 | .apply = pwm_sifive_apply, |
| 214 | .owner = THIS_MODULE, |
| 215 | }; |
| 216 | |
| 217 | static int pwm_sifive_clock_notifier(struct notifier_block *nb, |
| 218 | unsigned long event, void *data) |
| 219 | { |
| 220 | struct clk_notifier_data *ndata = data; |
| 221 | struct pwm_sifive_ddata *ddata = |
| 222 | container_of(nb, struct pwm_sifive_ddata, notifier); |
| 223 | |
| 224 | if (event == POST_RATE_CHANGE) |
| 225 | pwm_sifive_update_clock(ddata, ndata->new_rate); |
| 226 | |
| 227 | return NOTIFY_OK; |
| 228 | } |
| 229 | |
| 230 | static int pwm_sifive_probe(struct platform_device *pdev) |
| 231 | { |
| 232 | struct device *dev = &pdev->dev; |
| 233 | struct pwm_sifive_ddata *ddata; |
| 234 | struct pwm_chip *chip; |
| 235 | struct resource *res; |
| 236 | int ret; |
| 237 | |
| 238 | ddata = devm_kzalloc(dev, sizeof(*ddata), GFP_KERNEL); |
| 239 | if (!ddata) |
| 240 | return -ENOMEM; |
| 241 | |
| 242 | mutex_init(&ddata->lock); |
| 243 | chip = &ddata->chip; |
| 244 | chip->dev = dev; |
| 245 | chip->ops = &pwm_sifive_ops; |
| 246 | chip->of_xlate = of_pwm_xlate_with_flags; |
| 247 | chip->of_pwm_n_cells = 3; |
| 248 | chip->base = -1; |
| 249 | chip->npwm = 4; |
| 250 | |
| 251 | res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| 252 | ddata->regs = devm_ioremap_resource(dev, res); |
Ding Xiang | f6abac0 | 2019-07-18 15:51:11 +0800 | [diff] [blame] | 253 | if (IS_ERR(ddata->regs)) |
Yash Shah | 9e37a53 | 2019-06-11 11:14:44 +0530 | [diff] [blame] | 254 | return PTR_ERR(ddata->regs); |
Yash Shah | 9e37a53 | 2019-06-11 11:14:44 +0530 | [diff] [blame] | 255 | |
| 256 | ddata->clk = devm_clk_get(dev, NULL); |
| 257 | if (IS_ERR(ddata->clk)) { |
| 258 | if (PTR_ERR(ddata->clk) != -EPROBE_DEFER) |
| 259 | dev_err(dev, "Unable to find controller clock\n"); |
| 260 | return PTR_ERR(ddata->clk); |
| 261 | } |
| 262 | |
| 263 | ret = clk_prepare_enable(ddata->clk); |
| 264 | if (ret) { |
| 265 | dev_err(dev, "failed to enable clock for pwm: %d\n", ret); |
| 266 | return ret; |
| 267 | } |
| 268 | |
| 269 | /* Watch for changes to underlying clock frequency */ |
| 270 | ddata->notifier.notifier_call = pwm_sifive_clock_notifier; |
| 271 | ret = clk_notifier_register(ddata->clk, &ddata->notifier); |
| 272 | if (ret) { |
| 273 | dev_err(dev, "failed to register clock notifier: %d\n", ret); |
| 274 | goto disable_clk; |
| 275 | } |
| 276 | |
| 277 | ret = pwmchip_add(chip); |
| 278 | if (ret < 0) { |
| 279 | dev_err(dev, "cannot register PWM: %d\n", ret); |
| 280 | goto unregister_clk; |
| 281 | } |
| 282 | |
| 283 | platform_set_drvdata(pdev, ddata); |
| 284 | dev_dbg(dev, "SiFive PWM chip registered %d PWMs\n", chip->npwm); |
| 285 | |
| 286 | return 0; |
| 287 | |
| 288 | unregister_clk: |
| 289 | clk_notifier_unregister(ddata->clk, &ddata->notifier); |
| 290 | disable_clk: |
| 291 | clk_disable_unprepare(ddata->clk); |
| 292 | |
| 293 | return ret; |
| 294 | } |
| 295 | |
| 296 | static int pwm_sifive_remove(struct platform_device *dev) |
| 297 | { |
| 298 | struct pwm_sifive_ddata *ddata = platform_get_drvdata(dev); |
| 299 | bool is_enabled = false; |
| 300 | struct pwm_device *pwm; |
| 301 | int ret, ch; |
| 302 | |
| 303 | for (ch = 0; ch < ddata->chip.npwm; ch++) { |
| 304 | pwm = &ddata->chip.pwms[ch]; |
| 305 | if (pwm->state.enabled) { |
| 306 | is_enabled = true; |
| 307 | break; |
| 308 | } |
| 309 | } |
| 310 | if (is_enabled) |
| 311 | clk_disable(ddata->clk); |
| 312 | |
| 313 | clk_disable_unprepare(ddata->clk); |
| 314 | ret = pwmchip_remove(&ddata->chip); |
| 315 | clk_notifier_unregister(ddata->clk, &ddata->notifier); |
| 316 | |
| 317 | return ret; |
| 318 | } |
| 319 | |
| 320 | static const struct of_device_id pwm_sifive_of_match[] = { |
| 321 | { .compatible = "sifive,pwm0" }, |
| 322 | {}, |
| 323 | }; |
| 324 | MODULE_DEVICE_TABLE(of, pwm_sifive_of_match); |
| 325 | |
| 326 | static struct platform_driver pwm_sifive_driver = { |
| 327 | .probe = pwm_sifive_probe, |
| 328 | .remove = pwm_sifive_remove, |
| 329 | .driver = { |
| 330 | .name = "pwm-sifive", |
| 331 | .of_match_table = pwm_sifive_of_match, |
| 332 | }, |
| 333 | }; |
| 334 | module_platform_driver(pwm_sifive_driver); |
| 335 | |
| 336 | MODULE_DESCRIPTION("SiFive PWM driver"); |
| 337 | MODULE_LICENSE("GPL v2"); |