Arnaud Ebalard | 0b2f622 | 2015-02-13 14:41:00 -0800 | [diff] [blame] | 1 | /* |
| 2 | * rtc-ab-b5ze-s3 - Driver for Abracon AB-RTCMC-32.768Khz-B5ZE-S3 |
| 3 | * I2C RTC / Alarm chip |
| 4 | * |
| 5 | * Copyright (C) 2014, Arnaud EBALARD <arno@natisbad.org> |
| 6 | * |
| 7 | * Detailed datasheet of the chip is available here: |
| 8 | * |
| 9 | * http://www.abracon.com/realtimeclock/AB-RTCMC-32.768kHz-B5ZE-S3-Application-Manual.pdf |
| 10 | * |
| 11 | * This work is based on ISL12057 driver (drivers/rtc/rtc-isl12057.c). |
| 12 | * |
| 13 | * This program is free software; you can redistribute it and/or modify |
| 14 | * it under the terms of the GNU General Public License as published by |
| 15 | * the Free Software Foundation; either version 2 of the License, or |
| 16 | * (at your option) any later version. |
| 17 | * |
| 18 | * This program is distributed in the hope that it will be useful, |
| 19 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 20 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 21 | * GNU General Public License for more details. |
| 22 | */ |
| 23 | |
| 24 | #include <linux/module.h> |
| 25 | #include <linux/mutex.h> |
| 26 | #include <linux/rtc.h> |
| 27 | #include <linux/i2c.h> |
| 28 | #include <linux/bcd.h> |
| 29 | #include <linux/of.h> |
| 30 | #include <linux/regmap.h> |
| 31 | #include <linux/interrupt.h> |
| 32 | |
| 33 | #define DRV_NAME "rtc-ab-b5ze-s3" |
| 34 | |
| 35 | /* Control section */ |
| 36 | #define ABB5ZES3_REG_CTRL1 0x00 /* Control 1 register */ |
| 37 | #define ABB5ZES3_REG_CTRL1_CIE BIT(0) /* Pulse interrupt enable */ |
| 38 | #define ABB5ZES3_REG_CTRL1_AIE BIT(1) /* Alarm interrupt enable */ |
| 39 | #define ABB5ZES3_REG_CTRL1_SIE BIT(2) /* Second interrupt enable */ |
| 40 | #define ABB5ZES3_REG_CTRL1_PM BIT(3) /* 24h/12h mode */ |
| 41 | #define ABB5ZES3_REG_CTRL1_SR BIT(4) /* Software reset */ |
| 42 | #define ABB5ZES3_REG_CTRL1_STOP BIT(5) /* RTC circuit enable */ |
| 43 | #define ABB5ZES3_REG_CTRL1_CAP BIT(7) |
| 44 | |
| 45 | #define ABB5ZES3_REG_CTRL2 0x01 /* Control 2 register */ |
| 46 | #define ABB5ZES3_REG_CTRL2_CTBIE BIT(0) /* Countdown timer B int. enable */ |
| 47 | #define ABB5ZES3_REG_CTRL2_CTAIE BIT(1) /* Countdown timer A int. enable */ |
| 48 | #define ABB5ZES3_REG_CTRL2_WTAIE BIT(2) /* Watchdog timer A int. enable */ |
| 49 | #define ABB5ZES3_REG_CTRL2_AF BIT(3) /* Alarm interrupt status */ |
| 50 | #define ABB5ZES3_REG_CTRL2_SF BIT(4) /* Second interrupt status */ |
| 51 | #define ABB5ZES3_REG_CTRL2_CTBF BIT(5) /* Countdown timer B int. status */ |
| 52 | #define ABB5ZES3_REG_CTRL2_CTAF BIT(6) /* Countdown timer A int. status */ |
| 53 | #define ABB5ZES3_REG_CTRL2_WTAF BIT(7) /* Watchdog timer A int. status */ |
| 54 | |
| 55 | #define ABB5ZES3_REG_CTRL3 0x02 /* Control 3 register */ |
| 56 | #define ABB5ZES3_REG_CTRL3_PM2 BIT(7) /* Power Management bit 2 */ |
| 57 | #define ABB5ZES3_REG_CTRL3_PM1 BIT(6) /* Power Management bit 1 */ |
| 58 | #define ABB5ZES3_REG_CTRL3_PM0 BIT(5) /* Power Management bit 0 */ |
| 59 | #define ABB5ZES3_REG_CTRL3_BSF BIT(3) /* Battery switchover int. status */ |
| 60 | #define ABB5ZES3_REG_CTRL3_BLF BIT(2) /* Battery low int. status */ |
| 61 | #define ABB5ZES3_REG_CTRL3_BSIE BIT(1) /* Battery switchover int. enable */ |
| 62 | #define ABB5ZES3_REG_CTRL3_BLIE BIT(0) /* Battery low int. enable */ |
| 63 | |
| 64 | #define ABB5ZES3_CTRL_SEC_LEN 3 |
| 65 | |
| 66 | /* RTC section */ |
| 67 | #define ABB5ZES3_REG_RTC_SC 0x03 /* RTC Seconds register */ |
| 68 | #define ABB5ZES3_REG_RTC_SC_OSC BIT(7) /* Clock integrity status */ |
| 69 | #define ABB5ZES3_REG_RTC_MN 0x04 /* RTC Minutes register */ |
| 70 | #define ABB5ZES3_REG_RTC_HR 0x05 /* RTC Hours register */ |
| 71 | #define ABB5ZES3_REG_RTC_HR_PM BIT(5) /* RTC Hours PM bit */ |
| 72 | #define ABB5ZES3_REG_RTC_DT 0x06 /* RTC Date register */ |
| 73 | #define ABB5ZES3_REG_RTC_DW 0x07 /* RTC Day of the week register */ |
| 74 | #define ABB5ZES3_REG_RTC_MO 0x08 /* RTC Month register */ |
| 75 | #define ABB5ZES3_REG_RTC_YR 0x09 /* RTC Year register */ |
| 76 | |
| 77 | #define ABB5ZES3_RTC_SEC_LEN 7 |
| 78 | |
| 79 | /* Alarm section (enable bits are all active low) */ |
| 80 | #define ABB5ZES3_REG_ALRM_MN 0x0A /* Alarm - minute register */ |
| 81 | #define ABB5ZES3_REG_ALRM_MN_AE BIT(7) /* Minute enable */ |
| 82 | #define ABB5ZES3_REG_ALRM_HR 0x0B /* Alarm - hours register */ |
| 83 | #define ABB5ZES3_REG_ALRM_HR_AE BIT(7) /* Hour enable */ |
| 84 | #define ABB5ZES3_REG_ALRM_DT 0x0C /* Alarm - date register */ |
| 85 | #define ABB5ZES3_REG_ALRM_DT_AE BIT(7) /* Date (day of the month) enable */ |
| 86 | #define ABB5ZES3_REG_ALRM_DW 0x0D /* Alarm - day of the week reg. */ |
| 87 | #define ABB5ZES3_REG_ALRM_DW_AE BIT(7) /* Day of the week enable */ |
| 88 | |
| 89 | #define ABB5ZES3_ALRM_SEC_LEN 4 |
| 90 | |
| 91 | /* Frequency offset section */ |
| 92 | #define ABB5ZES3_REG_FREQ_OF 0x0E /* Frequency offset register */ |
| 93 | #define ABB5ZES3_REG_FREQ_OF_MODE 0x0E /* Offset mode: 2 hours / minute */ |
| 94 | |
| 95 | /* CLOCKOUT section */ |
| 96 | #define ABB5ZES3_REG_TIM_CLK 0x0F /* Timer & Clockout register */ |
| 97 | #define ABB5ZES3_REG_TIM_CLK_TAM BIT(7) /* Permanent/pulsed timer A/int. 2 */ |
| 98 | #define ABB5ZES3_REG_TIM_CLK_TBM BIT(6) /* Permanent/pulsed timer B */ |
| 99 | #define ABB5ZES3_REG_TIM_CLK_COF2 BIT(5) /* Clkout Freq bit 2 */ |
| 100 | #define ABB5ZES3_REG_TIM_CLK_COF1 BIT(4) /* Clkout Freq bit 1 */ |
| 101 | #define ABB5ZES3_REG_TIM_CLK_COF0 BIT(3) /* Clkout Freq bit 0 */ |
| 102 | #define ABB5ZES3_REG_TIM_CLK_TAC1 BIT(2) /* Timer A: - 01 : countdown */ |
| 103 | #define ABB5ZES3_REG_TIM_CLK_TAC0 BIT(1) /* - 10 : timer */ |
| 104 | #define ABB5ZES3_REG_TIM_CLK_TBC BIT(0) /* Timer B enable */ |
| 105 | |
| 106 | /* Timer A Section */ |
| 107 | #define ABB5ZES3_REG_TIMA_CLK 0x10 /* Timer A clock register */ |
| 108 | #define ABB5ZES3_REG_TIMA_CLK_TAQ2 BIT(2) /* Freq bit 2 */ |
| 109 | #define ABB5ZES3_REG_TIMA_CLK_TAQ1 BIT(1) /* Freq bit 1 */ |
| 110 | #define ABB5ZES3_REG_TIMA_CLK_TAQ0 BIT(0) /* Freq bit 0 */ |
| 111 | #define ABB5ZES3_REG_TIMA 0x11 /* Timer A register */ |
| 112 | |
| 113 | #define ABB5ZES3_TIMA_SEC_LEN 2 |
| 114 | |
| 115 | /* Timer B Section */ |
| 116 | #define ABB5ZES3_REG_TIMB_CLK 0x12 /* Timer B clock register */ |
| 117 | #define ABB5ZES3_REG_TIMB_CLK_TBW2 BIT(6) |
| 118 | #define ABB5ZES3_REG_TIMB_CLK_TBW1 BIT(5) |
| 119 | #define ABB5ZES3_REG_TIMB_CLK_TBW0 BIT(4) |
| 120 | #define ABB5ZES3_REG_TIMB_CLK_TAQ2 BIT(2) |
| 121 | #define ABB5ZES3_REG_TIMB_CLK_TAQ1 BIT(1) |
| 122 | #define ABB5ZES3_REG_TIMB_CLK_TAQ0 BIT(0) |
| 123 | #define ABB5ZES3_REG_TIMB 0x13 /* Timer B register */ |
| 124 | #define ABB5ZES3_TIMB_SEC_LEN 2 |
| 125 | |
| 126 | #define ABB5ZES3_MEM_MAP_LEN 0x14 |
| 127 | |
| 128 | struct abb5zes3_rtc_data { |
| 129 | struct rtc_device *rtc; |
| 130 | struct regmap *regmap; |
| 131 | struct mutex lock; |
| 132 | |
| 133 | int irq; |
| 134 | |
| 135 | bool battery_low; |
Arnaud Ebalard | c8a1d8a | 2015-02-13 14:41:04 -0800 | [diff] [blame] | 136 | bool timer_alarm; /* current alarm is via timer A */ |
Arnaud Ebalard | 0b2f622 | 2015-02-13 14:41:00 -0800 | [diff] [blame] | 137 | }; |
| 138 | |
| 139 | /* |
| 140 | * Try and match register bits w/ fixed null values to see whether we |
| 141 | * are dealing with an ABB5ZES3. Note: this function is called early |
| 142 | * during init and hence does need mutex protection. |
| 143 | */ |
| 144 | static int abb5zes3_i2c_validate_chip(struct regmap *regmap) |
| 145 | { |
| 146 | u8 regs[ABB5ZES3_MEM_MAP_LEN]; |
| 147 | static const u8 mask[ABB5ZES3_MEM_MAP_LEN] = { 0x00, 0x00, 0x10, 0x00, |
| 148 | 0x80, 0xc0, 0xc0, 0xf8, |
| 149 | 0xe0, 0x00, 0x00, 0x40, |
| 150 | 0x40, 0x78, 0x00, 0x00, |
| 151 | 0xf8, 0x00, 0x88, 0x00 }; |
| 152 | int ret, i; |
| 153 | |
| 154 | ret = regmap_bulk_read(regmap, 0, regs, ABB5ZES3_MEM_MAP_LEN); |
| 155 | if (ret) |
| 156 | return ret; |
| 157 | |
| 158 | for (i = 0; i < ABB5ZES3_MEM_MAP_LEN; ++i) { |
| 159 | if (regs[i] & mask[i]) /* check if bits are cleared */ |
| 160 | return -ENODEV; |
| 161 | } |
| 162 | |
| 163 | return 0; |
| 164 | } |
| 165 | |
| 166 | /* Clear alarm status bit. */ |
| 167 | static int _abb5zes3_rtc_clear_alarm(struct device *dev) |
| 168 | { |
| 169 | struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); |
| 170 | int ret; |
| 171 | |
| 172 | ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2, |
| 173 | ABB5ZES3_REG_CTRL2_AF, 0); |
| 174 | if (ret) |
| 175 | dev_err(dev, "%s: clearing alarm failed (%d)\n", __func__, ret); |
| 176 | |
| 177 | return ret; |
| 178 | } |
| 179 | |
| 180 | /* Enable or disable alarm (i.e. alarm interrupt generation) */ |
| 181 | static int _abb5zes3_rtc_update_alarm(struct device *dev, bool enable) |
| 182 | { |
| 183 | struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); |
| 184 | int ret; |
| 185 | |
| 186 | ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL1, |
| 187 | ABB5ZES3_REG_CTRL1_AIE, |
| 188 | enable ? ABB5ZES3_REG_CTRL1_AIE : 0); |
| 189 | if (ret) |
| 190 | dev_err(dev, "%s: writing alarm INT failed (%d)\n", |
| 191 | __func__, ret); |
| 192 | |
| 193 | return ret; |
| 194 | } |
| 195 | |
Arnaud Ebalard | c8a1d8a | 2015-02-13 14:41:04 -0800 | [diff] [blame] | 196 | /* Enable or disable timer (watchdog timer A interrupt generation) */ |
| 197 | static int _abb5zes3_rtc_update_timer(struct device *dev, bool enable) |
| 198 | { |
| 199 | struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); |
| 200 | int ret; |
| 201 | |
| 202 | ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2, |
| 203 | ABB5ZES3_REG_CTRL2_WTAIE, |
| 204 | enable ? ABB5ZES3_REG_CTRL2_WTAIE : 0); |
| 205 | if (ret) |
| 206 | dev_err(dev, "%s: writing timer INT failed (%d)\n", |
| 207 | __func__, ret); |
| 208 | |
| 209 | return ret; |
| 210 | } |
| 211 | |
Arnaud Ebalard | 0b2f622 | 2015-02-13 14:41:00 -0800 | [diff] [blame] | 212 | /* |
| 213 | * Note: we only read, so regmap inner lock protection is sufficient, i.e. |
| 214 | * we do not need driver's main lock protection. |
| 215 | */ |
| 216 | static int _abb5zes3_rtc_read_time(struct device *dev, struct rtc_time *tm) |
| 217 | { |
| 218 | struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); |
| 219 | u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN]; |
| 220 | int ret; |
| 221 | |
| 222 | /* |
| 223 | * As we need to read CTRL1 register anyway to access 24/12h |
| 224 | * mode bit, we do a single bulk read of both control and RTC |
| 225 | * sections (they are consecutive). This also ease indexing |
| 226 | * of register values after bulk read. |
| 227 | */ |
| 228 | ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_CTRL1, regs, |
| 229 | sizeof(regs)); |
| 230 | if (ret) { |
| 231 | dev_err(dev, "%s: reading RTC time failed (%d)\n", |
| 232 | __func__, ret); |
| 233 | goto err; |
| 234 | } |
| 235 | |
| 236 | /* If clock integrity is not guaranteed, do not return a time value */ |
| 237 | if (regs[ABB5ZES3_REG_RTC_SC] & ABB5ZES3_REG_RTC_SC_OSC) { |
| 238 | ret = -ENODATA; |
| 239 | goto err; |
| 240 | } |
| 241 | |
| 242 | tm->tm_sec = bcd2bin(regs[ABB5ZES3_REG_RTC_SC] & 0x7F); |
| 243 | tm->tm_min = bcd2bin(regs[ABB5ZES3_REG_RTC_MN]); |
| 244 | |
| 245 | if (regs[ABB5ZES3_REG_CTRL1] & ABB5ZES3_REG_CTRL1_PM) { /* 12hr mode */ |
| 246 | tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR] & 0x1f); |
| 247 | if (regs[ABB5ZES3_REG_RTC_HR] & ABB5ZES3_REG_RTC_HR_PM) /* PM */ |
| 248 | tm->tm_hour += 12; |
| 249 | } else { /* 24hr mode */ |
| 250 | tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR]); |
| 251 | } |
| 252 | |
| 253 | tm->tm_mday = bcd2bin(regs[ABB5ZES3_REG_RTC_DT]); |
| 254 | tm->tm_wday = bcd2bin(regs[ABB5ZES3_REG_RTC_DW]); |
| 255 | tm->tm_mon = bcd2bin(regs[ABB5ZES3_REG_RTC_MO]) - 1; /* starts at 1 */ |
| 256 | tm->tm_year = bcd2bin(regs[ABB5ZES3_REG_RTC_YR]) + 100; |
| 257 | |
| 258 | ret = rtc_valid_tm(tm); |
| 259 | |
| 260 | err: |
| 261 | return ret; |
| 262 | } |
| 263 | |
| 264 | static int abb5zes3_rtc_set_time(struct device *dev, struct rtc_time *tm) |
| 265 | { |
| 266 | struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); |
| 267 | u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN]; |
| 268 | int ret; |
| 269 | |
| 270 | /* |
| 271 | * Year register is 8-bit wide and bcd-coded, i.e records values |
| 272 | * between 0 and 99. tm_year is an offset from 1900 and we are |
| 273 | * interested in the 2000-2099 range, so any value less than 100 |
| 274 | * is invalid. |
| 275 | */ |
| 276 | if (tm->tm_year < 100) |
| 277 | return -EINVAL; |
| 278 | |
| 279 | regs[ABB5ZES3_REG_RTC_SC] = bin2bcd(tm->tm_sec); /* MSB=0 clears OSC */ |
| 280 | regs[ABB5ZES3_REG_RTC_MN] = bin2bcd(tm->tm_min); |
| 281 | regs[ABB5ZES3_REG_RTC_HR] = bin2bcd(tm->tm_hour); /* 24-hour format */ |
| 282 | regs[ABB5ZES3_REG_RTC_DT] = bin2bcd(tm->tm_mday); |
| 283 | regs[ABB5ZES3_REG_RTC_DW] = bin2bcd(tm->tm_wday); |
| 284 | regs[ABB5ZES3_REG_RTC_MO] = bin2bcd(tm->tm_mon + 1); |
| 285 | regs[ABB5ZES3_REG_RTC_YR] = bin2bcd(tm->tm_year - 100); |
| 286 | |
| 287 | mutex_lock(&data->lock); |
| 288 | ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_RTC_SC, |
| 289 | regs + ABB5ZES3_REG_RTC_SC, |
| 290 | ABB5ZES3_RTC_SEC_LEN); |
| 291 | mutex_unlock(&data->lock); |
| 292 | |
| 293 | |
| 294 | return ret; |
| 295 | } |
| 296 | |
Arnaud Ebalard | c8a1d8a | 2015-02-13 14:41:04 -0800 | [diff] [blame] | 297 | /* |
| 298 | * Set provided TAQ and Timer A registers (TIMA_CLK and TIMA) based on |
| 299 | * given number of seconds. |
| 300 | */ |
| 301 | static inline void sec_to_timer_a(u8 secs, u8 *taq, u8 *timer_a) |
| 302 | { |
| 303 | *taq = ABB5ZES3_REG_TIMA_CLK_TAQ1; /* 1Hz */ |
| 304 | *timer_a = secs; |
| 305 | } |
| 306 | |
| 307 | /* |
| 308 | * Return current number of seconds in Timer A. As we only use |
| 309 | * timer A with a 1Hz freq, this is what we expect to have. |
| 310 | */ |
| 311 | static inline int sec_from_timer_a(u8 *secs, u8 taq, u8 timer_a) |
| 312 | { |
| 313 | if (taq != ABB5ZES3_REG_TIMA_CLK_TAQ1) /* 1Hz */ |
| 314 | return -EINVAL; |
| 315 | |
| 316 | *secs = timer_a; |
| 317 | |
| 318 | return 0; |
| 319 | } |
| 320 | |
| 321 | /* |
| 322 | * Read alarm currently configured via a watchdog timer using timer A. This |
| 323 | * is done by reading current RTC time and adding remaining timer time. |
| 324 | */ |
| 325 | static int _abb5zes3_rtc_read_timer(struct device *dev, |
| 326 | struct rtc_wkalrm *alarm) |
| 327 | { |
| 328 | struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); |
| 329 | struct rtc_time rtc_tm, *alarm_tm = &alarm->time; |
| 330 | u8 regs[ABB5ZES3_TIMA_SEC_LEN + 1]; |
| 331 | unsigned long rtc_secs; |
| 332 | unsigned int reg; |
| 333 | u8 timer_secs; |
| 334 | int ret; |
| 335 | |
| 336 | /* |
| 337 | * Instead of doing two separate calls, because they are consecutive, |
| 338 | * we grab both clockout register and Timer A section. The latter is |
| 339 | * used to decide if timer A is enabled (as a watchdog timer). |
| 340 | */ |
| 341 | ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_TIM_CLK, regs, |
| 342 | ABB5ZES3_TIMA_SEC_LEN + 1); |
| 343 | if (ret) { |
| 344 | dev_err(dev, "%s: reading Timer A section failed (%d)\n", |
| 345 | __func__, ret); |
| 346 | goto err; |
| 347 | } |
| 348 | |
| 349 | /* get current time ... */ |
| 350 | ret = _abb5zes3_rtc_read_time(dev, &rtc_tm); |
| 351 | if (ret) |
| 352 | goto err; |
| 353 | |
| 354 | /* ... convert to seconds ... */ |
| 355 | ret = rtc_tm_to_time(&rtc_tm, &rtc_secs); |
| 356 | if (ret) |
| 357 | goto err; |
| 358 | |
| 359 | /* ... add remaining timer A time ... */ |
| 360 | ret = sec_from_timer_a(&timer_secs, regs[1], regs[2]); |
| 361 | if (ret) |
| 362 | goto err; |
| 363 | |
| 364 | /* ... and convert back. */ |
| 365 | rtc_time_to_tm(rtc_secs + timer_secs, alarm_tm); |
| 366 | |
| 367 | ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL2, ®); |
| 368 | if (ret) { |
| 369 | dev_err(dev, "%s: reading ctrl reg failed (%d)\n", |
| 370 | __func__, ret); |
| 371 | goto err; |
| 372 | } |
| 373 | |
| 374 | alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL2_WTAIE); |
| 375 | |
| 376 | err: |
| 377 | return ret; |
| 378 | } |
| 379 | |
| 380 | /* Read alarm currently configured via a RTC alarm registers. */ |
| 381 | static int _abb5zes3_rtc_read_alarm(struct device *dev, |
| 382 | struct rtc_wkalrm *alarm) |
Arnaud Ebalard | 0b2f622 | 2015-02-13 14:41:00 -0800 | [diff] [blame] | 383 | { |
| 384 | struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); |
| 385 | struct rtc_time rtc_tm, *alarm_tm = &alarm->time; |
| 386 | unsigned long rtc_secs, alarm_secs; |
| 387 | u8 regs[ABB5ZES3_ALRM_SEC_LEN]; |
| 388 | unsigned int reg; |
| 389 | int ret; |
| 390 | |
Arnaud Ebalard | 0b2f622 | 2015-02-13 14:41:00 -0800 | [diff] [blame] | 391 | ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_ALRM_MN, regs, |
| 392 | ABB5ZES3_ALRM_SEC_LEN); |
| 393 | if (ret) { |
| 394 | dev_err(dev, "%s: reading alarm section failed (%d)\n", |
| 395 | __func__, ret); |
| 396 | goto err; |
| 397 | } |
| 398 | |
| 399 | alarm_tm->tm_sec = 0; |
| 400 | alarm_tm->tm_min = bcd2bin(regs[0] & 0x7f); |
| 401 | alarm_tm->tm_hour = bcd2bin(regs[1] & 0x3f); |
| 402 | alarm_tm->tm_mday = bcd2bin(regs[2] & 0x3f); |
| 403 | alarm_tm->tm_wday = -1; |
| 404 | |
| 405 | /* |
| 406 | * The alarm section does not store year/month. We use the ones in rtc |
| 407 | * section as a basis and increment month and then year if needed to get |
| 408 | * alarm after current time. |
| 409 | */ |
| 410 | ret = _abb5zes3_rtc_read_time(dev, &rtc_tm); |
| 411 | if (ret) |
| 412 | goto err; |
| 413 | |
| 414 | alarm_tm->tm_year = rtc_tm.tm_year; |
| 415 | alarm_tm->tm_mon = rtc_tm.tm_mon; |
| 416 | |
| 417 | ret = rtc_tm_to_time(&rtc_tm, &rtc_secs); |
| 418 | if (ret) |
| 419 | goto err; |
| 420 | |
| 421 | ret = rtc_tm_to_time(alarm_tm, &alarm_secs); |
| 422 | if (ret) |
| 423 | goto err; |
| 424 | |
| 425 | if (alarm_secs < rtc_secs) { |
| 426 | if (alarm_tm->tm_mon == 11) { |
| 427 | alarm_tm->tm_mon = 0; |
| 428 | alarm_tm->tm_year += 1; |
| 429 | } else { |
| 430 | alarm_tm->tm_mon += 1; |
| 431 | } |
| 432 | } |
| 433 | |
| 434 | ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL1, ®); |
| 435 | if (ret) { |
| 436 | dev_err(dev, "%s: reading ctrl reg failed (%d)\n", |
| 437 | __func__, ret); |
| 438 | goto err; |
| 439 | } |
| 440 | |
| 441 | alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL1_AIE); |
| 442 | |
| 443 | err: |
Arnaud Ebalard | c8a1d8a | 2015-02-13 14:41:04 -0800 | [diff] [blame] | 444 | return ret; |
| 445 | } |
| 446 | |
| 447 | /* |
| 448 | * As the Alarm mechanism supported by the chip is only accurate to the |
| 449 | * minute, we use the watchdog timer mechanism provided by timer A |
| 450 | * (up to 256 seconds w/ a second accuracy) for low alarm values (below |
| 451 | * 4 minutes). Otherwise, we use the common alarm mechanism provided |
| 452 | * by the chip. In order for that to work, we keep track of currently |
| 453 | * configured timer type via 'timer_alarm' flag in our private data |
| 454 | * structure. |
| 455 | */ |
| 456 | static int abb5zes3_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm) |
| 457 | { |
| 458 | struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); |
| 459 | int ret; |
| 460 | |
| 461 | mutex_lock(&data->lock); |
| 462 | if (data->timer_alarm) |
| 463 | ret = _abb5zes3_rtc_read_timer(dev, alarm); |
| 464 | else |
| 465 | ret = _abb5zes3_rtc_read_alarm(dev, alarm); |
Arnaud Ebalard | 0b2f622 | 2015-02-13 14:41:00 -0800 | [diff] [blame] | 466 | mutex_unlock(&data->lock); |
| 467 | |
| 468 | return ret; |
| 469 | } |
| 470 | |
Arnaud Ebalard | c8a1d8a | 2015-02-13 14:41:04 -0800 | [diff] [blame] | 471 | /* |
| 472 | * Set alarm using chip alarm mechanism. It is only accurate to the |
| 473 | * minute (not the second). The function expects alarm interrupt to |
| 474 | * be disabled. |
| 475 | */ |
| 476 | static int _abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm) |
Arnaud Ebalard | 0b2f622 | 2015-02-13 14:41:00 -0800 | [diff] [blame] | 477 | { |
| 478 | struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); |
| 479 | struct rtc_time *alarm_tm = &alarm->time; |
| 480 | unsigned long rtc_secs, alarm_secs; |
| 481 | u8 regs[ABB5ZES3_ALRM_SEC_LEN]; |
| 482 | struct rtc_time rtc_tm; |
| 483 | int ret, enable = 1; |
| 484 | |
Arnaud Ebalard | 0b2f622 | 2015-02-13 14:41:00 -0800 | [diff] [blame] | 485 | ret = _abb5zes3_rtc_read_time(dev, &rtc_tm); |
| 486 | if (ret) |
| 487 | goto err; |
| 488 | |
| 489 | ret = rtc_tm_to_time(&rtc_tm, &rtc_secs); |
| 490 | if (ret) |
| 491 | goto err; |
| 492 | |
| 493 | ret = rtc_tm_to_time(alarm_tm, &alarm_secs); |
| 494 | if (ret) |
| 495 | goto err; |
| 496 | |
| 497 | /* If alarm time is before current time, disable the alarm */ |
| 498 | if (!alarm->enabled || alarm_secs <= rtc_secs) { |
| 499 | enable = 0; |
| 500 | } else { |
| 501 | /* |
| 502 | * Chip only support alarms up to one month in the future. Let's |
| 503 | * return an error if we get something after that limit. |
| 504 | * Comparison is done by incrementing rtc_tm month field by one |
| 505 | * and checking alarm value is still below. |
| 506 | */ |
| 507 | if (rtc_tm.tm_mon == 11) { /* handle year wrapping */ |
| 508 | rtc_tm.tm_mon = 0; |
| 509 | rtc_tm.tm_year += 1; |
| 510 | } else { |
| 511 | rtc_tm.tm_mon += 1; |
| 512 | } |
| 513 | |
| 514 | ret = rtc_tm_to_time(&rtc_tm, &rtc_secs); |
| 515 | if (ret) |
| 516 | goto err; |
| 517 | |
| 518 | if (alarm_secs > rtc_secs) { |
| 519 | dev_err(dev, "%s: alarm maximum is one month in the " |
| 520 | "future (%d)\n", __func__, ret); |
| 521 | ret = -EINVAL; |
| 522 | goto err; |
| 523 | } |
| 524 | } |
| 525 | |
Arnaud Ebalard | c8a1d8a | 2015-02-13 14:41:04 -0800 | [diff] [blame] | 526 | /* |
| 527 | * Program all alarm registers but DW one. For each register, setting |
| 528 | * MSB to 0 enables associated alarm. |
| 529 | */ |
| 530 | regs[0] = bin2bcd(alarm_tm->tm_min) & 0x7f; |
| 531 | regs[1] = bin2bcd(alarm_tm->tm_hour) & 0x3f; |
| 532 | regs[2] = bin2bcd(alarm_tm->tm_mday) & 0x3f; |
Arnaud Ebalard | 0b2f622 | 2015-02-13 14:41:00 -0800 | [diff] [blame] | 533 | regs[3] = ABB5ZES3_REG_ALRM_DW_AE; /* do not match day of the week */ |
| 534 | |
| 535 | ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_ALRM_MN, regs, |
| 536 | ABB5ZES3_ALRM_SEC_LEN); |
| 537 | if (ret < 0) { |
| 538 | dev_err(dev, "%s: writing ALARM section failed (%d)\n", |
| 539 | __func__, ret); |
| 540 | goto err; |
| 541 | } |
| 542 | |
Arnaud Ebalard | c8a1d8a | 2015-02-13 14:41:04 -0800 | [diff] [blame] | 543 | /* Record currently configured alarm is not a timer */ |
| 544 | data->timer_alarm = 0; |
| 545 | |
| 546 | /* Enable or disable alarm interrupt generation */ |
Arnaud Ebalard | 0b2f622 | 2015-02-13 14:41:00 -0800 | [diff] [blame] | 547 | ret = _abb5zes3_rtc_update_alarm(dev, enable); |
| 548 | |
| 549 | err: |
Arnaud Ebalard | 0b2f622 | 2015-02-13 14:41:00 -0800 | [diff] [blame] | 550 | return ret; |
| 551 | } |
| 552 | |
Arnaud Ebalard | c8a1d8a | 2015-02-13 14:41:04 -0800 | [diff] [blame] | 553 | /* |
| 554 | * Set alarm using timer watchdog (via timer A) mechanism. The function expects |
| 555 | * timer A interrupt to be disabled. |
| 556 | */ |
| 557 | static int _abb5zes3_rtc_set_timer(struct device *dev, struct rtc_wkalrm *alarm, |
| 558 | u8 secs) |
| 559 | { |
| 560 | struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); |
| 561 | u8 regs[ABB5ZES3_TIMA_SEC_LEN]; |
| 562 | u8 mask = ABB5ZES3_REG_TIM_CLK_TAC0 | ABB5ZES3_REG_TIM_CLK_TAC1; |
| 563 | int ret = 0; |
| 564 | |
| 565 | /* Program given number of seconds to Timer A registers */ |
| 566 | sec_to_timer_a(secs, ®s[0], ®s[1]); |
| 567 | ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_TIMA_CLK, regs, |
| 568 | ABB5ZES3_TIMA_SEC_LEN); |
| 569 | if (ret < 0) { |
| 570 | dev_err(dev, "%s: writing timer section failed\n", __func__); |
| 571 | goto err; |
| 572 | } |
| 573 | |
| 574 | /* Configure Timer A as a watchdog timer */ |
| 575 | ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_TIM_CLK, |
| 576 | mask, ABB5ZES3_REG_TIM_CLK_TAC1); |
| 577 | if (ret) |
| 578 | dev_err(dev, "%s: failed to update timer\n", __func__); |
| 579 | |
| 580 | /* Record currently configured alarm is a timer */ |
| 581 | data->timer_alarm = 1; |
| 582 | |
| 583 | /* Enable or disable timer interrupt generation */ |
| 584 | ret = _abb5zes3_rtc_update_timer(dev, alarm->enabled); |
| 585 | |
| 586 | err: |
| 587 | return ret; |
| 588 | } |
| 589 | |
| 590 | /* |
| 591 | * The chip has an alarm which is only accurate to the minute. In order to |
| 592 | * handle alarms below that limit, we use the watchdog timer function of |
| 593 | * timer A. More precisely, the timer method is used for alarms below 240 |
| 594 | * seconds. |
| 595 | */ |
| 596 | static int abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm) |
| 597 | { |
| 598 | struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); |
| 599 | struct rtc_time *alarm_tm = &alarm->time; |
| 600 | unsigned long rtc_secs, alarm_secs; |
| 601 | struct rtc_time rtc_tm; |
| 602 | int ret; |
| 603 | |
| 604 | mutex_lock(&data->lock); |
| 605 | ret = _abb5zes3_rtc_read_time(dev, &rtc_tm); |
| 606 | if (ret) |
| 607 | goto err; |
| 608 | |
| 609 | ret = rtc_tm_to_time(&rtc_tm, &rtc_secs); |
| 610 | if (ret) |
| 611 | goto err; |
| 612 | |
| 613 | ret = rtc_tm_to_time(alarm_tm, &alarm_secs); |
| 614 | if (ret) |
| 615 | goto err; |
| 616 | |
| 617 | /* Let's first disable both the alarm and the timer interrupts */ |
| 618 | ret = _abb5zes3_rtc_update_alarm(dev, false); |
| 619 | if (ret < 0) { |
| 620 | dev_err(dev, "%s: unable to disable alarm (%d)\n", __func__, |
| 621 | ret); |
| 622 | goto err; |
| 623 | } |
| 624 | ret = _abb5zes3_rtc_update_timer(dev, false); |
| 625 | if (ret < 0) { |
| 626 | dev_err(dev, "%s: unable to disable timer (%d)\n", __func__, |
| 627 | ret); |
| 628 | goto err; |
| 629 | } |
| 630 | |
| 631 | data->timer_alarm = 0; |
| 632 | |
| 633 | /* |
| 634 | * Let's now configure the alarm; if we are expected to ring in |
| 635 | * more than 240s, then we setup an alarm. Otherwise, a timer. |
| 636 | */ |
| 637 | if ((alarm_secs > rtc_secs) && ((alarm_secs - rtc_secs) <= 240)) |
| 638 | ret = _abb5zes3_rtc_set_timer(dev, alarm, |
| 639 | alarm_secs - rtc_secs); |
| 640 | else |
| 641 | ret = _abb5zes3_rtc_set_alarm(dev, alarm); |
| 642 | |
| 643 | err: |
| 644 | mutex_unlock(&data->lock); |
| 645 | |
| 646 | if (ret) |
| 647 | dev_err(dev, "%s: unable to configure alarm (%d)\n", __func__, |
| 648 | ret); |
| 649 | |
| 650 | return ret; |
Joe Perches | 447a564 | 2018-03-21 15:09:32 -0700 | [diff] [blame^] | 651 | } |
Arnaud Ebalard | 0b2f622 | 2015-02-13 14:41:00 -0800 | [diff] [blame] | 652 | |
| 653 | /* Enable or disable battery low irq generation */ |
| 654 | static inline int _abb5zes3_rtc_battery_low_irq_enable(struct regmap *regmap, |
| 655 | bool enable) |
| 656 | { |
| 657 | return regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3, |
| 658 | ABB5ZES3_REG_CTRL3_BLIE, |
| 659 | enable ? ABB5ZES3_REG_CTRL3_BLIE : 0); |
| 660 | } |
| 661 | |
| 662 | /* |
| 663 | * Check current RTC status and enable/disable what needs to be. Return 0 if |
| 664 | * everything went ok and a negative value upon error. Note: this function |
| 665 | * is called early during init and hence does need mutex protection. |
| 666 | */ |
| 667 | static int abb5zes3_rtc_check_setup(struct device *dev) |
| 668 | { |
| 669 | struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); |
Arnaud Ebalard | c8a1d8a | 2015-02-13 14:41:04 -0800 | [diff] [blame] | 670 | struct regmap *regmap = data->regmap; |
Arnaud Ebalard | 0b2f622 | 2015-02-13 14:41:00 -0800 | [diff] [blame] | 671 | unsigned int reg; |
| 672 | int ret; |
| 673 | u8 mask; |
| 674 | |
| 675 | /* |
| 676 | * By default, the devices generates a 32.768KHz signal on IRQ#1 pin. It |
| 677 | * is disabled here to prevent polluting the interrupt line and |
| 678 | * uselessly triggering the IRQ handler we install for alarm and battery |
| 679 | * low events. Note: this is done before clearing int. status below |
| 680 | * in this function. |
| 681 | * We also disable all timers and set timer interrupt to permanent (not |
| 682 | * pulsed). |
| 683 | */ |
| 684 | mask = (ABB5ZES3_REG_TIM_CLK_TBC | ABB5ZES3_REG_TIM_CLK_TAC0 | |
| 685 | ABB5ZES3_REG_TIM_CLK_TAC1 | ABB5ZES3_REG_TIM_CLK_COF0 | |
| 686 | ABB5ZES3_REG_TIM_CLK_COF1 | ABB5ZES3_REG_TIM_CLK_COF2 | |
| 687 | ABB5ZES3_REG_TIM_CLK_TBM | ABB5ZES3_REG_TIM_CLK_TAM); |
| 688 | ret = regmap_update_bits(regmap, ABB5ZES3_REG_TIM_CLK, mask, |
| 689 | ABB5ZES3_REG_TIM_CLK_COF0 | ABB5ZES3_REG_TIM_CLK_COF1 | |
| 690 | ABB5ZES3_REG_TIM_CLK_COF2); |
| 691 | if (ret < 0) { |
| 692 | dev_err(dev, "%s: unable to initialize clkout register (%d)\n", |
| 693 | __func__, ret); |
| 694 | return ret; |
| 695 | } |
| 696 | |
| 697 | /* |
| 698 | * Each component of the alarm (MN, HR, DT, DW) can be enabled/disabled |
| 699 | * individually by clearing/setting MSB of each associated register. So, |
| 700 | * we set all alarm enable bits to disable current alarm setting. |
| 701 | */ |
| 702 | mask = (ABB5ZES3_REG_ALRM_MN_AE | ABB5ZES3_REG_ALRM_HR_AE | |
| 703 | ABB5ZES3_REG_ALRM_DT_AE | ABB5ZES3_REG_ALRM_DW_AE); |
| 704 | ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, mask); |
| 705 | if (ret < 0) { |
| 706 | dev_err(dev, "%s: unable to disable alarm setting (%d)\n", |
| 707 | __func__, ret); |
| 708 | return ret; |
| 709 | } |
| 710 | |
| 711 | /* Set Control 1 register (RTC enabled, 24hr mode, all int. disabled) */ |
| 712 | mask = (ABB5ZES3_REG_CTRL1_CIE | ABB5ZES3_REG_CTRL1_AIE | |
| 713 | ABB5ZES3_REG_CTRL1_SIE | ABB5ZES3_REG_CTRL1_PM | |
| 714 | ABB5ZES3_REG_CTRL1_CAP | ABB5ZES3_REG_CTRL1_STOP); |
| 715 | ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL1, mask, 0); |
| 716 | if (ret < 0) { |
| 717 | dev_err(dev, "%s: unable to initialize CTRL1 register (%d)\n", |
| 718 | __func__, ret); |
| 719 | return ret; |
| 720 | } |
| 721 | |
| 722 | /* |
| 723 | * Set Control 2 register (timer int. disabled, alarm status cleared). |
| 724 | * WTAF is read-only and cleared automatically by reading the register. |
| 725 | */ |
| 726 | mask = (ABB5ZES3_REG_CTRL2_CTBIE | ABB5ZES3_REG_CTRL2_CTAIE | |
| 727 | ABB5ZES3_REG_CTRL2_WTAIE | ABB5ZES3_REG_CTRL2_AF | |
| 728 | ABB5ZES3_REG_CTRL2_SF | ABB5ZES3_REG_CTRL2_CTBF | |
| 729 | ABB5ZES3_REG_CTRL2_CTAF); |
| 730 | ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, 0); |
| 731 | if (ret < 0) { |
| 732 | dev_err(dev, "%s: unable to initialize CTRL2 register (%d)\n", |
| 733 | __func__, ret); |
| 734 | return ret; |
| 735 | } |
| 736 | |
| 737 | /* |
| 738 | * Enable battery low detection function and battery switchover function |
| 739 | * (standard mode). Disable associated interrupts. Clear battery |
| 740 | * switchover flag but not battery low flag. The latter is checked |
| 741 | * later below. |
| 742 | */ |
| 743 | mask = (ABB5ZES3_REG_CTRL3_PM0 | ABB5ZES3_REG_CTRL3_PM1 | |
| 744 | ABB5ZES3_REG_CTRL3_PM2 | ABB5ZES3_REG_CTRL3_BLIE | |
| 745 | ABB5ZES3_REG_CTRL3_BSIE| ABB5ZES3_REG_CTRL3_BSF); |
| 746 | ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3, mask, 0); |
| 747 | if (ret < 0) { |
| 748 | dev_err(dev, "%s: unable to initialize CTRL3 register (%d)\n", |
| 749 | __func__, ret); |
| 750 | return ret; |
| 751 | } |
| 752 | |
| 753 | /* Check oscillator integrity flag */ |
| 754 | ret = regmap_read(regmap, ABB5ZES3_REG_RTC_SC, ®); |
| 755 | if (ret < 0) { |
| 756 | dev_err(dev, "%s: unable to read osc. integrity flag (%d)\n", |
| 757 | __func__, ret); |
| 758 | return ret; |
| 759 | } |
| 760 | |
| 761 | if (reg & ABB5ZES3_REG_RTC_SC_OSC) { |
| 762 | dev_err(dev, "clock integrity not guaranteed. Osc. has stopped " |
| 763 | "or has been interrupted.\n"); |
| 764 | dev_err(dev, "change battery (if not already done) and " |
| 765 | "then set time to reset osc. failure flag.\n"); |
| 766 | } |
| 767 | |
| 768 | /* |
| 769 | * Check battery low flag at startup: this allows reporting battery |
| 770 | * is low at startup when IRQ line is not connected. Note: we record |
| 771 | * current status to avoid reenabling this interrupt later in probe |
| 772 | * function if battery is low. |
| 773 | */ |
| 774 | ret = regmap_read(regmap, ABB5ZES3_REG_CTRL3, ®); |
| 775 | if (ret < 0) { |
| 776 | dev_err(dev, "%s: unable to read battery low flag (%d)\n", |
| 777 | __func__, ret); |
| 778 | return ret; |
| 779 | } |
| 780 | |
| 781 | data->battery_low = reg & ABB5ZES3_REG_CTRL3_BLF; |
| 782 | if (data->battery_low) { |
| 783 | dev_err(dev, "RTC battery is low; please, consider " |
| 784 | "changing it!\n"); |
| 785 | |
| 786 | ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, false); |
| 787 | if (ret) |
| 788 | dev_err(dev, "%s: disabling battery low interrupt " |
| 789 | "generation failed (%d)\n", __func__, ret); |
| 790 | } |
| 791 | |
| 792 | return ret; |
| 793 | } |
| 794 | |
| 795 | static int abb5zes3_rtc_alarm_irq_enable(struct device *dev, |
| 796 | unsigned int enable) |
| 797 | { |
| 798 | struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev); |
| 799 | int ret = 0; |
| 800 | |
| 801 | if (rtc_data->irq) { |
| 802 | mutex_lock(&rtc_data->lock); |
Arnaud Ebalard | c8a1d8a | 2015-02-13 14:41:04 -0800 | [diff] [blame] | 803 | if (rtc_data->timer_alarm) |
| 804 | ret = _abb5zes3_rtc_update_timer(dev, enable); |
| 805 | else |
| 806 | ret = _abb5zes3_rtc_update_alarm(dev, enable); |
Arnaud Ebalard | 0b2f622 | 2015-02-13 14:41:00 -0800 | [diff] [blame] | 807 | mutex_unlock(&rtc_data->lock); |
| 808 | } |
| 809 | |
| 810 | return ret; |
| 811 | } |
| 812 | |
| 813 | static irqreturn_t _abb5zes3_rtc_interrupt(int irq, void *data) |
| 814 | { |
| 815 | struct i2c_client *client = data; |
| 816 | struct device *dev = &client->dev; |
| 817 | struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev); |
| 818 | struct rtc_device *rtc = rtc_data->rtc; |
| 819 | u8 regs[ABB5ZES3_CTRL_SEC_LEN]; |
| 820 | int ret, handled = IRQ_NONE; |
| 821 | |
| 822 | ret = regmap_bulk_read(rtc_data->regmap, 0, regs, |
| 823 | ABB5ZES3_CTRL_SEC_LEN); |
| 824 | if (ret) { |
| 825 | dev_err(dev, "%s: unable to read control section (%d)!\n", |
| 826 | __func__, ret); |
| 827 | return handled; |
| 828 | } |
| 829 | |
| 830 | /* |
| 831 | * Check battery low detection flag and disable battery low interrupt |
| 832 | * generation if flag is set (interrupt can only be cleared when |
| 833 | * battery is replaced). |
| 834 | */ |
| 835 | if (regs[ABB5ZES3_REG_CTRL3] & ABB5ZES3_REG_CTRL3_BLF) { |
| 836 | dev_err(dev, "RTC battery is low; please change it!\n"); |
| 837 | |
| 838 | _abb5zes3_rtc_battery_low_irq_enable(rtc_data->regmap, false); |
| 839 | |
| 840 | handled = IRQ_HANDLED; |
| 841 | } |
| 842 | |
| 843 | /* Check alarm flag */ |
| 844 | if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_AF) { |
| 845 | dev_dbg(dev, "RTC alarm!\n"); |
| 846 | |
| 847 | rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF); |
| 848 | |
| 849 | /* Acknowledge and disable the alarm */ |
| 850 | _abb5zes3_rtc_clear_alarm(dev); |
| 851 | _abb5zes3_rtc_update_alarm(dev, 0); |
| 852 | |
| 853 | handled = IRQ_HANDLED; |
| 854 | } |
| 855 | |
Arnaud Ebalard | c8a1d8a | 2015-02-13 14:41:04 -0800 | [diff] [blame] | 856 | /* Check watchdog Timer A flag */ |
| 857 | if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_WTAF) { |
| 858 | dev_dbg(dev, "RTC timer!\n"); |
| 859 | |
| 860 | rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF); |
| 861 | |
| 862 | /* |
| 863 | * Acknowledge and disable the alarm. Note: WTAF |
| 864 | * flag had been cleared when reading CTRL2 |
| 865 | */ |
| 866 | _abb5zes3_rtc_update_timer(dev, 0); |
| 867 | |
| 868 | rtc_data->timer_alarm = 0; |
| 869 | |
| 870 | handled = IRQ_HANDLED; |
| 871 | } |
| 872 | |
Arnaud Ebalard | 0b2f622 | 2015-02-13 14:41:00 -0800 | [diff] [blame] | 873 | return handled; |
| 874 | } |
| 875 | |
| 876 | static const struct rtc_class_ops rtc_ops = { |
| 877 | .read_time = _abb5zes3_rtc_read_time, |
| 878 | .set_time = abb5zes3_rtc_set_time, |
| 879 | .read_alarm = abb5zes3_rtc_read_alarm, |
| 880 | .set_alarm = abb5zes3_rtc_set_alarm, |
| 881 | .alarm_irq_enable = abb5zes3_rtc_alarm_irq_enable, |
| 882 | }; |
| 883 | |
Krzysztof Kozlowski | ac2a2726 | 2015-04-16 12:45:18 -0700 | [diff] [blame] | 884 | static const struct regmap_config abb5zes3_rtc_regmap_config = { |
Arnaud Ebalard | 0b2f622 | 2015-02-13 14:41:00 -0800 | [diff] [blame] | 885 | .reg_bits = 8, |
| 886 | .val_bits = 8, |
| 887 | }; |
| 888 | |
| 889 | static int abb5zes3_probe(struct i2c_client *client, |
| 890 | const struct i2c_device_id *id) |
| 891 | { |
| 892 | struct abb5zes3_rtc_data *data = NULL; |
| 893 | struct device *dev = &client->dev; |
| 894 | struct regmap *regmap; |
| 895 | int ret; |
| 896 | |
| 897 | if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C | |
| 898 | I2C_FUNC_SMBUS_BYTE_DATA | |
| 899 | I2C_FUNC_SMBUS_I2C_BLOCK)) { |
| 900 | ret = -ENODEV; |
| 901 | goto err; |
| 902 | } |
| 903 | |
| 904 | regmap = devm_regmap_init_i2c(client, &abb5zes3_rtc_regmap_config); |
| 905 | if (IS_ERR(regmap)) { |
| 906 | ret = PTR_ERR(regmap); |
| 907 | dev_err(dev, "%s: regmap allocation failed: %d\n", |
| 908 | __func__, ret); |
| 909 | goto err; |
| 910 | } |
| 911 | |
| 912 | ret = abb5zes3_i2c_validate_chip(regmap); |
| 913 | if (ret) |
| 914 | goto err; |
| 915 | |
| 916 | data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); |
| 917 | if (!data) { |
| 918 | ret = -ENOMEM; |
| 919 | goto err; |
| 920 | } |
| 921 | |
| 922 | mutex_init(&data->lock); |
| 923 | data->regmap = regmap; |
| 924 | dev_set_drvdata(dev, data); |
| 925 | |
| 926 | ret = abb5zes3_rtc_check_setup(dev); |
| 927 | if (ret) |
| 928 | goto err; |
| 929 | |
| 930 | if (client->irq > 0) { |
| 931 | ret = devm_request_threaded_irq(dev, client->irq, NULL, |
| 932 | _abb5zes3_rtc_interrupt, |
| 933 | IRQF_SHARED|IRQF_ONESHOT, |
| 934 | DRV_NAME, client); |
| 935 | if (!ret) { |
| 936 | device_init_wakeup(dev, true); |
| 937 | data->irq = client->irq; |
| 938 | dev_dbg(dev, "%s: irq %d used by RTC\n", __func__, |
| 939 | client->irq); |
| 940 | } else { |
| 941 | dev_err(dev, "%s: irq %d unavailable (%d)\n", |
| 942 | __func__, client->irq, ret); |
| 943 | goto err; |
| 944 | } |
| 945 | } |
| 946 | |
| 947 | data->rtc = devm_rtc_device_register(dev, DRV_NAME, &rtc_ops, |
| 948 | THIS_MODULE); |
| 949 | ret = PTR_ERR_OR_ZERO(data->rtc); |
| 950 | if (ret) { |
| 951 | dev_err(dev, "%s: unable to register RTC device (%d)\n", |
| 952 | __func__, ret); |
| 953 | goto err; |
| 954 | } |
| 955 | |
Arnaud Ebalard | 0b2f622 | 2015-02-13 14:41:00 -0800 | [diff] [blame] | 956 | /* Enable battery low detection interrupt if battery not already low */ |
| 957 | if (!data->battery_low && data->irq) { |
| 958 | ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, true); |
| 959 | if (ret) { |
| 960 | dev_err(dev, "%s: enabling battery low interrupt " |
| 961 | "generation failed (%d)\n", __func__, ret); |
| 962 | goto err; |
| 963 | } |
| 964 | } |
| 965 | |
| 966 | err: |
| 967 | if (ret && data && data->irq) |
| 968 | device_init_wakeup(dev, false); |
| 969 | return ret; |
| 970 | } |
| 971 | |
| 972 | static int abb5zes3_remove(struct i2c_client *client) |
| 973 | { |
| 974 | struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(&client->dev); |
| 975 | |
| 976 | if (rtc_data->irq > 0) |
| 977 | device_init_wakeup(&client->dev, false); |
| 978 | |
| 979 | return 0; |
| 980 | } |
| 981 | |
| 982 | #ifdef CONFIG_PM_SLEEP |
| 983 | static int abb5zes3_rtc_suspend(struct device *dev) |
| 984 | { |
| 985 | struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev); |
| 986 | |
| 987 | if (device_may_wakeup(dev)) |
| 988 | return enable_irq_wake(rtc_data->irq); |
| 989 | |
| 990 | return 0; |
| 991 | } |
| 992 | |
| 993 | static int abb5zes3_rtc_resume(struct device *dev) |
| 994 | { |
| 995 | struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev); |
| 996 | |
| 997 | if (device_may_wakeup(dev)) |
| 998 | return disable_irq_wake(rtc_data->irq); |
| 999 | |
| 1000 | return 0; |
| 1001 | } |
| 1002 | #endif |
| 1003 | |
| 1004 | static SIMPLE_DEV_PM_OPS(abb5zes3_rtc_pm_ops, abb5zes3_rtc_suspend, |
| 1005 | abb5zes3_rtc_resume); |
| 1006 | |
| 1007 | #ifdef CONFIG_OF |
| 1008 | static const struct of_device_id abb5zes3_dt_match[] = { |
| 1009 | { .compatible = "abracon,abb5zes3" }, |
| 1010 | { }, |
| 1011 | }; |
Javier Martinez Canillas | 1c4fc29 | 2015-07-30 18:18:46 +0200 | [diff] [blame] | 1012 | MODULE_DEVICE_TABLE(of, abb5zes3_dt_match); |
Arnaud Ebalard | 0b2f622 | 2015-02-13 14:41:00 -0800 | [diff] [blame] | 1013 | #endif |
| 1014 | |
| 1015 | static const struct i2c_device_id abb5zes3_id[] = { |
| 1016 | { "abb5zes3", 0 }, |
| 1017 | { } |
| 1018 | }; |
| 1019 | MODULE_DEVICE_TABLE(i2c, abb5zes3_id); |
| 1020 | |
| 1021 | static struct i2c_driver abb5zes3_driver = { |
| 1022 | .driver = { |
| 1023 | .name = DRV_NAME, |
Arnaud Ebalard | 0b2f622 | 2015-02-13 14:41:00 -0800 | [diff] [blame] | 1024 | .pm = &abb5zes3_rtc_pm_ops, |
| 1025 | .of_match_table = of_match_ptr(abb5zes3_dt_match), |
| 1026 | }, |
| 1027 | .probe = abb5zes3_probe, |
| 1028 | .remove = abb5zes3_remove, |
| 1029 | .id_table = abb5zes3_id, |
| 1030 | }; |
| 1031 | module_i2c_driver(abb5zes3_driver); |
| 1032 | |
| 1033 | MODULE_AUTHOR("Arnaud EBALARD <arno@natisbad.org>"); |
| 1034 | MODULE_DESCRIPTION("Abracon AB-RTCMC-32.768kHz-B5ZE-S3 RTC/Alarm driver"); |
| 1035 | MODULE_LICENSE("GPL"); |