Marc Zyngier | f68d2b1 | 2015-10-19 15:50:58 +0100 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2012-2015 - ARM Ltd |
| 3 | * Author: Marc Zyngier <marc.zyngier@arm.com> |
| 4 | * |
| 5 | * This program is free software; you can redistribute it and/or modify |
| 6 | * it under the terms of the GNU General Public License version 2 as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This program is distributed in the hope that it will be useful, |
| 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 12 | * GNU General Public License for more details. |
| 13 | * |
| 14 | * You should have received a copy of the GNU General Public License |
| 15 | * along with this program. If not, see <http://www.gnu.org/licenses/>. |
| 16 | */ |
| 17 | |
| 18 | #include <linux/compiler.h> |
| 19 | #include <linux/irqchip/arm-gic-v3.h> |
| 20 | #include <linux/kvm_host.h> |
| 21 | |
| 22 | #include <asm/kvm_mmu.h> |
| 23 | |
| 24 | #include "hyp.h" |
| 25 | |
| 26 | #define vtr_to_max_lr_idx(v) ((v) & 0xf) |
| 27 | #define vtr_to_nr_pri_bits(v) (((u32)(v) >> 29) + 1) |
| 28 | |
| 29 | #define read_gicreg(r) \ |
| 30 | ({ \ |
| 31 | u64 reg; \ |
| 32 | asm volatile("mrs_s %0, " __stringify(r) : "=r" (reg)); \ |
| 33 | reg; \ |
| 34 | }) |
| 35 | |
| 36 | #define write_gicreg(v,r) \ |
| 37 | do { \ |
| 38 | u64 __val = (v); \ |
| 39 | asm volatile("msr_s " __stringify(r) ", %0" : : "r" (__val));\ |
| 40 | } while (0) |
| 41 | |
| 42 | /* vcpu is already in the HYP VA space */ |
| 43 | void __hyp_text __vgic_v3_save_state(struct kvm_vcpu *vcpu) |
| 44 | { |
| 45 | struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; |
| 46 | u64 val; |
| 47 | u32 max_lr_idx, nr_pri_bits; |
| 48 | |
| 49 | /* |
| 50 | * Make sure stores to the GIC via the memory mapped interface |
| 51 | * are now visible to the system register interface. |
| 52 | */ |
| 53 | dsb(st); |
| 54 | |
| 55 | cpu_if->vgic_vmcr = read_gicreg(ICH_VMCR_EL2); |
| 56 | cpu_if->vgic_misr = read_gicreg(ICH_MISR_EL2); |
| 57 | cpu_if->vgic_eisr = read_gicreg(ICH_EISR_EL2); |
| 58 | cpu_if->vgic_elrsr = read_gicreg(ICH_ELSR_EL2); |
| 59 | |
| 60 | write_gicreg(0, ICH_HCR_EL2); |
| 61 | val = read_gicreg(ICH_VTR_EL2); |
| 62 | max_lr_idx = vtr_to_max_lr_idx(val); |
| 63 | nr_pri_bits = vtr_to_nr_pri_bits(val); |
| 64 | |
| 65 | switch (max_lr_idx) { |
| 66 | case 15: |
| 67 | cpu_if->vgic_lr[VGIC_V3_LR_INDEX(15)] = read_gicreg(ICH_LR15_EL2); |
| 68 | case 14: |
| 69 | cpu_if->vgic_lr[VGIC_V3_LR_INDEX(14)] = read_gicreg(ICH_LR14_EL2); |
| 70 | case 13: |
| 71 | cpu_if->vgic_lr[VGIC_V3_LR_INDEX(13)] = read_gicreg(ICH_LR13_EL2); |
| 72 | case 12: |
| 73 | cpu_if->vgic_lr[VGIC_V3_LR_INDEX(12)] = read_gicreg(ICH_LR12_EL2); |
| 74 | case 11: |
| 75 | cpu_if->vgic_lr[VGIC_V3_LR_INDEX(11)] = read_gicreg(ICH_LR11_EL2); |
| 76 | case 10: |
| 77 | cpu_if->vgic_lr[VGIC_V3_LR_INDEX(10)] = read_gicreg(ICH_LR10_EL2); |
| 78 | case 9: |
| 79 | cpu_if->vgic_lr[VGIC_V3_LR_INDEX(9)] = read_gicreg(ICH_LR9_EL2); |
| 80 | case 8: |
| 81 | cpu_if->vgic_lr[VGIC_V3_LR_INDEX(8)] = read_gicreg(ICH_LR8_EL2); |
| 82 | case 7: |
| 83 | cpu_if->vgic_lr[VGIC_V3_LR_INDEX(7)] = read_gicreg(ICH_LR7_EL2); |
| 84 | case 6: |
| 85 | cpu_if->vgic_lr[VGIC_V3_LR_INDEX(6)] = read_gicreg(ICH_LR6_EL2); |
| 86 | case 5: |
| 87 | cpu_if->vgic_lr[VGIC_V3_LR_INDEX(5)] = read_gicreg(ICH_LR5_EL2); |
| 88 | case 4: |
| 89 | cpu_if->vgic_lr[VGIC_V3_LR_INDEX(4)] = read_gicreg(ICH_LR4_EL2); |
| 90 | case 3: |
| 91 | cpu_if->vgic_lr[VGIC_V3_LR_INDEX(3)] = read_gicreg(ICH_LR3_EL2); |
| 92 | case 2: |
| 93 | cpu_if->vgic_lr[VGIC_V3_LR_INDEX(2)] = read_gicreg(ICH_LR2_EL2); |
| 94 | case 1: |
| 95 | cpu_if->vgic_lr[VGIC_V3_LR_INDEX(1)] = read_gicreg(ICH_LR1_EL2); |
| 96 | case 0: |
| 97 | cpu_if->vgic_lr[VGIC_V3_LR_INDEX(0)] = read_gicreg(ICH_LR0_EL2); |
| 98 | } |
| 99 | |
| 100 | switch (nr_pri_bits) { |
| 101 | case 7: |
| 102 | cpu_if->vgic_ap0r[3] = read_gicreg(ICH_AP0R3_EL2); |
| 103 | cpu_if->vgic_ap0r[2] = read_gicreg(ICH_AP0R2_EL2); |
| 104 | case 6: |
| 105 | cpu_if->vgic_ap0r[1] = read_gicreg(ICH_AP0R1_EL2); |
| 106 | default: |
| 107 | cpu_if->vgic_ap0r[0] = read_gicreg(ICH_AP0R0_EL2); |
| 108 | } |
| 109 | |
| 110 | switch (nr_pri_bits) { |
| 111 | case 7: |
| 112 | cpu_if->vgic_ap1r[3] = read_gicreg(ICH_AP1R3_EL2); |
| 113 | cpu_if->vgic_ap1r[2] = read_gicreg(ICH_AP1R2_EL2); |
| 114 | case 6: |
| 115 | cpu_if->vgic_ap1r[1] = read_gicreg(ICH_AP1R1_EL2); |
| 116 | default: |
| 117 | cpu_if->vgic_ap1r[0] = read_gicreg(ICH_AP1R0_EL2); |
| 118 | } |
| 119 | |
| 120 | val = read_gicreg(ICC_SRE_EL2); |
| 121 | write_gicreg(val | ICC_SRE_EL2_ENABLE, ICC_SRE_EL2); |
| 122 | isb(); /* Make sure ENABLE is set at EL2 before setting SRE at EL1 */ |
| 123 | write_gicreg(1, ICC_SRE_EL1); |
| 124 | } |
| 125 | |
| 126 | void __hyp_text __vgic_v3_restore_state(struct kvm_vcpu *vcpu) |
| 127 | { |
| 128 | struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; |
| 129 | u64 val; |
| 130 | u32 max_lr_idx, nr_pri_bits; |
| 131 | |
| 132 | /* |
| 133 | * VFIQEn is RES1 if ICC_SRE_EL1.SRE is 1. This causes a |
| 134 | * Group0 interrupt (as generated in GICv2 mode) to be |
| 135 | * delivered as a FIQ to the guest, with potentially fatal |
| 136 | * consequences. So we must make sure that ICC_SRE_EL1 has |
| 137 | * been actually programmed with the value we want before |
| 138 | * starting to mess with the rest of the GIC. |
| 139 | */ |
| 140 | write_gicreg(cpu_if->vgic_sre, ICC_SRE_EL1); |
| 141 | isb(); |
| 142 | |
| 143 | write_gicreg(cpu_if->vgic_hcr, ICH_HCR_EL2); |
| 144 | write_gicreg(cpu_if->vgic_vmcr, ICH_VMCR_EL2); |
| 145 | |
| 146 | val = read_gicreg(ICH_VTR_EL2); |
| 147 | max_lr_idx = vtr_to_max_lr_idx(val); |
| 148 | nr_pri_bits = vtr_to_nr_pri_bits(val); |
| 149 | |
| 150 | switch (nr_pri_bits) { |
| 151 | case 7: |
| 152 | write_gicreg(cpu_if->vgic_ap1r[3], ICH_AP1R3_EL2); |
| 153 | write_gicreg(cpu_if->vgic_ap1r[2], ICH_AP1R2_EL2); |
| 154 | case 6: |
| 155 | write_gicreg(cpu_if->vgic_ap1r[1], ICH_AP1R1_EL2); |
| 156 | default: |
| 157 | write_gicreg(cpu_if->vgic_ap1r[0], ICH_AP1R0_EL2); |
| 158 | } |
| 159 | |
| 160 | switch (nr_pri_bits) { |
| 161 | case 7: |
| 162 | write_gicreg(cpu_if->vgic_ap0r[3], ICH_AP0R3_EL2); |
| 163 | write_gicreg(cpu_if->vgic_ap0r[2], ICH_AP0R2_EL2); |
| 164 | case 6: |
| 165 | write_gicreg(cpu_if->vgic_ap0r[1], ICH_AP0R1_EL2); |
| 166 | default: |
| 167 | write_gicreg(cpu_if->vgic_ap0r[0], ICH_AP0R0_EL2); |
| 168 | } |
| 169 | |
| 170 | switch (max_lr_idx) { |
| 171 | case 15: |
| 172 | write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(15)], ICH_LR15_EL2); |
| 173 | case 14: |
| 174 | write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(14)], ICH_LR14_EL2); |
| 175 | case 13: |
| 176 | write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(13)], ICH_LR13_EL2); |
| 177 | case 12: |
| 178 | write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(12)], ICH_LR12_EL2); |
| 179 | case 11: |
| 180 | write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(11)], ICH_LR11_EL2); |
| 181 | case 10: |
| 182 | write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(10)], ICH_LR10_EL2); |
| 183 | case 9: |
| 184 | write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(9)], ICH_LR9_EL2); |
| 185 | case 8: |
| 186 | write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(8)], ICH_LR8_EL2); |
| 187 | case 7: |
| 188 | write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(7)], ICH_LR7_EL2); |
| 189 | case 6: |
| 190 | write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(6)], ICH_LR6_EL2); |
| 191 | case 5: |
| 192 | write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(5)], ICH_LR5_EL2); |
| 193 | case 4: |
| 194 | write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(4)], ICH_LR4_EL2); |
| 195 | case 3: |
| 196 | write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(3)], ICH_LR3_EL2); |
| 197 | case 2: |
| 198 | write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(2)], ICH_LR2_EL2); |
| 199 | case 1: |
| 200 | write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(1)], ICH_LR1_EL2); |
| 201 | case 0: |
| 202 | write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(0)], ICH_LR0_EL2); |
| 203 | } |
| 204 | |
| 205 | /* |
| 206 | * Ensures that the above will have reached the |
| 207 | * (re)distributors. This ensure the guest will read the |
| 208 | * correct values from the memory-mapped interface. |
| 209 | */ |
| 210 | isb(); |
| 211 | dsb(sy); |
| 212 | |
| 213 | /* |
| 214 | * Prevent the guest from touching the GIC system registers if |
| 215 | * SRE isn't enabled for GICv3 emulation. |
| 216 | */ |
| 217 | if (!cpu_if->vgic_sre) { |
| 218 | write_gicreg(read_gicreg(ICC_SRE_EL2) & ~ICC_SRE_EL2_ENABLE, |
| 219 | ICC_SRE_EL2); |
| 220 | } |
| 221 | } |
| 222 | |
Marc Zyngier | 3ffa75c | 2015-10-26 09:10:07 +0000 | [diff] [blame^] | 223 | static u64 __hyp_text __vgic_v3_read_ich_vtr_el2(void) |
Marc Zyngier | f68d2b1 | 2015-10-19 15:50:58 +0100 | [diff] [blame] | 224 | { |
| 225 | return read_gicreg(ICH_VTR_EL2); |
| 226 | } |
Marc Zyngier | 044ac37 | 2015-10-25 13:58:00 +0000 | [diff] [blame] | 227 | |
Marc Zyngier | 3ffa75c | 2015-10-26 09:10:07 +0000 | [diff] [blame^] | 228 | __alias(__vgic_v3_read_ich_vtr_el2) u64 __vgic_v3_get_ich_vtr_el2(void); |