Andres Salomon | 3ef0e1f | 2008-04-29 00:59:53 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * Low-level PCI config space access for OLPC systems who lack the VSA |
| 3 | * PCI virtualization software. |
| 4 | * |
| 5 | * Copyright © 2006 Advanced Micro Devices, Inc. |
| 6 | * |
| 7 | * This program is free software; you can redistribute it and/or modify |
| 8 | * it under the terms of the GNU General Public License as published by |
| 9 | * the Free Software Foundation; either version 2 of the License, or |
| 10 | * (at your option) any later version. |
| 11 | * |
| 12 | * The AMD Geode chipset (ie: GX2 processor, cs5536 I/O companion device) |
| 13 | * has some I/O functions (display, southbridge, sound, USB HCIs, etc) |
| 14 | * that more or less behave like PCI devices, but the hardware doesn't |
| 15 | * directly implement the PCI configuration space headers. AMD provides |
| 16 | * "VSA" (Virtual System Architecture) software that emulates PCI config |
| 17 | * space for these devices, by trapping I/O accesses to PCI config register |
| 18 | * (CF8/CFC) and running some code in System Management Mode interrupt state. |
| 19 | * On the OLPC platform, we don't want to use that VSA code because |
| 20 | * (a) it slows down suspend/resume, and (b) recompiling it requires special |
| 21 | * compilers that are hard to get. So instead of letting the complex VSA |
| 22 | * code simulate the PCI config registers for the on-chip devices, we |
| 23 | * just simulate them the easy way, by inserting the code into the |
| 24 | * pci_write_config and pci_read_config path. Most of the config registers |
| 25 | * are read-only anyway, so the bulk of the simulation is just table lookup. |
| 26 | */ |
| 27 | |
| 28 | #include <linux/pci.h> |
| 29 | #include <linux/init.h> |
| 30 | #include <asm/olpc.h> |
| 31 | #include <asm/geode.h> |
| 32 | #include "pci.h" |
| 33 | |
| 34 | /* |
| 35 | * In the tables below, the first two line (8 longwords) are the |
| 36 | * size masks that are used when the higher level PCI code determines |
| 37 | * the size of the region by writing ~0 to a base address register |
| 38 | * and reading back the result. |
| 39 | * |
| 40 | * The following lines are the values that are read during normal |
| 41 | * PCI config access cycles, i.e. not after just having written |
| 42 | * ~0 to a base address register. |
| 43 | */ |
| 44 | |
| 45 | static const uint32_t lxnb_hdr[] = { /* dev 1 function 0 - devfn = 8 */ |
| 46 | 0x0, 0x0, 0x0, 0x0, |
| 47 | 0x0, 0x0, 0x0, 0x0, |
| 48 | |
| 49 | 0x281022, 0x2200005, 0x6000021, 0x80f808, /* AMD Vendor ID */ |
| 50 | 0x0, 0x0, 0x0, 0x0, /* No virtual registers, hence no BAR */ |
| 51 | 0x0, 0x0, 0x0, 0x28100b, |
| 52 | 0x0, 0x0, 0x0, 0x0, |
| 53 | 0x0, 0x0, 0x0, 0x0, |
| 54 | 0x0, 0x0, 0x0, 0x0, |
| 55 | 0x0, 0x0, 0x0, 0x0, |
| 56 | }; |
| 57 | |
| 58 | static const uint32_t gxnb_hdr[] = { /* dev 1 function 0 - devfn = 8 */ |
| 59 | 0xfffffffd, 0x0, 0x0, 0x0, |
| 60 | 0x0, 0x0, 0x0, 0x0, |
| 61 | |
| 62 | 0x28100b, 0x2200005, 0x6000021, 0x80f808, /* NSC Vendor ID */ |
| 63 | 0xac1d, 0x0, 0x0, 0x0, /* I/O BAR - base of virtual registers */ |
| 64 | 0x0, 0x0, 0x0, 0x28100b, |
| 65 | 0x0, 0x0, 0x0, 0x0, |
| 66 | 0x0, 0x0, 0x0, 0x0, |
| 67 | 0x0, 0x0, 0x0, 0x0, |
| 68 | 0x0, 0x0, 0x0, 0x0, |
| 69 | }; |
| 70 | |
| 71 | static const uint32_t lxfb_hdr[] = { /* dev 1 function 1 - devfn = 9 */ |
| 72 | 0xff000008, 0xffffc000, 0xffffc000, 0xffffc000, |
| 73 | 0xffffc000, 0x0, 0x0, 0x0, |
| 74 | |
| 75 | 0x20811022, 0x2200003, 0x3000000, 0x0, /* AMD Vendor ID */ |
| 76 | 0xfd000000, 0xfe000000, 0xfe004000, 0xfe008000, /* FB, GP, VG, DF */ |
| 77 | 0xfe00c000, 0x0, 0x0, 0x30100b, /* VIP */ |
| 78 | 0x0, 0x0, 0x0, 0x10e, /* INTA, IRQ14 for graphics accel */ |
| 79 | 0x0, 0x0, 0x0, 0x0, |
| 80 | 0x3d0, 0x3c0, 0xa0000, 0x0, /* VG IO, VG IO, EGA FB, MONO FB */ |
| 81 | 0x0, 0x0, 0x0, 0x0, |
| 82 | }; |
| 83 | |
| 84 | static const uint32_t gxfb_hdr[] = { /* dev 1 function 1 - devfn = 9 */ |
| 85 | 0xff800008, 0xffffc000, 0xffffc000, 0xffffc000, |
| 86 | 0x0, 0x0, 0x0, 0x0, |
| 87 | |
| 88 | 0x30100b, 0x2200003, 0x3000000, 0x0, /* NSC Vendor ID */ |
| 89 | 0xfd000000, 0xfe000000, 0xfe004000, 0xfe008000, /* FB, GP, VG, DF */ |
| 90 | 0x0, 0x0, 0x0, 0x30100b, |
| 91 | 0x0, 0x0, 0x0, 0x0, |
| 92 | 0x0, 0x0, 0x0, 0x0, |
| 93 | 0x3d0, 0x3c0, 0xa0000, 0x0, /* VG IO, VG IO, EGA FB, MONO FB */ |
| 94 | 0x0, 0x0, 0x0, 0x0, |
| 95 | }; |
| 96 | |
| 97 | static const uint32_t aes_hdr[] = { /* dev 1 function 2 - devfn = 0xa */ |
| 98 | 0xffffc000, 0x0, 0x0, 0x0, |
| 99 | 0x0, 0x0, 0x0, 0x0, |
| 100 | |
| 101 | 0x20821022, 0x2a00006, 0x10100000, 0x8, /* NSC Vendor ID */ |
| 102 | 0xfe010000, 0x0, 0x0, 0x0, /* AES registers */ |
| 103 | 0x0, 0x0, 0x0, 0x20821022, |
| 104 | 0x0, 0x0, 0x0, 0x0, |
| 105 | 0x0, 0x0, 0x0, 0x0, |
| 106 | 0x0, 0x0, 0x0, 0x0, |
| 107 | 0x0, 0x0, 0x0, 0x0, |
| 108 | }; |
| 109 | |
| 110 | |
| 111 | static const uint32_t isa_hdr[] = { /* dev f function 0 - devfn = 78 */ |
| 112 | 0xfffffff9, 0xffffff01, 0xffffffc1, 0xffffffe1, |
| 113 | 0xffffff81, 0xffffffc1, 0x0, 0x0, |
| 114 | |
| 115 | 0x20901022, 0x2a00049, 0x6010003, 0x802000, |
| 116 | 0x18b1, 0x1001, 0x1801, 0x1881, /* SMB-8 GPIO-256 MFGPT-64 IRQ-32 */ |
| 117 | 0x1401, 0x1841, 0x0, 0x20901022, /* PMS-128 ACPI-64 */ |
| 118 | 0x0, 0x0, 0x0, 0x0, |
| 119 | 0x0, 0x0, 0x0, 0x0, |
| 120 | 0x0, 0x0, 0x0, 0xaa5b, /* IRQ steering */ |
| 121 | 0x0, 0x0, 0x0, 0x0, |
| 122 | }; |
| 123 | |
| 124 | static const uint32_t ac97_hdr[] = { /* dev f function 3 - devfn = 7b */ |
| 125 | 0xffffff81, 0x0, 0x0, 0x0, |
| 126 | 0x0, 0x0, 0x0, 0x0, |
| 127 | |
| 128 | 0x20931022, 0x2a00041, 0x4010001, 0x0, |
| 129 | 0x1481, 0x0, 0x0, 0x0, /* I/O BAR-128 */ |
| 130 | 0x0, 0x0, 0x0, 0x20931022, |
| 131 | 0x0, 0x0, 0x0, 0x205, /* IntB, IRQ5 */ |
| 132 | 0x0, 0x0, 0x0, 0x0, |
| 133 | 0x0, 0x0, 0x0, 0x0, |
| 134 | 0x0, 0x0, 0x0, 0x0, |
| 135 | }; |
| 136 | |
| 137 | static const uint32_t ohci_hdr[] = { /* dev f function 4 - devfn = 7c */ |
| 138 | 0xfffff000, 0x0, 0x0, 0x0, |
| 139 | 0x0, 0x0, 0x0, 0x0, |
| 140 | |
| 141 | 0x20941022, 0x2300006, 0xc031002, 0x0, |
| 142 | 0xfe01a000, 0x0, 0x0, 0x0, /* MEMBAR-1000 */ |
| 143 | 0x0, 0x0, 0x0, 0x20941022, |
| 144 | 0x0, 0x40, 0x0, 0x40a, /* CapPtr INT-D, IRQA */ |
| 145 | 0xc8020001, 0x0, 0x0, 0x0, /* Capabilities - 40 is R/O, |
| 146 | 44 is mask 8103 (power control) */ |
| 147 | 0x0, 0x0, 0x0, 0x0, |
| 148 | 0x0, 0x0, 0x0, 0x0, |
| 149 | }; |
| 150 | |
| 151 | static const uint32_t ehci_hdr[] = { /* dev f function 4 - devfn = 7d */ |
| 152 | 0xfffff000, 0x0, 0x0, 0x0, |
| 153 | 0x0, 0x0, 0x0, 0x0, |
| 154 | |
| 155 | 0x20951022, 0x2300006, 0xc032002, 0x0, |
| 156 | 0xfe01b000, 0x0, 0x0, 0x0, /* MEMBAR-1000 */ |
| 157 | 0x0, 0x0, 0x0, 0x20951022, |
| 158 | 0x0, 0x40, 0x0, 0x40a, /* CapPtr INT-D, IRQA */ |
| 159 | 0xc8020001, 0x0, 0x0, 0x0, /* Capabilities - 40 is R/O, 44 is |
| 160 | mask 8103 (power control) */ |
| 161 | #if 0 |
| 162 | 0x1, 0x40080000, 0x0, 0x0, /* EECP - see EHCI spec section 2.1.7 */ |
| 163 | #endif |
| 164 | 0x01000001, 0x0, 0x0, 0x0, /* EECP - see EHCI spec section 2.1.7 */ |
| 165 | 0x2020, 0x0, 0x0, 0x0, /* (EHCI page 8) 60 SBRN (R/O), |
| 166 | 61 FLADJ (R/W), PORTWAKECAP */ |
| 167 | }; |
| 168 | |
| 169 | static uint32_t ff_loc = ~0; |
| 170 | static uint32_t zero_loc; |
| 171 | static int bar_probing; /* Set after a write of ~0 to a BAR */ |
| 172 | static int is_lx; |
| 173 | |
| 174 | #define NB_SLOT 0x1 /* Northbridge - GX chip - Device 1 */ |
| 175 | #define SB_SLOT 0xf /* Southbridge - CS5536 chip - Device F */ |
| 176 | |
| 177 | static int is_simulated(unsigned int bus, unsigned int devfn) |
| 178 | { |
| 179 | return (!bus && ((PCI_SLOT(devfn) == NB_SLOT) || |
| 180 | (PCI_SLOT(devfn) == SB_SLOT))); |
| 181 | } |
| 182 | |
| 183 | static uint32_t *hdr_addr(const uint32_t *hdr, int reg) |
| 184 | { |
| 185 | uint32_t addr; |
| 186 | |
| 187 | /* |
| 188 | * This is a little bit tricky. The header maps consist of |
| 189 | * 0x20 bytes of size masks, followed by 0x70 bytes of header data. |
| 190 | * In the normal case, when not probing a BAR's size, we want |
| 191 | * to access the header data, so we add 0x20 to the reg offset, |
| 192 | * thus skipping the size mask area. |
| 193 | * In the BAR probing case, we want to access the size mask for |
| 194 | * the BAR, so we subtract 0x10 (the config header offset for |
| 195 | * BAR0), and don't skip the size mask area. |
| 196 | */ |
| 197 | |
| 198 | addr = (uint32_t)hdr + reg + (bar_probing ? -0x10 : 0x20); |
| 199 | |
| 200 | bar_probing = 0; |
| 201 | return (uint32_t *)addr; |
| 202 | } |
| 203 | |
| 204 | static int pci_olpc_read(unsigned int seg, unsigned int bus, |
| 205 | unsigned int devfn, int reg, int len, uint32_t *value) |
| 206 | { |
| 207 | uint32_t *addr; |
| 208 | |
| 209 | /* Use the hardware mechanism for non-simulated devices */ |
| 210 | if (!is_simulated(bus, devfn)) |
| 211 | return pci_direct_conf1.read(seg, bus, devfn, reg, len, value); |
| 212 | |
| 213 | /* |
| 214 | * No device has config registers past 0x70, so we save table space |
| 215 | * by not storing entries for the nonexistent registers |
| 216 | */ |
| 217 | if (reg >= 0x70) |
| 218 | addr = &zero_loc; |
| 219 | else { |
| 220 | switch (devfn) { |
| 221 | case 0x8: |
| 222 | addr = hdr_addr(is_lx ? lxnb_hdr : gxnb_hdr, reg); |
| 223 | break; |
| 224 | case 0x9: |
| 225 | addr = hdr_addr(is_lx ? lxfb_hdr : gxfb_hdr, reg); |
| 226 | break; |
| 227 | case 0xa: |
| 228 | addr = is_lx ? hdr_addr(aes_hdr, reg) : &ff_loc; |
| 229 | break; |
| 230 | case 0x78: |
| 231 | addr = hdr_addr(isa_hdr, reg); |
| 232 | break; |
| 233 | case 0x7b: |
| 234 | addr = hdr_addr(ac97_hdr, reg); |
| 235 | break; |
| 236 | case 0x7c: |
| 237 | addr = hdr_addr(ohci_hdr, reg); |
| 238 | break; |
| 239 | case 0x7d: |
| 240 | addr = hdr_addr(ehci_hdr, reg); |
| 241 | break; |
| 242 | default: |
| 243 | addr = &ff_loc; |
| 244 | break; |
| 245 | } |
| 246 | } |
| 247 | switch (len) { |
| 248 | case 1: |
| 249 | *value = *(uint8_t *)addr; |
| 250 | break; |
| 251 | case 2: |
| 252 | *value = *(uint16_t *)addr; |
| 253 | break; |
| 254 | case 4: |
| 255 | *value = *addr; |
| 256 | break; |
| 257 | default: |
| 258 | BUG(); |
| 259 | } |
| 260 | |
| 261 | return 0; |
| 262 | } |
| 263 | |
| 264 | static int pci_olpc_write(unsigned int seg, unsigned int bus, |
| 265 | unsigned int devfn, int reg, int len, uint32_t value) |
| 266 | { |
| 267 | /* Use the hardware mechanism for non-simulated devices */ |
| 268 | if (!is_simulated(bus, devfn)) |
| 269 | return pci_direct_conf1.write(seg, bus, devfn, reg, len, value); |
| 270 | |
| 271 | /* XXX we may want to extend this to simulate EHCI power management */ |
| 272 | |
| 273 | /* |
| 274 | * Mostly we just discard writes, but if the write is a size probe |
| 275 | * (i.e. writing ~0 to a BAR), we remember it and arrange to return |
| 276 | * the appropriate size mask on the next read. This is cheating |
| 277 | * to some extent, because it depends on the fact that the next |
| 278 | * access after such a write will always be a read to the same BAR. |
| 279 | */ |
| 280 | |
| 281 | if ((reg >= 0x10) && (reg < 0x2c)) { |
| 282 | /* write is to a BAR */ |
| 283 | if (value == ~0) |
| 284 | bar_probing = 1; |
| 285 | } else { |
| 286 | /* |
| 287 | * No warning on writes to ROM BAR, CMD, LATENCY_TIMER, |
| 288 | * CACHE_LINE_SIZE, or PM registers. |
| 289 | */ |
| 290 | if ((reg != PCI_ROM_ADDRESS) && (reg != PCI_COMMAND_MASTER) && |
| 291 | (reg != PCI_LATENCY_TIMER) && |
| 292 | (reg != PCI_CACHE_LINE_SIZE) && (reg != 0x44)) |
| 293 | printk(KERN_WARNING "OLPC PCI: Config write to devfn" |
| 294 | " %x reg %x value %x\n", devfn, reg, value); |
| 295 | } |
| 296 | |
| 297 | return 0; |
| 298 | } |
| 299 | |
| 300 | static struct pci_raw_ops pci_olpc_conf = { |
| 301 | .read = pci_olpc_read, |
| 302 | .write = pci_olpc_write, |
| 303 | }; |
| 304 | |
| 305 | void __init pci_olpc_init(void) |
| 306 | { |
| 307 | if (!machine_is_olpc() || olpc_has_vsa()) |
| 308 | return; |
| 309 | |
| 310 | printk(KERN_INFO "PCI: Using configuration type OLPC\n"); |
| 311 | raw_pci_ops = &pci_olpc_conf; |
| 312 | is_lx = is_geode_lx(); |
| 313 | } |