Paul Gortmaker | 45ceebf | 2013-04-19 15:10:49 -0400 | [diff] [blame] | 1 | /* |
Peter Zijlstra | 3289bdb | 2015-04-14 13:19:42 +0200 | [diff] [blame] | 2 | * kernel/sched/loadavg.c |
Paul Gortmaker | 45ceebf | 2013-04-19 15:10:49 -0400 | [diff] [blame] | 3 | * |
Peter Zijlstra | 3289bdb | 2015-04-14 13:19:42 +0200 | [diff] [blame] | 4 | * This file contains the magic bits required to compute the global loadavg |
| 5 | * figure. Its a silly number but people think its important. We go through |
| 6 | * great pains to make it work on big machines and tickless kernels. |
Paul Gortmaker | 45ceebf | 2013-04-19 15:10:49 -0400 | [diff] [blame] | 7 | */ |
| 8 | |
| 9 | #include <linux/export.h> |
| 10 | |
| 11 | #include "sched.h" |
| 12 | |
Paul Gortmaker | 45ceebf | 2013-04-19 15:10:49 -0400 | [diff] [blame] | 13 | /* |
| 14 | * Global load-average calculations |
| 15 | * |
| 16 | * We take a distributed and async approach to calculating the global load-avg |
| 17 | * in order to minimize overhead. |
| 18 | * |
| 19 | * The global load average is an exponentially decaying average of nr_running + |
| 20 | * nr_uninterruptible. |
| 21 | * |
| 22 | * Once every LOAD_FREQ: |
| 23 | * |
| 24 | * nr_active = 0; |
| 25 | * for_each_possible_cpu(cpu) |
| 26 | * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible; |
| 27 | * |
| 28 | * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n) |
| 29 | * |
| 30 | * Due to a number of reasons the above turns in the mess below: |
| 31 | * |
| 32 | * - for_each_possible_cpu() is prohibitively expensive on machines with |
| 33 | * serious number of cpus, therefore we need to take a distributed approach |
| 34 | * to calculating nr_active. |
| 35 | * |
| 36 | * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0 |
| 37 | * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) } |
| 38 | * |
| 39 | * So assuming nr_active := 0 when we start out -- true per definition, we |
| 40 | * can simply take per-cpu deltas and fold those into a global accumulate |
| 41 | * to obtain the same result. See calc_load_fold_active(). |
| 42 | * |
| 43 | * Furthermore, in order to avoid synchronizing all per-cpu delta folding |
| 44 | * across the machine, we assume 10 ticks is sufficient time for every |
| 45 | * cpu to have completed this task. |
| 46 | * |
| 47 | * This places an upper-bound on the IRQ-off latency of the machine. Then |
| 48 | * again, being late doesn't loose the delta, just wrecks the sample. |
| 49 | * |
| 50 | * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because |
| 51 | * this would add another cross-cpu cacheline miss and atomic operation |
| 52 | * to the wakeup path. Instead we increment on whatever cpu the task ran |
| 53 | * when it went into uninterruptible state and decrement on whatever cpu |
| 54 | * did the wakeup. This means that only the sum of nr_uninterruptible over |
| 55 | * all cpus yields the correct result. |
| 56 | * |
| 57 | * This covers the NO_HZ=n code, for extra head-aches, see the comment below. |
| 58 | */ |
| 59 | |
| 60 | /* Variables and functions for calc_load */ |
| 61 | atomic_long_t calc_load_tasks; |
| 62 | unsigned long calc_load_update; |
| 63 | unsigned long avenrun[3]; |
| 64 | EXPORT_SYMBOL(avenrun); /* should be removed */ |
| 65 | |
| 66 | /** |
| 67 | * get_avenrun - get the load average array |
| 68 | * @loads: pointer to dest load array |
| 69 | * @offset: offset to add |
| 70 | * @shift: shift count to shift the result left |
| 71 | * |
| 72 | * These values are estimates at best, so no need for locking. |
| 73 | */ |
| 74 | void get_avenrun(unsigned long *loads, unsigned long offset, int shift) |
| 75 | { |
| 76 | loads[0] = (avenrun[0] + offset) << shift; |
| 77 | loads[1] = (avenrun[1] + offset) << shift; |
| 78 | loads[2] = (avenrun[2] + offset) << shift; |
| 79 | } |
| 80 | |
| 81 | long calc_load_fold_active(struct rq *this_rq) |
| 82 | { |
| 83 | long nr_active, delta = 0; |
| 84 | |
| 85 | nr_active = this_rq->nr_running; |
Peter Zijlstra | 3289bdb | 2015-04-14 13:19:42 +0200 | [diff] [blame] | 86 | nr_active += (long)this_rq->nr_uninterruptible; |
Paul Gortmaker | 45ceebf | 2013-04-19 15:10:49 -0400 | [diff] [blame] | 87 | |
| 88 | if (nr_active != this_rq->calc_load_active) { |
| 89 | delta = nr_active - this_rq->calc_load_active; |
| 90 | this_rq->calc_load_active = nr_active; |
| 91 | } |
| 92 | |
| 93 | return delta; |
| 94 | } |
| 95 | |
| 96 | /* |
| 97 | * a1 = a0 * e + a * (1 - e) |
| 98 | */ |
| 99 | static unsigned long |
| 100 | calc_load(unsigned long load, unsigned long exp, unsigned long active) |
| 101 | { |
| 102 | load *= exp; |
| 103 | load += active * (FIXED_1 - exp); |
| 104 | load += 1UL << (FSHIFT - 1); |
| 105 | return load >> FSHIFT; |
| 106 | } |
| 107 | |
| 108 | #ifdef CONFIG_NO_HZ_COMMON |
| 109 | /* |
| 110 | * Handle NO_HZ for the global load-average. |
| 111 | * |
| 112 | * Since the above described distributed algorithm to compute the global |
| 113 | * load-average relies on per-cpu sampling from the tick, it is affected by |
| 114 | * NO_HZ. |
| 115 | * |
| 116 | * The basic idea is to fold the nr_active delta into a global idle-delta upon |
| 117 | * entering NO_HZ state such that we can include this as an 'extra' cpu delta |
| 118 | * when we read the global state. |
| 119 | * |
| 120 | * Obviously reality has to ruin such a delightfully simple scheme: |
| 121 | * |
| 122 | * - When we go NO_HZ idle during the window, we can negate our sample |
| 123 | * contribution, causing under-accounting. |
| 124 | * |
| 125 | * We avoid this by keeping two idle-delta counters and flipping them |
| 126 | * when the window starts, thus separating old and new NO_HZ load. |
| 127 | * |
| 128 | * The only trick is the slight shift in index flip for read vs write. |
| 129 | * |
| 130 | * 0s 5s 10s 15s |
| 131 | * +10 +10 +10 +10 |
| 132 | * |-|-----------|-|-----------|-|-----------|-| |
| 133 | * r:0 0 1 1 0 0 1 1 0 |
| 134 | * w:0 1 1 0 0 1 1 0 0 |
| 135 | * |
| 136 | * This ensures we'll fold the old idle contribution in this window while |
| 137 | * accumlating the new one. |
| 138 | * |
| 139 | * - When we wake up from NO_HZ idle during the window, we push up our |
| 140 | * contribution, since we effectively move our sample point to a known |
| 141 | * busy state. |
| 142 | * |
| 143 | * This is solved by pushing the window forward, and thus skipping the |
| 144 | * sample, for this cpu (effectively using the idle-delta for this cpu which |
| 145 | * was in effect at the time the window opened). This also solves the issue |
| 146 | * of having to deal with a cpu having been in NOHZ idle for multiple |
| 147 | * LOAD_FREQ intervals. |
| 148 | * |
| 149 | * When making the ILB scale, we should try to pull this in as well. |
| 150 | */ |
| 151 | static atomic_long_t calc_load_idle[2]; |
| 152 | static int calc_load_idx; |
| 153 | |
| 154 | static inline int calc_load_write_idx(void) |
| 155 | { |
| 156 | int idx = calc_load_idx; |
| 157 | |
| 158 | /* |
| 159 | * See calc_global_nohz(), if we observe the new index, we also |
| 160 | * need to observe the new update time. |
| 161 | */ |
| 162 | smp_rmb(); |
| 163 | |
| 164 | /* |
| 165 | * If the folding window started, make sure we start writing in the |
| 166 | * next idle-delta. |
| 167 | */ |
| 168 | if (!time_before(jiffies, calc_load_update)) |
| 169 | idx++; |
| 170 | |
| 171 | return idx & 1; |
| 172 | } |
| 173 | |
| 174 | static inline int calc_load_read_idx(void) |
| 175 | { |
| 176 | return calc_load_idx & 1; |
| 177 | } |
| 178 | |
| 179 | void calc_load_enter_idle(void) |
| 180 | { |
| 181 | struct rq *this_rq = this_rq(); |
| 182 | long delta; |
| 183 | |
| 184 | /* |
| 185 | * We're going into NOHZ mode, if there's any pending delta, fold it |
| 186 | * into the pending idle delta. |
| 187 | */ |
| 188 | delta = calc_load_fold_active(this_rq); |
| 189 | if (delta) { |
| 190 | int idx = calc_load_write_idx(); |
Peter Zijlstra | 3289bdb | 2015-04-14 13:19:42 +0200 | [diff] [blame] | 191 | |
Paul Gortmaker | 45ceebf | 2013-04-19 15:10:49 -0400 | [diff] [blame] | 192 | atomic_long_add(delta, &calc_load_idle[idx]); |
| 193 | } |
| 194 | } |
| 195 | |
| 196 | void calc_load_exit_idle(void) |
| 197 | { |
| 198 | struct rq *this_rq = this_rq(); |
| 199 | |
| 200 | /* |
| 201 | * If we're still before the sample window, we're done. |
| 202 | */ |
| 203 | if (time_before(jiffies, this_rq->calc_load_update)) |
| 204 | return; |
| 205 | |
| 206 | /* |
| 207 | * We woke inside or after the sample window, this means we're already |
| 208 | * accounted through the nohz accounting, so skip the entire deal and |
| 209 | * sync up for the next window. |
| 210 | */ |
| 211 | this_rq->calc_load_update = calc_load_update; |
| 212 | if (time_before(jiffies, this_rq->calc_load_update + 10)) |
| 213 | this_rq->calc_load_update += LOAD_FREQ; |
| 214 | } |
| 215 | |
| 216 | static long calc_load_fold_idle(void) |
| 217 | { |
| 218 | int idx = calc_load_read_idx(); |
| 219 | long delta = 0; |
| 220 | |
| 221 | if (atomic_long_read(&calc_load_idle[idx])) |
| 222 | delta = atomic_long_xchg(&calc_load_idle[idx], 0); |
| 223 | |
| 224 | return delta; |
| 225 | } |
| 226 | |
| 227 | /** |
| 228 | * fixed_power_int - compute: x^n, in O(log n) time |
| 229 | * |
| 230 | * @x: base of the power |
| 231 | * @frac_bits: fractional bits of @x |
| 232 | * @n: power to raise @x to. |
| 233 | * |
| 234 | * By exploiting the relation between the definition of the natural power |
| 235 | * function: x^n := x*x*...*x (x multiplied by itself for n times), and |
| 236 | * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i, |
| 237 | * (where: n_i \elem {0, 1}, the binary vector representing n), |
| 238 | * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is |
| 239 | * of course trivially computable in O(log_2 n), the length of our binary |
| 240 | * vector. |
| 241 | */ |
| 242 | static unsigned long |
| 243 | fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n) |
| 244 | { |
| 245 | unsigned long result = 1UL << frac_bits; |
| 246 | |
Peter Zijlstra | 3289bdb | 2015-04-14 13:19:42 +0200 | [diff] [blame] | 247 | if (n) { |
| 248 | for (;;) { |
| 249 | if (n & 1) { |
| 250 | result *= x; |
| 251 | result += 1UL << (frac_bits - 1); |
| 252 | result >>= frac_bits; |
| 253 | } |
| 254 | n >>= 1; |
| 255 | if (!n) |
| 256 | break; |
| 257 | x *= x; |
| 258 | x += 1UL << (frac_bits - 1); |
| 259 | x >>= frac_bits; |
Paul Gortmaker | 45ceebf | 2013-04-19 15:10:49 -0400 | [diff] [blame] | 260 | } |
Paul Gortmaker | 45ceebf | 2013-04-19 15:10:49 -0400 | [diff] [blame] | 261 | } |
| 262 | |
| 263 | return result; |
| 264 | } |
| 265 | |
| 266 | /* |
| 267 | * a1 = a0 * e + a * (1 - e) |
| 268 | * |
| 269 | * a2 = a1 * e + a * (1 - e) |
| 270 | * = (a0 * e + a * (1 - e)) * e + a * (1 - e) |
| 271 | * = a0 * e^2 + a * (1 - e) * (1 + e) |
| 272 | * |
| 273 | * a3 = a2 * e + a * (1 - e) |
| 274 | * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e) |
| 275 | * = a0 * e^3 + a * (1 - e) * (1 + e + e^2) |
| 276 | * |
| 277 | * ... |
| 278 | * |
| 279 | * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1] |
| 280 | * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e) |
| 281 | * = a0 * e^n + a * (1 - e^n) |
| 282 | * |
| 283 | * [1] application of the geometric series: |
| 284 | * |
| 285 | * n 1 - x^(n+1) |
| 286 | * S_n := \Sum x^i = ------------- |
| 287 | * i=0 1 - x |
| 288 | */ |
| 289 | static unsigned long |
| 290 | calc_load_n(unsigned long load, unsigned long exp, |
| 291 | unsigned long active, unsigned int n) |
| 292 | { |
Paul Gortmaker | 45ceebf | 2013-04-19 15:10:49 -0400 | [diff] [blame] | 293 | return calc_load(load, fixed_power_int(exp, FSHIFT, n), active); |
| 294 | } |
| 295 | |
| 296 | /* |
| 297 | * NO_HZ can leave us missing all per-cpu ticks calling |
| 298 | * calc_load_account_active(), but since an idle CPU folds its delta into |
| 299 | * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold |
| 300 | * in the pending idle delta if our idle period crossed a load cycle boundary. |
| 301 | * |
| 302 | * Once we've updated the global active value, we need to apply the exponential |
| 303 | * weights adjusted to the number of cycles missed. |
| 304 | */ |
| 305 | static void calc_global_nohz(void) |
| 306 | { |
| 307 | long delta, active, n; |
| 308 | |
| 309 | if (!time_before(jiffies, calc_load_update + 10)) { |
| 310 | /* |
| 311 | * Catch-up, fold however many we are behind still |
| 312 | */ |
| 313 | delta = jiffies - calc_load_update - 10; |
| 314 | n = 1 + (delta / LOAD_FREQ); |
| 315 | |
| 316 | active = atomic_long_read(&calc_load_tasks); |
| 317 | active = active > 0 ? active * FIXED_1 : 0; |
| 318 | |
| 319 | avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n); |
| 320 | avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n); |
| 321 | avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n); |
| 322 | |
| 323 | calc_load_update += n * LOAD_FREQ; |
| 324 | } |
| 325 | |
| 326 | /* |
| 327 | * Flip the idle index... |
| 328 | * |
| 329 | * Make sure we first write the new time then flip the index, so that |
| 330 | * calc_load_write_idx() will see the new time when it reads the new |
| 331 | * index, this avoids a double flip messing things up. |
| 332 | */ |
| 333 | smp_wmb(); |
| 334 | calc_load_idx++; |
| 335 | } |
| 336 | #else /* !CONFIG_NO_HZ_COMMON */ |
| 337 | |
| 338 | static inline long calc_load_fold_idle(void) { return 0; } |
| 339 | static inline void calc_global_nohz(void) { } |
| 340 | |
| 341 | #endif /* CONFIG_NO_HZ_COMMON */ |
| 342 | |
| 343 | /* |
| 344 | * calc_load - update the avenrun load estimates 10 ticks after the |
| 345 | * CPUs have updated calc_load_tasks. |
Peter Zijlstra | 3289bdb | 2015-04-14 13:19:42 +0200 | [diff] [blame] | 346 | * |
| 347 | * Called from the global timer code. |
Paul Gortmaker | 45ceebf | 2013-04-19 15:10:49 -0400 | [diff] [blame] | 348 | */ |
| 349 | void calc_global_load(unsigned long ticks) |
| 350 | { |
| 351 | long active, delta; |
| 352 | |
| 353 | if (time_before(jiffies, calc_load_update + 10)) |
| 354 | return; |
| 355 | |
| 356 | /* |
| 357 | * Fold the 'old' idle-delta to include all NO_HZ cpus. |
| 358 | */ |
| 359 | delta = calc_load_fold_idle(); |
| 360 | if (delta) |
| 361 | atomic_long_add(delta, &calc_load_tasks); |
| 362 | |
| 363 | active = atomic_long_read(&calc_load_tasks); |
| 364 | active = active > 0 ? active * FIXED_1 : 0; |
| 365 | |
| 366 | avenrun[0] = calc_load(avenrun[0], EXP_1, active); |
| 367 | avenrun[1] = calc_load(avenrun[1], EXP_5, active); |
| 368 | avenrun[2] = calc_load(avenrun[2], EXP_15, active); |
| 369 | |
| 370 | calc_load_update += LOAD_FREQ; |
| 371 | |
| 372 | /* |
| 373 | * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk. |
| 374 | */ |
| 375 | calc_global_nohz(); |
| 376 | } |
| 377 | |
| 378 | /* |
Peter Zijlstra | 3289bdb | 2015-04-14 13:19:42 +0200 | [diff] [blame] | 379 | * Called from scheduler_tick() to periodically update this CPU's |
Paul Gortmaker | 45ceebf | 2013-04-19 15:10:49 -0400 | [diff] [blame] | 380 | * active count. |
| 381 | */ |
Peter Zijlstra | 3289bdb | 2015-04-14 13:19:42 +0200 | [diff] [blame] | 382 | void calc_global_load_tick(struct rq *this_rq) |
Paul Gortmaker | 45ceebf | 2013-04-19 15:10:49 -0400 | [diff] [blame] | 383 | { |
| 384 | long delta; |
| 385 | |
| 386 | if (time_before(jiffies, this_rq->calc_load_update)) |
| 387 | return; |
| 388 | |
| 389 | delta = calc_load_fold_active(this_rq); |
| 390 | if (delta) |
| 391 | atomic_long_add(delta, &calc_load_tasks); |
| 392 | |
| 393 | this_rq->calc_load_update += LOAD_FREQ; |
| 394 | } |