Richard Henderson | 85d0b3a | 2013-07-13 15:49:45 -0700 | [diff] [blame] | 1 | /* |
| 2 | * linux/arch/alpha/kernel/rtc.c |
| 3 | * |
| 4 | * Copyright (C) 1991, 1992, 1995, 1999, 2000 Linus Torvalds |
| 5 | * |
| 6 | * This file contains date handling. |
| 7 | */ |
| 8 | #include <linux/errno.h> |
| 9 | #include <linux/init.h> |
| 10 | #include <linux/kernel.h> |
| 11 | #include <linux/param.h> |
| 12 | #include <linux/string.h> |
| 13 | #include <linux/mc146818rtc.h> |
| 14 | #include <linux/bcd.h> |
| 15 | #include <linux/rtc.h> |
| 16 | #include <linux/platform_device.h> |
| 17 | |
| 18 | #include <asm/rtc.h> |
| 19 | |
| 20 | #include "proto.h" |
| 21 | |
| 22 | |
| 23 | /* |
| 24 | * Support for the RTC device. |
| 25 | * |
| 26 | * We don't want to use the rtc-cmos driver, because we don't want to support |
| 27 | * alarms, as that would be indistinguishable from timer interrupts. |
| 28 | * |
| 29 | * Further, generic code is really, really tied to a 1900 epoch. This is |
| 30 | * true in __get_rtc_time as well as the users of struct rtc_time e.g. |
| 31 | * rtc_tm_to_time. Thankfully all of the other epochs in use are later |
| 32 | * than 1900, and so it's easy to adjust. |
| 33 | */ |
| 34 | |
| 35 | static unsigned long rtc_epoch; |
| 36 | |
| 37 | static int __init |
| 38 | specifiy_epoch(char *str) |
| 39 | { |
| 40 | unsigned long epoch = simple_strtoul(str, NULL, 0); |
| 41 | if (epoch < 1900) |
| 42 | printk("Ignoring invalid user specified epoch %lu\n", epoch); |
| 43 | else |
| 44 | rtc_epoch = epoch; |
| 45 | return 1; |
| 46 | } |
| 47 | __setup("epoch=", specifiy_epoch); |
| 48 | |
| 49 | static void __init |
| 50 | init_rtc_epoch(void) |
| 51 | { |
| 52 | int epoch, year, ctrl; |
| 53 | |
| 54 | if (rtc_epoch != 0) { |
| 55 | /* The epoch was specified on the command-line. */ |
| 56 | return; |
| 57 | } |
| 58 | |
| 59 | /* Detect the epoch in use on this computer. */ |
| 60 | ctrl = CMOS_READ(RTC_CONTROL); |
| 61 | year = CMOS_READ(RTC_YEAR); |
| 62 | if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) |
| 63 | year = bcd2bin(year); |
| 64 | |
| 65 | /* PC-like is standard; used for year >= 70 */ |
| 66 | epoch = 1900; |
| 67 | if (year < 20) { |
| 68 | epoch = 2000; |
| 69 | } else if (year >= 20 && year < 48) { |
| 70 | /* NT epoch */ |
| 71 | epoch = 1980; |
| 72 | } else if (year >= 48 && year < 70) { |
| 73 | /* Digital UNIX epoch */ |
| 74 | epoch = 1952; |
| 75 | } |
| 76 | rtc_epoch = epoch; |
| 77 | |
| 78 | printk(KERN_INFO "Using epoch %d for rtc year %d\n", epoch, year); |
| 79 | } |
| 80 | |
| 81 | static int |
| 82 | alpha_rtc_read_time(struct device *dev, struct rtc_time *tm) |
| 83 | { |
| 84 | __get_rtc_time(tm); |
| 85 | |
| 86 | /* Adjust for non-default epochs. It's easier to depend on the |
| 87 | generic __get_rtc_time and adjust the epoch here than create |
| 88 | a copy of __get_rtc_time with the edits we need. */ |
| 89 | if (rtc_epoch != 1900) { |
| 90 | int year = tm->tm_year; |
| 91 | /* Undo the century adjustment made in __get_rtc_time. */ |
| 92 | if (year >= 100) |
| 93 | year -= 100; |
| 94 | year += rtc_epoch - 1900; |
| 95 | /* Redo the century adjustment with the epoch in place. */ |
| 96 | if (year <= 69) |
| 97 | year += 100; |
| 98 | tm->tm_year = year; |
| 99 | } |
| 100 | |
| 101 | return rtc_valid_tm(tm); |
| 102 | } |
| 103 | |
| 104 | static int |
| 105 | alpha_rtc_set_time(struct device *dev, struct rtc_time *tm) |
| 106 | { |
| 107 | struct rtc_time xtm; |
| 108 | |
| 109 | if (rtc_epoch != 1900) { |
| 110 | xtm = *tm; |
| 111 | xtm.tm_year -= rtc_epoch - 1900; |
| 112 | tm = &xtm; |
| 113 | } |
| 114 | |
| 115 | return __set_rtc_time(tm); |
| 116 | } |
| 117 | |
| 118 | static int |
| 119 | alpha_rtc_set_mmss(struct device *dev, unsigned long nowtime) |
| 120 | { |
| 121 | int retval = 0; |
| 122 | int real_seconds, real_minutes, cmos_minutes; |
| 123 | unsigned char save_control, save_freq_select; |
| 124 | |
| 125 | /* Note: This code only updates minutes and seconds. Comments |
| 126 | indicate this was to avoid messing with unknown time zones, |
| 127 | and with the epoch nonsense described above. In order for |
| 128 | this to work, the existing clock cannot be off by more than |
| 129 | 15 minutes. |
| 130 | |
| 131 | ??? This choice is may be out of date. The x86 port does |
| 132 | not have problems with timezones, and the epoch processing has |
| 133 | now been fixed in alpha_set_rtc_time. |
| 134 | |
| 135 | In either case, one can always force a full rtc update with |
| 136 | the userland hwclock program, so surely 15 minute accuracy |
| 137 | is no real burden. */ |
| 138 | |
| 139 | /* In order to set the CMOS clock precisely, we have to be called |
| 140 | 500 ms after the second nowtime has started, because when |
| 141 | nowtime is written into the registers of the CMOS clock, it will |
| 142 | jump to the next second precisely 500 ms later. Check the Motorola |
| 143 | MC146818A or Dallas DS12887 data sheet for details. */ |
| 144 | |
| 145 | /* irq are locally disabled here */ |
| 146 | spin_lock(&rtc_lock); |
| 147 | /* Tell the clock it's being set */ |
| 148 | save_control = CMOS_READ(RTC_CONTROL); |
| 149 | CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL); |
| 150 | |
| 151 | /* Stop and reset prescaler */ |
| 152 | save_freq_select = CMOS_READ(RTC_FREQ_SELECT); |
| 153 | CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT); |
| 154 | |
| 155 | cmos_minutes = CMOS_READ(RTC_MINUTES); |
| 156 | if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) |
| 157 | cmos_minutes = bcd2bin(cmos_minutes); |
| 158 | |
| 159 | real_seconds = nowtime % 60; |
| 160 | real_minutes = nowtime / 60; |
| 161 | if (((abs(real_minutes - cmos_minutes) + 15) / 30) & 1) { |
| 162 | /* correct for half hour time zone */ |
| 163 | real_minutes += 30; |
| 164 | } |
| 165 | real_minutes %= 60; |
| 166 | |
| 167 | if (abs(real_minutes - cmos_minutes) < 30) { |
| 168 | if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { |
| 169 | real_seconds = bin2bcd(real_seconds); |
| 170 | real_minutes = bin2bcd(real_minutes); |
| 171 | } |
| 172 | CMOS_WRITE(real_seconds,RTC_SECONDS); |
| 173 | CMOS_WRITE(real_minutes,RTC_MINUTES); |
| 174 | } else { |
| 175 | printk_once(KERN_NOTICE |
| 176 | "set_rtc_mmss: can't update from %d to %d\n", |
| 177 | cmos_minutes, real_minutes); |
| 178 | retval = -1; |
| 179 | } |
| 180 | |
| 181 | /* The following flags have to be released exactly in this order, |
| 182 | * otherwise the DS12887 (popular MC146818A clone with integrated |
| 183 | * battery and quartz) will not reset the oscillator and will not |
| 184 | * update precisely 500 ms later. You won't find this mentioned in |
| 185 | * the Dallas Semiconductor data sheets, but who believes data |
| 186 | * sheets anyway ... -- Markus Kuhn |
| 187 | */ |
| 188 | CMOS_WRITE(save_control, RTC_CONTROL); |
| 189 | CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT); |
| 190 | spin_unlock(&rtc_lock); |
| 191 | |
| 192 | return retval; |
| 193 | } |
| 194 | |
| 195 | static int |
| 196 | alpha_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg) |
| 197 | { |
| 198 | switch (cmd) { |
| 199 | case RTC_EPOCH_READ: |
| 200 | return put_user(rtc_epoch, (unsigned long __user *)arg); |
| 201 | case RTC_EPOCH_SET: |
| 202 | if (arg < 1900) |
| 203 | return -EINVAL; |
| 204 | rtc_epoch = arg; |
| 205 | return 0; |
| 206 | default: |
| 207 | return -ENOIOCTLCMD; |
| 208 | } |
| 209 | } |
| 210 | |
| 211 | static const struct rtc_class_ops alpha_rtc_ops = { |
| 212 | .read_time = alpha_rtc_read_time, |
| 213 | .set_time = alpha_rtc_set_time, |
| 214 | .set_mmss = alpha_rtc_set_mmss, |
| 215 | .ioctl = alpha_rtc_ioctl, |
| 216 | }; |
| 217 | |
| 218 | /* |
| 219 | * Similarly, except do the actual CMOS access on the boot cpu only. |
| 220 | * This requires marshalling the data across an interprocessor call. |
| 221 | */ |
| 222 | |
| 223 | #if defined(CONFIG_SMP) && \ |
| 224 | (defined(CONFIG_ALPHA_GENERIC) || defined(CONFIG_ALPHA_MARVEL)) |
| 225 | # define HAVE_REMOTE_RTC 1 |
| 226 | |
| 227 | union remote_data { |
| 228 | struct rtc_time *tm; |
| 229 | unsigned long now; |
| 230 | long retval; |
| 231 | }; |
| 232 | |
| 233 | static void |
| 234 | do_remote_read(void *data) |
| 235 | { |
| 236 | union remote_data *x = data; |
| 237 | x->retval = alpha_rtc_read_time(NULL, x->tm); |
| 238 | } |
| 239 | |
| 240 | static int |
| 241 | remote_read_time(struct device *dev, struct rtc_time *tm) |
| 242 | { |
| 243 | union remote_data x; |
| 244 | if (smp_processor_id() != boot_cpuid) { |
| 245 | x.tm = tm; |
| 246 | smp_call_function_single(boot_cpuid, do_remote_read, &x, 1); |
| 247 | return x.retval; |
| 248 | } |
| 249 | return alpha_rtc_read_time(NULL, tm); |
| 250 | } |
| 251 | |
| 252 | static void |
| 253 | do_remote_set(void *data) |
| 254 | { |
| 255 | union remote_data *x = data; |
| 256 | x->retval = alpha_rtc_set_time(NULL, x->tm); |
| 257 | } |
| 258 | |
| 259 | static int |
| 260 | remote_set_time(struct device *dev, struct rtc_time *tm) |
| 261 | { |
| 262 | union remote_data x; |
| 263 | if (smp_processor_id() != boot_cpuid) { |
| 264 | x.tm = tm; |
| 265 | smp_call_function_single(boot_cpuid, do_remote_set, &x, 1); |
| 266 | return x.retval; |
| 267 | } |
| 268 | return alpha_rtc_set_time(NULL, tm); |
| 269 | } |
| 270 | |
| 271 | static void |
| 272 | do_remote_mmss(void *data) |
| 273 | { |
| 274 | union remote_data *x = data; |
| 275 | x->retval = alpha_rtc_set_mmss(NULL, x->now); |
| 276 | } |
| 277 | |
| 278 | static int |
| 279 | remote_set_mmss(struct device *dev, unsigned long now) |
| 280 | { |
| 281 | union remote_data x; |
| 282 | if (smp_processor_id() != boot_cpuid) { |
| 283 | x.now = now; |
| 284 | smp_call_function_single(boot_cpuid, do_remote_mmss, &x, 1); |
| 285 | return x.retval; |
| 286 | } |
| 287 | return alpha_rtc_set_mmss(NULL, now); |
| 288 | } |
| 289 | |
| 290 | static const struct rtc_class_ops remote_rtc_ops = { |
| 291 | .read_time = remote_read_time, |
| 292 | .set_time = remote_set_time, |
| 293 | .set_mmss = remote_set_mmss, |
| 294 | .ioctl = alpha_rtc_ioctl, |
| 295 | }; |
| 296 | #endif |
| 297 | |
| 298 | static int __init |
| 299 | alpha_rtc_init(void) |
| 300 | { |
| 301 | const struct rtc_class_ops *ops; |
| 302 | struct platform_device *pdev; |
| 303 | struct rtc_device *rtc; |
| 304 | const char *name; |
| 305 | |
| 306 | init_rtc_epoch(); |
| 307 | name = "rtc-alpha"; |
| 308 | ops = &alpha_rtc_ops; |
| 309 | |
| 310 | #ifdef HAVE_REMOTE_RTC |
| 311 | if (alpha_mv.rtc_boot_cpu_only) |
| 312 | ops = &remote_rtc_ops; |
| 313 | #endif |
| 314 | |
| 315 | pdev = platform_device_register_simple(name, -1, NULL, 0); |
| 316 | rtc = devm_rtc_device_register(&pdev->dev, name, ops, THIS_MODULE); |
| 317 | if (IS_ERR(rtc)) |
| 318 | return PTR_ERR(rtc); |
| 319 | |
| 320 | platform_set_drvdata(pdev, rtc); |
| 321 | return 0; |
| 322 | } |
| 323 | device_initcall(alpha_rtc_init); |