blob: cc374651662c6aa9456e96698ceac4d0e50d988c [file] [log] [blame]
Sebastian Hesselbarth9abd5f02013-04-11 21:42:29 +02001Binding for Silicon Labs Si5351a/b/c programmable i2c clock generator.
2
3Reference
4[1] Si5351A/B/C Data Sheet
5 http://www.silabs.com/Support%20Documents/TechnicalDocs/Si5351.pdf
6
7The Si5351a/b/c are programmable i2c clock generators with upto 8 output
8clocks. Si5351a also has a reduced pin-count package (MSOP10) where only
93 output clocks are accessible. The internal structure of the clock
10generators can be found in [1].
11
12==I2C device node==
13
14Required properties:
15- compatible: shall be one of "silabs,si5351{a,a-msop,b,c}".
16- reg: i2c device address, shall be 0x60 or 0x61.
17- #clock-cells: from common clock binding; shall be set to 1.
18- clocks: from common clock binding; list of parent clock
19 handles, shall be xtal reference clock or xtal and clkin for
20 si5351c only.
21- #address-cells: shall be set to 1.
22- #size-cells: shall be set to 0.
23
24Optional properties:
25- silabs,pll-source: pair of (number, source) for each pll. Allows
26 to overwrite clock source of pll A (number=0) or B (number=1).
27
28==Child nodes==
29
30Each of the clock outputs can be overwritten individually by
31using a child node to the I2C device node. If a child node for a clock
32output is not set, the eeprom configuration is not overwritten.
33
34Required child node properties:
35- reg: number of clock output.
36
37Optional child node properties:
38- silabs,clock-source: source clock of the output divider stage N, shall be
39 0 = multisynth N
40 1 = multisynth 0 for output clocks 0-3, else multisynth4
41 2 = xtal
42 3 = clkin (si5351c only)
43- silabs,drive-strength: output drive strength in mA, shall be one of {2,4,6,8}.
44- silabs,multisynth-source: source pll A(0) or B(1) of corresponding multisynth
45 divider.
46- silabs,pll-master: boolean, multisynth can change pll frequency.
47
48==Example==
49
50/* 25MHz reference crystal */
51ref25: ref25M {
52 compatible = "fixed-clock";
53 #clock-cells = <0>;
54 clock-frequency = <25000000>;
55};
56
57i2c-master-node {
58
59 /* Si5351a msop10 i2c clock generator */
60 si5351a: clock-generator@60 {
61 compatible = "silabs,si5351a-msop";
62 reg = <0x60>;
63 #address-cells = <1>;
64 #size-cells = <0>;
65 #clock-cells = <1>;
66
67 /* connect xtal input to 25MHz reference */
68 clocks = <&ref25>;
69
70 /* connect xtal input as source of pll0 and pll1 */
71 silabs,pll-source = <0 0>, <1 0>;
72
73 /*
74 * overwrite clkout0 configuration with:
75 * - 8mA output drive strength
76 * - pll0 as clock source of multisynth0
77 * - multisynth0 as clock source of output divider
78 * - multisynth0 can change pll0
79 * - set initial clock frequency of 74.25MHz
80 */
81 clkout0 {
82 reg = <0>;
83 silabs,drive-strength = <8>;
84 silabs,multisynth-source = <0>;
85 silabs,clock-source = <0>;
86 silabs,pll-master;
87 clock-frequency = <74250000>;
88 };
89
90 /*
91 * overwrite clkout1 configuration with:
92 * - 4mA output drive strength
93 * - pll1 as clock source of multisynth1
94 * - multisynth1 as clock source of output divider
95 * - multisynth1 can change pll1
96 */
97 clkout1 {
98 reg = <1>;
99 silabs,drive-strength = <4>;
100 silabs,multisynth-source = <1>;
101 silabs,clock-source = <0>;
102 pll-master;
103 };
104
105 /*
106 * overwrite clkout2 configuration with:
107 * - xtal as clock source of output divider
108 */
109 clkout2 {
110 reg = <2>;
111 silabs,clock-source = <2>;
112 };
113 };
114};