Jan Schmidt | a542ad1 | 2011-06-13 19:52:59 +0200 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2011 STRATO. All rights reserved. |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or |
| 5 | * modify it under the terms of the GNU General Public |
| 6 | * License v2 as published by the Free Software Foundation. |
| 7 | * |
| 8 | * This program is distributed in the hope that it will be useful, |
| 9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 11 | * General Public License for more details. |
| 12 | * |
| 13 | * You should have received a copy of the GNU General Public |
| 14 | * License along with this program; if not, write to the |
| 15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, |
| 16 | * Boston, MA 021110-1307, USA. |
| 17 | */ |
| 18 | |
| 19 | #include "ctree.h" |
| 20 | #include "disk-io.h" |
| 21 | #include "backref.h" |
Jan Schmidt | 8da6d58 | 2011-11-23 18:55:04 +0100 | [diff] [blame] | 22 | #include "ulist.h" |
| 23 | #include "transaction.h" |
| 24 | #include "delayed-ref.h" |
Jan Schmidt | a542ad1 | 2011-06-13 19:52:59 +0200 | [diff] [blame] | 25 | |
Jan Schmidt | 8da6d58 | 2011-11-23 18:55:04 +0100 | [diff] [blame] | 26 | /* |
| 27 | * this structure records all encountered refs on the way up to the root |
| 28 | */ |
| 29 | struct __prelim_ref { |
| 30 | struct list_head list; |
| 31 | u64 root_id; |
| 32 | struct btrfs_key key; |
| 33 | int level; |
| 34 | int count; |
| 35 | u64 parent; |
| 36 | u64 wanted_disk_byte; |
| 37 | }; |
| 38 | |
| 39 | static int __add_prelim_ref(struct list_head *head, u64 root_id, |
| 40 | struct btrfs_key *key, int level, u64 parent, |
| 41 | u64 wanted_disk_byte, int count) |
| 42 | { |
| 43 | struct __prelim_ref *ref; |
| 44 | |
| 45 | /* in case we're adding delayed refs, we're holding the refs spinlock */ |
| 46 | ref = kmalloc(sizeof(*ref), GFP_ATOMIC); |
| 47 | if (!ref) |
| 48 | return -ENOMEM; |
| 49 | |
| 50 | ref->root_id = root_id; |
| 51 | if (key) |
| 52 | ref->key = *key; |
| 53 | else |
| 54 | memset(&ref->key, 0, sizeof(ref->key)); |
| 55 | |
| 56 | ref->level = level; |
| 57 | ref->count = count; |
| 58 | ref->parent = parent; |
| 59 | ref->wanted_disk_byte = wanted_disk_byte; |
| 60 | list_add_tail(&ref->list, head); |
| 61 | |
| 62 | return 0; |
| 63 | } |
| 64 | |
| 65 | static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path, |
| 66 | struct ulist *parents, |
| 67 | struct extent_buffer *eb, int level, |
| 68 | u64 wanted_objectid, u64 wanted_disk_byte) |
| 69 | { |
| 70 | int ret; |
| 71 | int slot; |
| 72 | struct btrfs_file_extent_item *fi; |
| 73 | struct btrfs_key key; |
| 74 | u64 disk_byte; |
| 75 | |
| 76 | add_parent: |
| 77 | ret = ulist_add(parents, eb->start, 0, GFP_NOFS); |
| 78 | if (ret < 0) |
| 79 | return ret; |
| 80 | |
| 81 | if (level != 0) |
| 82 | return 0; |
| 83 | |
| 84 | /* |
| 85 | * if the current leaf is full with EXTENT_DATA items, we must |
| 86 | * check the next one if that holds a reference as well. |
| 87 | * ref->count cannot be used to skip this check. |
| 88 | * repeat this until we don't find any additional EXTENT_DATA items. |
| 89 | */ |
| 90 | while (1) { |
| 91 | ret = btrfs_next_leaf(root, path); |
| 92 | if (ret < 0) |
| 93 | return ret; |
| 94 | if (ret) |
| 95 | return 0; |
| 96 | |
| 97 | eb = path->nodes[0]; |
| 98 | for (slot = 0; slot < btrfs_header_nritems(eb); ++slot) { |
| 99 | btrfs_item_key_to_cpu(eb, &key, slot); |
| 100 | if (key.objectid != wanted_objectid || |
| 101 | key.type != BTRFS_EXTENT_DATA_KEY) |
| 102 | return 0; |
| 103 | fi = btrfs_item_ptr(eb, slot, |
| 104 | struct btrfs_file_extent_item); |
| 105 | disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); |
| 106 | if (disk_byte == wanted_disk_byte) |
| 107 | goto add_parent; |
| 108 | } |
| 109 | } |
| 110 | |
| 111 | return 0; |
| 112 | } |
| 113 | |
| 114 | /* |
| 115 | * resolve an indirect backref in the form (root_id, key, level) |
| 116 | * to a logical address |
| 117 | */ |
| 118 | static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info, |
| 119 | struct __prelim_ref *ref, |
| 120 | struct ulist *parents) |
| 121 | { |
| 122 | struct btrfs_path *path; |
| 123 | struct btrfs_root *root; |
| 124 | struct btrfs_key root_key; |
| 125 | struct btrfs_key key = {0}; |
| 126 | struct extent_buffer *eb; |
| 127 | int ret = 0; |
| 128 | int root_level; |
| 129 | int level = ref->level; |
| 130 | |
| 131 | path = btrfs_alloc_path(); |
| 132 | if (!path) |
| 133 | return -ENOMEM; |
| 134 | |
| 135 | root_key.objectid = ref->root_id; |
| 136 | root_key.type = BTRFS_ROOT_ITEM_KEY; |
| 137 | root_key.offset = (u64)-1; |
| 138 | root = btrfs_read_fs_root_no_name(fs_info, &root_key); |
| 139 | if (IS_ERR(root)) { |
| 140 | ret = PTR_ERR(root); |
| 141 | goto out; |
| 142 | } |
| 143 | |
| 144 | rcu_read_lock(); |
| 145 | root_level = btrfs_header_level(root->node); |
| 146 | rcu_read_unlock(); |
| 147 | |
| 148 | if (root_level + 1 == level) |
| 149 | goto out; |
| 150 | |
| 151 | path->lowest_level = level; |
| 152 | ret = btrfs_search_slot(NULL, root, &ref->key, path, 0, 0); |
| 153 | pr_debug("search slot in root %llu (level %d, ref count %d) returned " |
| 154 | "%d for key (%llu %u %llu)\n", |
| 155 | (unsigned long long)ref->root_id, level, ref->count, ret, |
| 156 | (unsigned long long)ref->key.objectid, ref->key.type, |
| 157 | (unsigned long long)ref->key.offset); |
| 158 | if (ret < 0) |
| 159 | goto out; |
| 160 | |
| 161 | eb = path->nodes[level]; |
| 162 | if (!eb) { |
| 163 | WARN_ON(1); |
| 164 | ret = 1; |
| 165 | goto out; |
| 166 | } |
| 167 | |
| 168 | if (level == 0) { |
| 169 | if (ret == 1 && path->slots[0] >= btrfs_header_nritems(eb)) { |
| 170 | ret = btrfs_next_leaf(root, path); |
| 171 | if (ret) |
| 172 | goto out; |
| 173 | eb = path->nodes[0]; |
| 174 | } |
| 175 | |
| 176 | btrfs_item_key_to_cpu(eb, &key, path->slots[0]); |
| 177 | } |
| 178 | |
| 179 | /* the last two parameters will only be used for level == 0 */ |
| 180 | ret = add_all_parents(root, path, parents, eb, level, key.objectid, |
| 181 | ref->wanted_disk_byte); |
| 182 | out: |
| 183 | btrfs_free_path(path); |
| 184 | return ret; |
| 185 | } |
| 186 | |
| 187 | /* |
| 188 | * resolve all indirect backrefs from the list |
| 189 | */ |
| 190 | static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info, |
| 191 | struct list_head *head) |
| 192 | { |
| 193 | int err; |
| 194 | int ret = 0; |
| 195 | struct __prelim_ref *ref; |
| 196 | struct __prelim_ref *ref_safe; |
| 197 | struct __prelim_ref *new_ref; |
| 198 | struct ulist *parents; |
| 199 | struct ulist_node *node; |
| 200 | |
| 201 | parents = ulist_alloc(GFP_NOFS); |
| 202 | if (!parents) |
| 203 | return -ENOMEM; |
| 204 | |
| 205 | /* |
| 206 | * _safe allows us to insert directly after the current item without |
| 207 | * iterating over the newly inserted items. |
| 208 | * we're also allowed to re-assign ref during iteration. |
| 209 | */ |
| 210 | list_for_each_entry_safe(ref, ref_safe, head, list) { |
| 211 | if (ref->parent) /* already direct */ |
| 212 | continue; |
| 213 | if (ref->count == 0) |
| 214 | continue; |
| 215 | err = __resolve_indirect_ref(fs_info, ref, parents); |
| 216 | if (err) { |
| 217 | if (ret == 0) |
| 218 | ret = err; |
| 219 | continue; |
| 220 | } |
| 221 | |
| 222 | /* we put the first parent into the ref at hand */ |
| 223 | node = ulist_next(parents, NULL); |
| 224 | ref->parent = node ? node->val : 0; |
| 225 | |
| 226 | /* additional parents require new refs being added here */ |
| 227 | while ((node = ulist_next(parents, node))) { |
| 228 | new_ref = kmalloc(sizeof(*new_ref), GFP_NOFS); |
| 229 | if (!new_ref) { |
| 230 | ret = -ENOMEM; |
| 231 | break; |
| 232 | } |
| 233 | memcpy(new_ref, ref, sizeof(*ref)); |
| 234 | new_ref->parent = node->val; |
| 235 | list_add(&new_ref->list, &ref->list); |
| 236 | } |
| 237 | ulist_reinit(parents); |
| 238 | } |
| 239 | |
| 240 | ulist_free(parents); |
| 241 | return ret; |
| 242 | } |
| 243 | |
| 244 | /* |
| 245 | * merge two lists of backrefs and adjust counts accordingly |
| 246 | * |
| 247 | * mode = 1: merge identical keys, if key is set |
| 248 | * mode = 2: merge identical parents |
| 249 | */ |
| 250 | static int __merge_refs(struct list_head *head, int mode) |
| 251 | { |
| 252 | struct list_head *pos1; |
| 253 | |
| 254 | list_for_each(pos1, head) { |
| 255 | struct list_head *n2; |
| 256 | struct list_head *pos2; |
| 257 | struct __prelim_ref *ref1; |
| 258 | |
| 259 | ref1 = list_entry(pos1, struct __prelim_ref, list); |
| 260 | |
| 261 | if (mode == 1 && ref1->key.type == 0) |
| 262 | continue; |
| 263 | for (pos2 = pos1->next, n2 = pos2->next; pos2 != head; |
| 264 | pos2 = n2, n2 = pos2->next) { |
| 265 | struct __prelim_ref *ref2; |
| 266 | |
| 267 | ref2 = list_entry(pos2, struct __prelim_ref, list); |
| 268 | |
| 269 | if (mode == 1) { |
| 270 | if (memcmp(&ref1->key, &ref2->key, |
| 271 | sizeof(ref1->key)) || |
| 272 | ref1->level != ref2->level || |
| 273 | ref1->root_id != ref2->root_id) |
| 274 | continue; |
| 275 | ref1->count += ref2->count; |
| 276 | } else { |
| 277 | if (ref1->parent != ref2->parent) |
| 278 | continue; |
| 279 | ref1->count += ref2->count; |
| 280 | } |
| 281 | list_del(&ref2->list); |
| 282 | kfree(ref2); |
| 283 | } |
| 284 | |
| 285 | } |
| 286 | return 0; |
| 287 | } |
| 288 | |
| 289 | /* |
| 290 | * add all currently queued delayed refs from this head whose seq nr is |
| 291 | * smaller or equal that seq to the list |
| 292 | */ |
| 293 | static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq, |
| 294 | struct btrfs_key *info_key, |
| 295 | struct list_head *prefs) |
| 296 | { |
| 297 | struct btrfs_delayed_extent_op *extent_op = head->extent_op; |
| 298 | struct rb_node *n = &head->node.rb_node; |
| 299 | int sgn; |
| 300 | int ret; |
| 301 | |
| 302 | if (extent_op && extent_op->update_key) |
| 303 | btrfs_disk_key_to_cpu(info_key, &extent_op->key); |
| 304 | |
| 305 | while ((n = rb_prev(n))) { |
| 306 | struct btrfs_delayed_ref_node *node; |
| 307 | node = rb_entry(n, struct btrfs_delayed_ref_node, |
| 308 | rb_node); |
| 309 | if (node->bytenr != head->node.bytenr) |
| 310 | break; |
| 311 | WARN_ON(node->is_head); |
| 312 | |
| 313 | if (node->seq > seq) |
| 314 | continue; |
| 315 | |
| 316 | switch (node->action) { |
| 317 | case BTRFS_ADD_DELAYED_EXTENT: |
| 318 | case BTRFS_UPDATE_DELAYED_HEAD: |
| 319 | WARN_ON(1); |
| 320 | continue; |
| 321 | case BTRFS_ADD_DELAYED_REF: |
| 322 | sgn = 1; |
| 323 | break; |
| 324 | case BTRFS_DROP_DELAYED_REF: |
| 325 | sgn = -1; |
| 326 | break; |
| 327 | default: |
| 328 | BUG_ON(1); |
| 329 | } |
| 330 | switch (node->type) { |
| 331 | case BTRFS_TREE_BLOCK_REF_KEY: { |
| 332 | struct btrfs_delayed_tree_ref *ref; |
| 333 | |
| 334 | ref = btrfs_delayed_node_to_tree_ref(node); |
| 335 | ret = __add_prelim_ref(prefs, ref->root, info_key, |
| 336 | ref->level + 1, 0, node->bytenr, |
| 337 | node->ref_mod * sgn); |
| 338 | break; |
| 339 | } |
| 340 | case BTRFS_SHARED_BLOCK_REF_KEY: { |
| 341 | struct btrfs_delayed_tree_ref *ref; |
| 342 | |
| 343 | ref = btrfs_delayed_node_to_tree_ref(node); |
| 344 | ret = __add_prelim_ref(prefs, ref->root, info_key, |
| 345 | ref->level + 1, ref->parent, |
| 346 | node->bytenr, |
| 347 | node->ref_mod * sgn); |
| 348 | break; |
| 349 | } |
| 350 | case BTRFS_EXTENT_DATA_REF_KEY: { |
| 351 | struct btrfs_delayed_data_ref *ref; |
| 352 | struct btrfs_key key; |
| 353 | |
| 354 | ref = btrfs_delayed_node_to_data_ref(node); |
| 355 | |
| 356 | key.objectid = ref->objectid; |
| 357 | key.type = BTRFS_EXTENT_DATA_KEY; |
| 358 | key.offset = ref->offset; |
| 359 | ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0, |
| 360 | node->bytenr, |
| 361 | node->ref_mod * sgn); |
| 362 | break; |
| 363 | } |
| 364 | case BTRFS_SHARED_DATA_REF_KEY: { |
| 365 | struct btrfs_delayed_data_ref *ref; |
| 366 | struct btrfs_key key; |
| 367 | |
| 368 | ref = btrfs_delayed_node_to_data_ref(node); |
| 369 | |
| 370 | key.objectid = ref->objectid; |
| 371 | key.type = BTRFS_EXTENT_DATA_KEY; |
| 372 | key.offset = ref->offset; |
| 373 | ret = __add_prelim_ref(prefs, ref->root, &key, 0, |
| 374 | ref->parent, node->bytenr, |
| 375 | node->ref_mod * sgn); |
| 376 | break; |
| 377 | } |
| 378 | default: |
| 379 | WARN_ON(1); |
| 380 | } |
| 381 | BUG_ON(ret); |
| 382 | } |
| 383 | |
| 384 | return 0; |
| 385 | } |
| 386 | |
| 387 | /* |
| 388 | * add all inline backrefs for bytenr to the list |
| 389 | */ |
| 390 | static int __add_inline_refs(struct btrfs_fs_info *fs_info, |
| 391 | struct btrfs_path *path, u64 bytenr, |
| 392 | struct btrfs_key *info_key, int *info_level, |
| 393 | struct list_head *prefs) |
| 394 | { |
| 395 | int ret; |
| 396 | int slot; |
| 397 | struct extent_buffer *leaf; |
| 398 | struct btrfs_key key; |
| 399 | unsigned long ptr; |
| 400 | unsigned long end; |
| 401 | struct btrfs_extent_item *ei; |
| 402 | u64 flags; |
| 403 | u64 item_size; |
| 404 | |
| 405 | /* |
| 406 | * enumerate all inline refs |
| 407 | */ |
| 408 | leaf = path->nodes[0]; |
| 409 | slot = path->slots[0] - 1; |
| 410 | |
| 411 | item_size = btrfs_item_size_nr(leaf, slot); |
| 412 | BUG_ON(item_size < sizeof(*ei)); |
| 413 | |
| 414 | ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); |
| 415 | flags = btrfs_extent_flags(leaf, ei); |
| 416 | |
| 417 | ptr = (unsigned long)(ei + 1); |
| 418 | end = (unsigned long)ei + item_size; |
| 419 | |
| 420 | if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { |
| 421 | struct btrfs_tree_block_info *info; |
| 422 | struct btrfs_disk_key disk_key; |
| 423 | |
| 424 | info = (struct btrfs_tree_block_info *)ptr; |
| 425 | *info_level = btrfs_tree_block_level(leaf, info); |
| 426 | btrfs_tree_block_key(leaf, info, &disk_key); |
| 427 | btrfs_disk_key_to_cpu(info_key, &disk_key); |
| 428 | ptr += sizeof(struct btrfs_tree_block_info); |
| 429 | BUG_ON(ptr > end); |
| 430 | } else { |
| 431 | BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); |
| 432 | } |
| 433 | |
| 434 | while (ptr < end) { |
| 435 | struct btrfs_extent_inline_ref *iref; |
| 436 | u64 offset; |
| 437 | int type; |
| 438 | |
| 439 | iref = (struct btrfs_extent_inline_ref *)ptr; |
| 440 | type = btrfs_extent_inline_ref_type(leaf, iref); |
| 441 | offset = btrfs_extent_inline_ref_offset(leaf, iref); |
| 442 | |
| 443 | switch (type) { |
| 444 | case BTRFS_SHARED_BLOCK_REF_KEY: |
| 445 | ret = __add_prelim_ref(prefs, 0, info_key, |
| 446 | *info_level + 1, offset, |
| 447 | bytenr, 1); |
| 448 | break; |
| 449 | case BTRFS_SHARED_DATA_REF_KEY: { |
| 450 | struct btrfs_shared_data_ref *sdref; |
| 451 | int count; |
| 452 | |
| 453 | sdref = (struct btrfs_shared_data_ref *)(iref + 1); |
| 454 | count = btrfs_shared_data_ref_count(leaf, sdref); |
| 455 | ret = __add_prelim_ref(prefs, 0, NULL, 0, offset, |
| 456 | bytenr, count); |
| 457 | break; |
| 458 | } |
| 459 | case BTRFS_TREE_BLOCK_REF_KEY: |
| 460 | ret = __add_prelim_ref(prefs, offset, info_key, |
| 461 | *info_level + 1, 0, bytenr, 1); |
| 462 | break; |
| 463 | case BTRFS_EXTENT_DATA_REF_KEY: { |
| 464 | struct btrfs_extent_data_ref *dref; |
| 465 | int count; |
| 466 | u64 root; |
| 467 | |
| 468 | dref = (struct btrfs_extent_data_ref *)(&iref->offset); |
| 469 | count = btrfs_extent_data_ref_count(leaf, dref); |
| 470 | key.objectid = btrfs_extent_data_ref_objectid(leaf, |
| 471 | dref); |
| 472 | key.type = BTRFS_EXTENT_DATA_KEY; |
| 473 | key.offset = btrfs_extent_data_ref_offset(leaf, dref); |
| 474 | root = btrfs_extent_data_ref_root(leaf, dref); |
| 475 | ret = __add_prelim_ref(prefs, root, &key, 0, 0, bytenr, |
| 476 | count); |
| 477 | break; |
| 478 | } |
| 479 | default: |
| 480 | WARN_ON(1); |
| 481 | } |
| 482 | BUG_ON(ret); |
| 483 | ptr += btrfs_extent_inline_ref_size(type); |
| 484 | } |
| 485 | |
| 486 | return 0; |
| 487 | } |
| 488 | |
| 489 | /* |
| 490 | * add all non-inline backrefs for bytenr to the list |
| 491 | */ |
| 492 | static int __add_keyed_refs(struct btrfs_fs_info *fs_info, |
| 493 | struct btrfs_path *path, u64 bytenr, |
| 494 | struct btrfs_key *info_key, int info_level, |
| 495 | struct list_head *prefs) |
| 496 | { |
| 497 | struct btrfs_root *extent_root = fs_info->extent_root; |
| 498 | int ret; |
| 499 | int slot; |
| 500 | struct extent_buffer *leaf; |
| 501 | struct btrfs_key key; |
| 502 | |
| 503 | while (1) { |
| 504 | ret = btrfs_next_item(extent_root, path); |
| 505 | if (ret < 0) |
| 506 | break; |
| 507 | if (ret) { |
| 508 | ret = 0; |
| 509 | break; |
| 510 | } |
| 511 | |
| 512 | slot = path->slots[0]; |
| 513 | leaf = path->nodes[0]; |
| 514 | btrfs_item_key_to_cpu(leaf, &key, slot); |
| 515 | |
| 516 | if (key.objectid != bytenr) |
| 517 | break; |
| 518 | if (key.type < BTRFS_TREE_BLOCK_REF_KEY) |
| 519 | continue; |
| 520 | if (key.type > BTRFS_SHARED_DATA_REF_KEY) |
| 521 | break; |
| 522 | |
| 523 | switch (key.type) { |
| 524 | case BTRFS_SHARED_BLOCK_REF_KEY: |
| 525 | ret = __add_prelim_ref(prefs, 0, info_key, |
| 526 | info_level + 1, key.offset, |
| 527 | bytenr, 1); |
| 528 | break; |
| 529 | case BTRFS_SHARED_DATA_REF_KEY: { |
| 530 | struct btrfs_shared_data_ref *sdref; |
| 531 | int count; |
| 532 | |
| 533 | sdref = btrfs_item_ptr(leaf, slot, |
| 534 | struct btrfs_shared_data_ref); |
| 535 | count = btrfs_shared_data_ref_count(leaf, sdref); |
| 536 | ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset, |
| 537 | bytenr, count); |
| 538 | break; |
| 539 | } |
| 540 | case BTRFS_TREE_BLOCK_REF_KEY: |
| 541 | ret = __add_prelim_ref(prefs, key.offset, info_key, |
| 542 | info_level + 1, 0, bytenr, 1); |
| 543 | break; |
| 544 | case BTRFS_EXTENT_DATA_REF_KEY: { |
| 545 | struct btrfs_extent_data_ref *dref; |
| 546 | int count; |
| 547 | u64 root; |
| 548 | |
| 549 | dref = btrfs_item_ptr(leaf, slot, |
| 550 | struct btrfs_extent_data_ref); |
| 551 | count = btrfs_extent_data_ref_count(leaf, dref); |
| 552 | key.objectid = btrfs_extent_data_ref_objectid(leaf, |
| 553 | dref); |
| 554 | key.type = BTRFS_EXTENT_DATA_KEY; |
| 555 | key.offset = btrfs_extent_data_ref_offset(leaf, dref); |
| 556 | root = btrfs_extent_data_ref_root(leaf, dref); |
| 557 | ret = __add_prelim_ref(prefs, root, &key, 0, 0, |
| 558 | bytenr, count); |
| 559 | break; |
| 560 | } |
| 561 | default: |
| 562 | WARN_ON(1); |
| 563 | } |
| 564 | BUG_ON(ret); |
| 565 | } |
| 566 | |
| 567 | return ret; |
| 568 | } |
| 569 | |
| 570 | /* |
| 571 | * this adds all existing backrefs (inline backrefs, backrefs and delayed |
| 572 | * refs) for the given bytenr to the refs list, merges duplicates and resolves |
| 573 | * indirect refs to their parent bytenr. |
| 574 | * When roots are found, they're added to the roots list |
| 575 | * |
| 576 | * FIXME some caching might speed things up |
| 577 | */ |
| 578 | static int find_parent_nodes(struct btrfs_trans_handle *trans, |
| 579 | struct btrfs_fs_info *fs_info, u64 bytenr, |
| 580 | u64 seq, struct ulist *refs, struct ulist *roots) |
| 581 | { |
| 582 | struct btrfs_key key; |
| 583 | struct btrfs_path *path; |
| 584 | struct btrfs_key info_key = { 0 }; |
| 585 | struct btrfs_delayed_ref_root *delayed_refs = NULL; |
| 586 | struct btrfs_delayed_ref_head *head = NULL; |
| 587 | int info_level = 0; |
| 588 | int ret; |
| 589 | struct list_head prefs_delayed; |
| 590 | struct list_head prefs; |
| 591 | struct __prelim_ref *ref; |
| 592 | |
| 593 | INIT_LIST_HEAD(&prefs); |
| 594 | INIT_LIST_HEAD(&prefs_delayed); |
| 595 | |
| 596 | key.objectid = bytenr; |
| 597 | key.type = BTRFS_EXTENT_ITEM_KEY; |
| 598 | key.offset = (u64)-1; |
| 599 | |
| 600 | path = btrfs_alloc_path(); |
| 601 | if (!path) |
| 602 | return -ENOMEM; |
| 603 | |
| 604 | /* |
| 605 | * grab both a lock on the path and a lock on the delayed ref head. |
| 606 | * We need both to get a consistent picture of how the refs look |
| 607 | * at a specified point in time |
| 608 | */ |
| 609 | again: |
| 610 | ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); |
| 611 | if (ret < 0) |
| 612 | goto out; |
| 613 | BUG_ON(ret == 0); |
| 614 | |
| 615 | /* |
| 616 | * look if there are updates for this ref queued and lock the head |
| 617 | */ |
| 618 | delayed_refs = &trans->transaction->delayed_refs; |
| 619 | spin_lock(&delayed_refs->lock); |
| 620 | head = btrfs_find_delayed_ref_head(trans, bytenr); |
| 621 | if (head) { |
| 622 | if (!mutex_trylock(&head->mutex)) { |
| 623 | atomic_inc(&head->node.refs); |
| 624 | spin_unlock(&delayed_refs->lock); |
| 625 | |
| 626 | btrfs_release_path(path); |
| 627 | |
| 628 | /* |
| 629 | * Mutex was contended, block until it's |
| 630 | * released and try again |
| 631 | */ |
| 632 | mutex_lock(&head->mutex); |
| 633 | mutex_unlock(&head->mutex); |
| 634 | btrfs_put_delayed_ref(&head->node); |
| 635 | goto again; |
| 636 | } |
| 637 | ret = __add_delayed_refs(head, seq, &info_key, &prefs_delayed); |
| 638 | if (ret) |
| 639 | goto out; |
| 640 | } |
| 641 | spin_unlock(&delayed_refs->lock); |
| 642 | |
| 643 | if (path->slots[0]) { |
| 644 | struct extent_buffer *leaf; |
| 645 | int slot; |
| 646 | |
| 647 | leaf = path->nodes[0]; |
| 648 | slot = path->slots[0] - 1; |
| 649 | btrfs_item_key_to_cpu(leaf, &key, slot); |
| 650 | if (key.objectid == bytenr && |
| 651 | key.type == BTRFS_EXTENT_ITEM_KEY) { |
| 652 | ret = __add_inline_refs(fs_info, path, bytenr, |
| 653 | &info_key, &info_level, &prefs); |
| 654 | if (ret) |
| 655 | goto out; |
| 656 | ret = __add_keyed_refs(fs_info, path, bytenr, &info_key, |
| 657 | info_level, &prefs); |
| 658 | if (ret) |
| 659 | goto out; |
| 660 | } |
| 661 | } |
| 662 | btrfs_release_path(path); |
| 663 | |
| 664 | /* |
| 665 | * when adding the delayed refs above, the info_key might not have |
| 666 | * been known yet. Go over the list and replace the missing keys |
| 667 | */ |
| 668 | list_for_each_entry(ref, &prefs_delayed, list) { |
| 669 | if ((ref->key.offset | ref->key.type | ref->key.objectid) == 0) |
| 670 | memcpy(&ref->key, &info_key, sizeof(ref->key)); |
| 671 | } |
| 672 | list_splice_init(&prefs_delayed, &prefs); |
| 673 | |
| 674 | ret = __merge_refs(&prefs, 1); |
| 675 | if (ret) |
| 676 | goto out; |
| 677 | |
| 678 | ret = __resolve_indirect_refs(fs_info, &prefs); |
| 679 | if (ret) |
| 680 | goto out; |
| 681 | |
| 682 | ret = __merge_refs(&prefs, 2); |
| 683 | if (ret) |
| 684 | goto out; |
| 685 | |
| 686 | while (!list_empty(&prefs)) { |
| 687 | ref = list_first_entry(&prefs, struct __prelim_ref, list); |
| 688 | list_del(&ref->list); |
| 689 | if (ref->count < 0) |
| 690 | WARN_ON(1); |
| 691 | if (ref->count && ref->root_id && ref->parent == 0) { |
| 692 | /* no parent == root of tree */ |
| 693 | ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS); |
| 694 | BUG_ON(ret < 0); |
| 695 | } |
| 696 | if (ref->count && ref->parent) { |
| 697 | ret = ulist_add(refs, ref->parent, 0, GFP_NOFS); |
| 698 | BUG_ON(ret < 0); |
| 699 | } |
| 700 | kfree(ref); |
| 701 | } |
| 702 | |
| 703 | out: |
| 704 | if (head) |
| 705 | mutex_unlock(&head->mutex); |
| 706 | btrfs_free_path(path); |
| 707 | while (!list_empty(&prefs)) { |
| 708 | ref = list_first_entry(&prefs, struct __prelim_ref, list); |
| 709 | list_del(&ref->list); |
| 710 | kfree(ref); |
| 711 | } |
| 712 | while (!list_empty(&prefs_delayed)) { |
| 713 | ref = list_first_entry(&prefs_delayed, struct __prelim_ref, |
| 714 | list); |
| 715 | list_del(&ref->list); |
| 716 | kfree(ref); |
| 717 | } |
| 718 | |
| 719 | return ret; |
| 720 | } |
| 721 | |
| 722 | /* |
| 723 | * Finds all leafs with a reference to the specified combination of bytenr and |
| 724 | * offset. key_list_head will point to a list of corresponding keys (caller must |
| 725 | * free each list element). The leafs will be stored in the leafs ulist, which |
| 726 | * must be freed with ulist_free. |
| 727 | * |
| 728 | * returns 0 on success, <0 on error |
| 729 | */ |
| 730 | static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans, |
| 731 | struct btrfs_fs_info *fs_info, u64 bytenr, |
| 732 | u64 num_bytes, u64 seq, struct ulist **leafs) |
| 733 | { |
| 734 | struct ulist *tmp; |
| 735 | int ret; |
| 736 | |
| 737 | tmp = ulist_alloc(GFP_NOFS); |
| 738 | if (!tmp) |
| 739 | return -ENOMEM; |
| 740 | *leafs = ulist_alloc(GFP_NOFS); |
| 741 | if (!*leafs) { |
| 742 | ulist_free(tmp); |
| 743 | return -ENOMEM; |
| 744 | } |
| 745 | |
| 746 | ret = find_parent_nodes(trans, fs_info, bytenr, seq, *leafs, tmp); |
| 747 | ulist_free(tmp); |
| 748 | |
| 749 | if (ret < 0 && ret != -ENOENT) { |
| 750 | ulist_free(*leafs); |
| 751 | return ret; |
| 752 | } |
| 753 | |
| 754 | return 0; |
| 755 | } |
| 756 | |
| 757 | /* |
| 758 | * walk all backrefs for a given extent to find all roots that reference this |
| 759 | * extent. Walking a backref means finding all extents that reference this |
| 760 | * extent and in turn walk the backrefs of those, too. Naturally this is a |
| 761 | * recursive process, but here it is implemented in an iterative fashion: We |
| 762 | * find all referencing extents for the extent in question and put them on a |
| 763 | * list. In turn, we find all referencing extents for those, further appending |
| 764 | * to the list. The way we iterate the list allows adding more elements after |
| 765 | * the current while iterating. The process stops when we reach the end of the |
| 766 | * list. Found roots are added to the roots list. |
| 767 | * |
| 768 | * returns 0 on success, < 0 on error. |
| 769 | */ |
| 770 | int btrfs_find_all_roots(struct btrfs_trans_handle *trans, |
| 771 | struct btrfs_fs_info *fs_info, u64 bytenr, |
| 772 | u64 num_bytes, u64 seq, struct ulist **roots) |
| 773 | { |
| 774 | struct ulist *tmp; |
| 775 | struct ulist_node *node = NULL; |
| 776 | int ret; |
| 777 | |
| 778 | tmp = ulist_alloc(GFP_NOFS); |
| 779 | if (!tmp) |
| 780 | return -ENOMEM; |
| 781 | *roots = ulist_alloc(GFP_NOFS); |
| 782 | if (!*roots) { |
| 783 | ulist_free(tmp); |
| 784 | return -ENOMEM; |
| 785 | } |
| 786 | |
| 787 | while (1) { |
| 788 | ret = find_parent_nodes(trans, fs_info, bytenr, seq, |
| 789 | tmp, *roots); |
| 790 | if (ret < 0 && ret != -ENOENT) { |
| 791 | ulist_free(tmp); |
| 792 | ulist_free(*roots); |
| 793 | return ret; |
| 794 | } |
| 795 | node = ulist_next(tmp, node); |
| 796 | if (!node) |
| 797 | break; |
| 798 | bytenr = node->val; |
| 799 | } |
| 800 | |
| 801 | ulist_free(tmp); |
| 802 | return 0; |
| 803 | } |
| 804 | |
| 805 | |
Jan Schmidt | a542ad1 | 2011-06-13 19:52:59 +0200 | [diff] [blame] | 806 | static int __inode_info(u64 inum, u64 ioff, u8 key_type, |
| 807 | struct btrfs_root *fs_root, struct btrfs_path *path, |
| 808 | struct btrfs_key *found_key) |
| 809 | { |
| 810 | int ret; |
| 811 | struct btrfs_key key; |
| 812 | struct extent_buffer *eb; |
| 813 | |
| 814 | key.type = key_type; |
| 815 | key.objectid = inum; |
| 816 | key.offset = ioff; |
| 817 | |
| 818 | ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); |
| 819 | if (ret < 0) |
| 820 | return ret; |
| 821 | |
| 822 | eb = path->nodes[0]; |
| 823 | if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { |
| 824 | ret = btrfs_next_leaf(fs_root, path); |
| 825 | if (ret) |
| 826 | return ret; |
| 827 | eb = path->nodes[0]; |
| 828 | } |
| 829 | |
| 830 | btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); |
| 831 | if (found_key->type != key.type || found_key->objectid != key.objectid) |
| 832 | return 1; |
| 833 | |
| 834 | return 0; |
| 835 | } |
| 836 | |
| 837 | /* |
| 838 | * this makes the path point to (inum INODE_ITEM ioff) |
| 839 | */ |
| 840 | int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root, |
| 841 | struct btrfs_path *path) |
| 842 | { |
| 843 | struct btrfs_key key; |
| 844 | return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path, |
| 845 | &key); |
| 846 | } |
| 847 | |
| 848 | static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root, |
| 849 | struct btrfs_path *path, |
| 850 | struct btrfs_key *found_key) |
| 851 | { |
| 852 | return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path, |
| 853 | found_key); |
| 854 | } |
| 855 | |
| 856 | /* |
| 857 | * this iterates to turn a btrfs_inode_ref into a full filesystem path. elements |
| 858 | * of the path are separated by '/' and the path is guaranteed to be |
| 859 | * 0-terminated. the path is only given within the current file system. |
| 860 | * Therefore, it never starts with a '/'. the caller is responsible to provide |
| 861 | * "size" bytes in "dest". the dest buffer will be filled backwards. finally, |
| 862 | * the start point of the resulting string is returned. this pointer is within |
| 863 | * dest, normally. |
| 864 | * in case the path buffer would overflow, the pointer is decremented further |
| 865 | * as if output was written to the buffer, though no more output is actually |
| 866 | * generated. that way, the caller can determine how much space would be |
| 867 | * required for the path to fit into the buffer. in that case, the returned |
| 868 | * value will be smaller than dest. callers must check this! |
| 869 | */ |
| 870 | static char *iref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, |
| 871 | struct btrfs_inode_ref *iref, |
| 872 | struct extent_buffer *eb_in, u64 parent, |
| 873 | char *dest, u32 size) |
| 874 | { |
| 875 | u32 len; |
| 876 | int slot; |
| 877 | u64 next_inum; |
| 878 | int ret; |
| 879 | s64 bytes_left = size - 1; |
| 880 | struct extent_buffer *eb = eb_in; |
| 881 | struct btrfs_key found_key; |
| 882 | |
| 883 | if (bytes_left >= 0) |
| 884 | dest[bytes_left] = '\0'; |
| 885 | |
| 886 | while (1) { |
| 887 | len = btrfs_inode_ref_name_len(eb, iref); |
| 888 | bytes_left -= len; |
| 889 | if (bytes_left >= 0) |
| 890 | read_extent_buffer(eb, dest + bytes_left, |
| 891 | (unsigned long)(iref + 1), len); |
| 892 | if (eb != eb_in) |
| 893 | free_extent_buffer(eb); |
| 894 | ret = inode_ref_info(parent, 0, fs_root, path, &found_key); |
| 895 | if (ret) |
| 896 | break; |
| 897 | next_inum = found_key.offset; |
| 898 | |
| 899 | /* regular exit ahead */ |
| 900 | if (parent == next_inum) |
| 901 | break; |
| 902 | |
| 903 | slot = path->slots[0]; |
| 904 | eb = path->nodes[0]; |
| 905 | /* make sure we can use eb after releasing the path */ |
| 906 | if (eb != eb_in) |
| 907 | atomic_inc(&eb->refs); |
| 908 | btrfs_release_path(path); |
| 909 | |
| 910 | iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); |
| 911 | parent = next_inum; |
| 912 | --bytes_left; |
| 913 | if (bytes_left >= 0) |
| 914 | dest[bytes_left] = '/'; |
| 915 | } |
| 916 | |
| 917 | btrfs_release_path(path); |
| 918 | |
| 919 | if (ret) |
| 920 | return ERR_PTR(ret); |
| 921 | |
| 922 | return dest + bytes_left; |
| 923 | } |
| 924 | |
| 925 | /* |
| 926 | * this makes the path point to (logical EXTENT_ITEM *) |
| 927 | * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for |
| 928 | * tree blocks and <0 on error. |
| 929 | */ |
| 930 | int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, |
| 931 | struct btrfs_path *path, struct btrfs_key *found_key) |
| 932 | { |
| 933 | int ret; |
| 934 | u64 flags; |
| 935 | u32 item_size; |
| 936 | struct extent_buffer *eb; |
| 937 | struct btrfs_extent_item *ei; |
| 938 | struct btrfs_key key; |
| 939 | |
| 940 | key.type = BTRFS_EXTENT_ITEM_KEY; |
| 941 | key.objectid = logical; |
| 942 | key.offset = (u64)-1; |
| 943 | |
| 944 | ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); |
| 945 | if (ret < 0) |
| 946 | return ret; |
| 947 | ret = btrfs_previous_item(fs_info->extent_root, path, |
| 948 | 0, BTRFS_EXTENT_ITEM_KEY); |
| 949 | if (ret < 0) |
| 950 | return ret; |
| 951 | |
| 952 | btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); |
| 953 | if (found_key->type != BTRFS_EXTENT_ITEM_KEY || |
| 954 | found_key->objectid > logical || |
Jan Schmidt | 4692cf5 | 2011-12-02 14:56:41 +0100 | [diff] [blame^] | 955 | found_key->objectid + found_key->offset <= logical) { |
| 956 | pr_debug("logical %llu is not within any extent\n", |
| 957 | (unsigned long long)logical); |
Jan Schmidt | a542ad1 | 2011-06-13 19:52:59 +0200 | [diff] [blame] | 958 | return -ENOENT; |
Jan Schmidt | 4692cf5 | 2011-12-02 14:56:41 +0100 | [diff] [blame^] | 959 | } |
Jan Schmidt | a542ad1 | 2011-06-13 19:52:59 +0200 | [diff] [blame] | 960 | |
| 961 | eb = path->nodes[0]; |
| 962 | item_size = btrfs_item_size_nr(eb, path->slots[0]); |
| 963 | BUG_ON(item_size < sizeof(*ei)); |
| 964 | |
| 965 | ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); |
| 966 | flags = btrfs_extent_flags(eb, ei); |
| 967 | |
Jan Schmidt | 4692cf5 | 2011-12-02 14:56:41 +0100 | [diff] [blame^] | 968 | pr_debug("logical %llu is at position %llu within the extent (%llu " |
| 969 | "EXTENT_ITEM %llu) flags %#llx size %u\n", |
| 970 | (unsigned long long)logical, |
| 971 | (unsigned long long)(logical - found_key->objectid), |
| 972 | (unsigned long long)found_key->objectid, |
| 973 | (unsigned long long)found_key->offset, |
| 974 | (unsigned long long)flags, item_size); |
Jan Schmidt | a542ad1 | 2011-06-13 19:52:59 +0200 | [diff] [blame] | 975 | if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) |
| 976 | return BTRFS_EXTENT_FLAG_TREE_BLOCK; |
| 977 | if (flags & BTRFS_EXTENT_FLAG_DATA) |
| 978 | return BTRFS_EXTENT_FLAG_DATA; |
| 979 | |
| 980 | return -EIO; |
| 981 | } |
| 982 | |
| 983 | /* |
| 984 | * helper function to iterate extent inline refs. ptr must point to a 0 value |
| 985 | * for the first call and may be modified. it is used to track state. |
| 986 | * if more refs exist, 0 is returned and the next call to |
| 987 | * __get_extent_inline_ref must pass the modified ptr parameter to get the |
| 988 | * next ref. after the last ref was processed, 1 is returned. |
| 989 | * returns <0 on error |
| 990 | */ |
| 991 | static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb, |
| 992 | struct btrfs_extent_item *ei, u32 item_size, |
| 993 | struct btrfs_extent_inline_ref **out_eiref, |
| 994 | int *out_type) |
| 995 | { |
| 996 | unsigned long end; |
| 997 | u64 flags; |
| 998 | struct btrfs_tree_block_info *info; |
| 999 | |
| 1000 | if (!*ptr) { |
| 1001 | /* first call */ |
| 1002 | flags = btrfs_extent_flags(eb, ei); |
| 1003 | if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { |
| 1004 | info = (struct btrfs_tree_block_info *)(ei + 1); |
| 1005 | *out_eiref = |
| 1006 | (struct btrfs_extent_inline_ref *)(info + 1); |
| 1007 | } else { |
| 1008 | *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); |
| 1009 | } |
| 1010 | *ptr = (unsigned long)*out_eiref; |
| 1011 | if ((void *)*ptr >= (void *)ei + item_size) |
| 1012 | return -ENOENT; |
| 1013 | } |
| 1014 | |
| 1015 | end = (unsigned long)ei + item_size; |
| 1016 | *out_eiref = (struct btrfs_extent_inline_ref *)*ptr; |
| 1017 | *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref); |
| 1018 | |
| 1019 | *ptr += btrfs_extent_inline_ref_size(*out_type); |
| 1020 | WARN_ON(*ptr > end); |
| 1021 | if (*ptr == end) |
| 1022 | return 1; /* last */ |
| 1023 | |
| 1024 | return 0; |
| 1025 | } |
| 1026 | |
| 1027 | /* |
| 1028 | * reads the tree block backref for an extent. tree level and root are returned |
| 1029 | * through out_level and out_root. ptr must point to a 0 value for the first |
| 1030 | * call and may be modified (see __get_extent_inline_ref comment). |
| 1031 | * returns 0 if data was provided, 1 if there was no more data to provide or |
| 1032 | * <0 on error. |
| 1033 | */ |
| 1034 | int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, |
| 1035 | struct btrfs_extent_item *ei, u32 item_size, |
| 1036 | u64 *out_root, u8 *out_level) |
| 1037 | { |
| 1038 | int ret; |
| 1039 | int type; |
| 1040 | struct btrfs_tree_block_info *info; |
| 1041 | struct btrfs_extent_inline_ref *eiref; |
| 1042 | |
| 1043 | if (*ptr == (unsigned long)-1) |
| 1044 | return 1; |
| 1045 | |
| 1046 | while (1) { |
| 1047 | ret = __get_extent_inline_ref(ptr, eb, ei, item_size, |
| 1048 | &eiref, &type); |
| 1049 | if (ret < 0) |
| 1050 | return ret; |
| 1051 | |
| 1052 | if (type == BTRFS_TREE_BLOCK_REF_KEY || |
| 1053 | type == BTRFS_SHARED_BLOCK_REF_KEY) |
| 1054 | break; |
| 1055 | |
| 1056 | if (ret == 1) |
| 1057 | return 1; |
| 1058 | } |
| 1059 | |
| 1060 | /* we can treat both ref types equally here */ |
| 1061 | info = (struct btrfs_tree_block_info *)(ei + 1); |
| 1062 | *out_root = btrfs_extent_inline_ref_offset(eb, eiref); |
| 1063 | *out_level = btrfs_tree_block_level(eb, info); |
| 1064 | |
| 1065 | if (ret == 1) |
| 1066 | *ptr = (unsigned long)-1; |
| 1067 | |
| 1068 | return 0; |
| 1069 | } |
| 1070 | |
Jan Schmidt | 4692cf5 | 2011-12-02 14:56:41 +0100 | [diff] [blame^] | 1071 | static int iterate_leaf_refs(struct btrfs_fs_info *fs_info, |
| 1072 | struct btrfs_path *path, u64 logical, |
| 1073 | u64 orig_extent_item_objectid, |
| 1074 | u64 extent_item_pos, u64 root, |
| 1075 | iterate_extent_inodes_t *iterate, void *ctx) |
Jan Schmidt | a542ad1 | 2011-06-13 19:52:59 +0200 | [diff] [blame] | 1076 | { |
| 1077 | u64 disk_byte; |
| 1078 | struct btrfs_key key; |
| 1079 | struct btrfs_file_extent_item *fi; |
| 1080 | struct extent_buffer *eb; |
| 1081 | int slot; |
| 1082 | int nritems; |
Jan Schmidt | 4692cf5 | 2011-12-02 14:56:41 +0100 | [diff] [blame^] | 1083 | int ret = 0; |
| 1084 | int extent_type; |
| 1085 | u64 data_offset; |
| 1086 | u64 data_len; |
Jan Schmidt | a542ad1 | 2011-06-13 19:52:59 +0200 | [diff] [blame] | 1087 | |
| 1088 | eb = read_tree_block(fs_info->tree_root, logical, |
| 1089 | fs_info->tree_root->leafsize, 0); |
| 1090 | if (!eb) |
| 1091 | return -EIO; |
| 1092 | |
| 1093 | /* |
| 1094 | * from the shared data ref, we only have the leaf but we need |
| 1095 | * the key. thus, we must look into all items and see that we |
| 1096 | * find one (some) with a reference to our extent item. |
| 1097 | */ |
| 1098 | nritems = btrfs_header_nritems(eb); |
| 1099 | for (slot = 0; slot < nritems; ++slot) { |
| 1100 | btrfs_item_key_to_cpu(eb, &key, slot); |
| 1101 | if (key.type != BTRFS_EXTENT_DATA_KEY) |
| 1102 | continue; |
| 1103 | fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); |
Jan Schmidt | 4692cf5 | 2011-12-02 14:56:41 +0100 | [diff] [blame^] | 1104 | extent_type = btrfs_file_extent_type(eb, fi); |
| 1105 | if (extent_type == BTRFS_FILE_EXTENT_INLINE) |
| 1106 | continue; |
| 1107 | /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ |
Jan Schmidt | a542ad1 | 2011-06-13 19:52:59 +0200 | [diff] [blame] | 1108 | disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); |
Jan Schmidt | 4692cf5 | 2011-12-02 14:56:41 +0100 | [diff] [blame^] | 1109 | if (disk_byte != orig_extent_item_objectid) |
| 1110 | continue; |
Jan Schmidt | a542ad1 | 2011-06-13 19:52:59 +0200 | [diff] [blame] | 1111 | |
Jan Schmidt | 4692cf5 | 2011-12-02 14:56:41 +0100 | [diff] [blame^] | 1112 | data_offset = btrfs_file_extent_offset(eb, fi); |
| 1113 | data_len = btrfs_file_extent_num_bytes(eb, fi); |
| 1114 | |
| 1115 | if (extent_item_pos < data_offset || |
| 1116 | extent_item_pos >= data_offset + data_len) |
| 1117 | continue; |
| 1118 | |
| 1119 | pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), " |
| 1120 | "root %llu\n", orig_extent_item_objectid, |
| 1121 | key.objectid, key.offset, root); |
| 1122 | ret = iterate(key.objectid, |
| 1123 | key.offset + (extent_item_pos - data_offset), |
| 1124 | root, ctx); |
| 1125 | if (ret) { |
| 1126 | pr_debug("stopping iteration because ret=%d\n", ret); |
| 1127 | break; |
| 1128 | } |
Jan Schmidt | a542ad1 | 2011-06-13 19:52:59 +0200 | [diff] [blame] | 1129 | } |
| 1130 | |
| 1131 | free_extent_buffer(eb); |
Jan Schmidt | 4692cf5 | 2011-12-02 14:56:41 +0100 | [diff] [blame^] | 1132 | |
Jan Schmidt | a542ad1 | 2011-06-13 19:52:59 +0200 | [diff] [blame] | 1133 | return ret; |
| 1134 | } |
| 1135 | |
| 1136 | /* |
| 1137 | * calls iterate() for every inode that references the extent identified by |
Jan Schmidt | 4692cf5 | 2011-12-02 14:56:41 +0100 | [diff] [blame^] | 1138 | * the given parameters. |
Jan Schmidt | a542ad1 | 2011-06-13 19:52:59 +0200 | [diff] [blame] | 1139 | * when the iterator function returns a non-zero value, iteration stops. |
Jan Schmidt | 4692cf5 | 2011-12-02 14:56:41 +0100 | [diff] [blame^] | 1140 | * path is guaranteed to be in released state when iterate() is called. |
Jan Schmidt | a542ad1 | 2011-06-13 19:52:59 +0200 | [diff] [blame] | 1141 | */ |
| 1142 | int iterate_extent_inodes(struct btrfs_fs_info *fs_info, |
| 1143 | struct btrfs_path *path, |
Jan Schmidt | 4692cf5 | 2011-12-02 14:56:41 +0100 | [diff] [blame^] | 1144 | u64 extent_item_objectid, u64 extent_item_pos, |
Jan Schmidt | a542ad1 | 2011-06-13 19:52:59 +0200 | [diff] [blame] | 1145 | iterate_extent_inodes_t *iterate, void *ctx) |
| 1146 | { |
Jan Schmidt | a542ad1 | 2011-06-13 19:52:59 +0200 | [diff] [blame] | 1147 | int ret; |
Jan Schmidt | a542ad1 | 2011-06-13 19:52:59 +0200 | [diff] [blame] | 1148 | struct list_head data_refs = LIST_HEAD_INIT(data_refs); |
| 1149 | struct list_head shared_refs = LIST_HEAD_INIT(shared_refs); |
Jan Schmidt | 4692cf5 | 2011-12-02 14:56:41 +0100 | [diff] [blame^] | 1150 | struct btrfs_trans_handle *trans; |
| 1151 | struct ulist *refs; |
| 1152 | struct ulist *roots; |
| 1153 | struct ulist_node *ref_node = NULL; |
| 1154 | struct ulist_node *root_node = NULL; |
| 1155 | struct seq_list seq_elem; |
| 1156 | struct btrfs_delayed_ref_root *delayed_refs; |
Jan Schmidt | a542ad1 | 2011-06-13 19:52:59 +0200 | [diff] [blame] | 1157 | |
Jan Schmidt | 4692cf5 | 2011-12-02 14:56:41 +0100 | [diff] [blame^] | 1158 | trans = btrfs_join_transaction(fs_info->extent_root); |
| 1159 | if (IS_ERR(trans)) |
| 1160 | return PTR_ERR(trans); |
Jan Schmidt | a542ad1 | 2011-06-13 19:52:59 +0200 | [diff] [blame] | 1161 | |
Jan Schmidt | 4692cf5 | 2011-12-02 14:56:41 +0100 | [diff] [blame^] | 1162 | pr_debug("resolving all inodes for extent %llu\n", |
| 1163 | extent_item_objectid); |
| 1164 | |
| 1165 | delayed_refs = &trans->transaction->delayed_refs; |
| 1166 | spin_lock(&delayed_refs->lock); |
| 1167 | btrfs_get_delayed_seq(delayed_refs, &seq_elem); |
| 1168 | spin_unlock(&delayed_refs->lock); |
| 1169 | |
| 1170 | ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid, |
| 1171 | extent_item_pos, seq_elem.seq, |
| 1172 | &refs); |
| 1173 | |
| 1174 | if (ret) |
| 1175 | goto out; |
| 1176 | |
| 1177 | while (!ret && (ref_node = ulist_next(refs, ref_node))) { |
| 1178 | ret = btrfs_find_all_roots(trans, fs_info, ref_node->val, -1, |
| 1179 | seq_elem.seq, &roots); |
| 1180 | if (ret) |
Jan Schmidt | a542ad1 | 2011-06-13 19:52:59 +0200 | [diff] [blame] | 1181 | break; |
Jan Schmidt | 4692cf5 | 2011-12-02 14:56:41 +0100 | [diff] [blame^] | 1182 | while (!ret && (root_node = ulist_next(roots, root_node))) { |
| 1183 | pr_debug("root %llu references leaf %llu\n", |
| 1184 | root_node->val, ref_node->val); |
| 1185 | ret = iterate_leaf_refs(fs_info, path, ref_node->val, |
| 1186 | extent_item_objectid, |
| 1187 | extent_item_pos, root_node->val, |
| 1188 | iterate, ctx); |
Jan Schmidt | a542ad1 | 2011-06-13 19:52:59 +0200 | [diff] [blame] | 1189 | } |
| 1190 | } |
| 1191 | |
Jan Schmidt | 4692cf5 | 2011-12-02 14:56:41 +0100 | [diff] [blame^] | 1192 | ulist_free(refs); |
| 1193 | ulist_free(roots); |
| 1194 | out: |
| 1195 | btrfs_put_delayed_seq(delayed_refs, &seq_elem); |
| 1196 | btrfs_end_transaction(trans, fs_info->extent_root); |
Jan Schmidt | a542ad1 | 2011-06-13 19:52:59 +0200 | [diff] [blame] | 1197 | return ret; |
| 1198 | } |
| 1199 | |
| 1200 | int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, |
| 1201 | struct btrfs_path *path, |
| 1202 | iterate_extent_inodes_t *iterate, void *ctx) |
| 1203 | { |
| 1204 | int ret; |
Jan Schmidt | 4692cf5 | 2011-12-02 14:56:41 +0100 | [diff] [blame^] | 1205 | u64 extent_item_pos; |
Jan Schmidt | a542ad1 | 2011-06-13 19:52:59 +0200 | [diff] [blame] | 1206 | struct btrfs_key found_key; |
| 1207 | |
| 1208 | ret = extent_from_logical(fs_info, logical, path, |
| 1209 | &found_key); |
Jan Schmidt | 4692cf5 | 2011-12-02 14:56:41 +0100 | [diff] [blame^] | 1210 | btrfs_release_path(path); |
Jan Schmidt | a542ad1 | 2011-06-13 19:52:59 +0200 | [diff] [blame] | 1211 | if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK) |
| 1212 | ret = -EINVAL; |
| 1213 | if (ret < 0) |
| 1214 | return ret; |
| 1215 | |
Jan Schmidt | 4692cf5 | 2011-12-02 14:56:41 +0100 | [diff] [blame^] | 1216 | extent_item_pos = logical - found_key.objectid; |
Jan Schmidt | a542ad1 | 2011-06-13 19:52:59 +0200 | [diff] [blame] | 1217 | ret = iterate_extent_inodes(fs_info, path, found_key.objectid, |
Jan Schmidt | 4692cf5 | 2011-12-02 14:56:41 +0100 | [diff] [blame^] | 1218 | extent_item_pos, iterate, ctx); |
Jan Schmidt | a542ad1 | 2011-06-13 19:52:59 +0200 | [diff] [blame] | 1219 | |
| 1220 | return ret; |
| 1221 | } |
| 1222 | |
| 1223 | static int iterate_irefs(u64 inum, struct btrfs_root *fs_root, |
| 1224 | struct btrfs_path *path, |
| 1225 | iterate_irefs_t *iterate, void *ctx) |
| 1226 | { |
| 1227 | int ret; |
| 1228 | int slot; |
| 1229 | u32 cur; |
| 1230 | u32 len; |
| 1231 | u32 name_len; |
| 1232 | u64 parent = 0; |
| 1233 | int found = 0; |
| 1234 | struct extent_buffer *eb; |
| 1235 | struct btrfs_item *item; |
| 1236 | struct btrfs_inode_ref *iref; |
| 1237 | struct btrfs_key found_key; |
| 1238 | |
| 1239 | while (1) { |
| 1240 | ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path, |
| 1241 | &found_key); |
| 1242 | if (ret < 0) |
| 1243 | break; |
| 1244 | if (ret) { |
| 1245 | ret = found ? 0 : -ENOENT; |
| 1246 | break; |
| 1247 | } |
| 1248 | ++found; |
| 1249 | |
| 1250 | parent = found_key.offset; |
| 1251 | slot = path->slots[0]; |
| 1252 | eb = path->nodes[0]; |
| 1253 | /* make sure we can use eb after releasing the path */ |
| 1254 | atomic_inc(&eb->refs); |
| 1255 | btrfs_release_path(path); |
| 1256 | |
| 1257 | item = btrfs_item_nr(eb, slot); |
| 1258 | iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); |
| 1259 | |
| 1260 | for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) { |
| 1261 | name_len = btrfs_inode_ref_name_len(eb, iref); |
| 1262 | /* path must be released before calling iterate()! */ |
Jan Schmidt | 4692cf5 | 2011-12-02 14:56:41 +0100 | [diff] [blame^] | 1263 | pr_debug("following ref at offset %u for inode %llu in " |
| 1264 | "tree %llu\n", cur, |
| 1265 | (unsigned long long)found_key.objectid, |
| 1266 | (unsigned long long)fs_root->objectid); |
Jan Schmidt | a542ad1 | 2011-06-13 19:52:59 +0200 | [diff] [blame] | 1267 | ret = iterate(parent, iref, eb, ctx); |
| 1268 | if (ret) { |
| 1269 | free_extent_buffer(eb); |
| 1270 | break; |
| 1271 | } |
| 1272 | len = sizeof(*iref) + name_len; |
| 1273 | iref = (struct btrfs_inode_ref *)((char *)iref + len); |
| 1274 | } |
| 1275 | free_extent_buffer(eb); |
| 1276 | } |
| 1277 | |
| 1278 | btrfs_release_path(path); |
| 1279 | |
| 1280 | return ret; |
| 1281 | } |
| 1282 | |
| 1283 | /* |
| 1284 | * returns 0 if the path could be dumped (probably truncated) |
| 1285 | * returns <0 in case of an error |
| 1286 | */ |
| 1287 | static int inode_to_path(u64 inum, struct btrfs_inode_ref *iref, |
| 1288 | struct extent_buffer *eb, void *ctx) |
| 1289 | { |
| 1290 | struct inode_fs_paths *ipath = ctx; |
| 1291 | char *fspath; |
| 1292 | char *fspath_min; |
| 1293 | int i = ipath->fspath->elem_cnt; |
| 1294 | const int s_ptr = sizeof(char *); |
| 1295 | u32 bytes_left; |
| 1296 | |
| 1297 | bytes_left = ipath->fspath->bytes_left > s_ptr ? |
| 1298 | ipath->fspath->bytes_left - s_ptr : 0; |
| 1299 | |
Chris Mason | 740c3d2 | 2011-11-02 15:48:34 -0400 | [diff] [blame] | 1300 | fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; |
Jan Schmidt | a542ad1 | 2011-06-13 19:52:59 +0200 | [diff] [blame] | 1301 | fspath = iref_to_path(ipath->fs_root, ipath->btrfs_path, iref, eb, |
| 1302 | inum, fspath_min, bytes_left); |
| 1303 | if (IS_ERR(fspath)) |
| 1304 | return PTR_ERR(fspath); |
| 1305 | |
| 1306 | if (fspath > fspath_min) { |
Jan Schmidt | 4692cf5 | 2011-12-02 14:56:41 +0100 | [diff] [blame^] | 1307 | pr_debug("path resolved: %s\n", fspath); |
Jeff Mahoney | 745c4d8 | 2011-11-20 07:31:57 -0500 | [diff] [blame] | 1308 | ipath->fspath->val[i] = (u64)(unsigned long)fspath; |
Jan Schmidt | a542ad1 | 2011-06-13 19:52:59 +0200 | [diff] [blame] | 1309 | ++ipath->fspath->elem_cnt; |
| 1310 | ipath->fspath->bytes_left = fspath - fspath_min; |
| 1311 | } else { |
Jan Schmidt | 4692cf5 | 2011-12-02 14:56:41 +0100 | [diff] [blame^] | 1312 | pr_debug("missed path, not enough space. missing bytes: %lu, " |
| 1313 | "constructed so far: %s\n", |
| 1314 | (unsigned long)(fspath_min - fspath), fspath_min); |
Jan Schmidt | a542ad1 | 2011-06-13 19:52:59 +0200 | [diff] [blame] | 1315 | ++ipath->fspath->elem_missed; |
| 1316 | ipath->fspath->bytes_missing += fspath_min - fspath; |
| 1317 | ipath->fspath->bytes_left = 0; |
| 1318 | } |
| 1319 | |
| 1320 | return 0; |
| 1321 | } |
| 1322 | |
| 1323 | /* |
| 1324 | * this dumps all file system paths to the inode into the ipath struct, provided |
| 1325 | * is has been created large enough. each path is zero-terminated and accessed |
Chris Mason | 740c3d2 | 2011-11-02 15:48:34 -0400 | [diff] [blame] | 1326 | * from ipath->fspath->val[i]. |
Jan Schmidt | a542ad1 | 2011-06-13 19:52:59 +0200 | [diff] [blame] | 1327 | * when it returns, there are ipath->fspath->elem_cnt number of paths available |
Chris Mason | 740c3d2 | 2011-11-02 15:48:34 -0400 | [diff] [blame] | 1328 | * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the |
Jan Schmidt | a542ad1 | 2011-06-13 19:52:59 +0200 | [diff] [blame] | 1329 | * number of missed paths in recored in ipath->fspath->elem_missed, otherwise, |
| 1330 | * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would |
| 1331 | * have been needed to return all paths. |
| 1332 | */ |
| 1333 | int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) |
| 1334 | { |
| 1335 | return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path, |
| 1336 | inode_to_path, ipath); |
| 1337 | } |
| 1338 | |
| 1339 | /* |
| 1340 | * allocates space to return multiple file system paths for an inode. |
| 1341 | * total_bytes to allocate are passed, note that space usable for actual path |
| 1342 | * information will be total_bytes - sizeof(struct inode_fs_paths). |
| 1343 | * the returned pointer must be freed with free_ipath() in the end. |
| 1344 | */ |
| 1345 | struct btrfs_data_container *init_data_container(u32 total_bytes) |
| 1346 | { |
| 1347 | struct btrfs_data_container *data; |
| 1348 | size_t alloc_bytes; |
| 1349 | |
| 1350 | alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); |
| 1351 | data = kmalloc(alloc_bytes, GFP_NOFS); |
| 1352 | if (!data) |
| 1353 | return ERR_PTR(-ENOMEM); |
| 1354 | |
| 1355 | if (total_bytes >= sizeof(*data)) { |
| 1356 | data->bytes_left = total_bytes - sizeof(*data); |
| 1357 | data->bytes_missing = 0; |
| 1358 | } else { |
| 1359 | data->bytes_missing = sizeof(*data) - total_bytes; |
| 1360 | data->bytes_left = 0; |
| 1361 | } |
| 1362 | |
| 1363 | data->elem_cnt = 0; |
| 1364 | data->elem_missed = 0; |
| 1365 | |
| 1366 | return data; |
| 1367 | } |
| 1368 | |
| 1369 | /* |
| 1370 | * allocates space to return multiple file system paths for an inode. |
| 1371 | * total_bytes to allocate are passed, note that space usable for actual path |
| 1372 | * information will be total_bytes - sizeof(struct inode_fs_paths). |
| 1373 | * the returned pointer must be freed with free_ipath() in the end. |
| 1374 | */ |
| 1375 | struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, |
| 1376 | struct btrfs_path *path) |
| 1377 | { |
| 1378 | struct inode_fs_paths *ifp; |
| 1379 | struct btrfs_data_container *fspath; |
| 1380 | |
| 1381 | fspath = init_data_container(total_bytes); |
| 1382 | if (IS_ERR(fspath)) |
| 1383 | return (void *)fspath; |
| 1384 | |
| 1385 | ifp = kmalloc(sizeof(*ifp), GFP_NOFS); |
| 1386 | if (!ifp) { |
| 1387 | kfree(fspath); |
| 1388 | return ERR_PTR(-ENOMEM); |
| 1389 | } |
| 1390 | |
| 1391 | ifp->btrfs_path = path; |
| 1392 | ifp->fspath = fspath; |
| 1393 | ifp->fs_root = fs_root; |
| 1394 | |
| 1395 | return ifp; |
| 1396 | } |
| 1397 | |
| 1398 | void free_ipath(struct inode_fs_paths *ipath) |
| 1399 | { |
| 1400 | kfree(ipath); |
| 1401 | } |