blob: a94c3f56c590967743fade8e4912ab8f8a4cd2b2 [file] [log] [blame]
Gabriel Fernandez3e4d6182017-08-21 13:59:02 +02001/*
2 * Copyright (C) Gabriel Fernandez 2017
3 * Author: Gabriel Fernandez <gabriel.fernandez@st.com>
4 *
5 * License terms: GPL V2.0.
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include <linux/clk.h>
21#include <linux/clk-provider.h>
22#include <linux/err.h>
23#include <linux/io.h>
24#include <linux/mfd/syscon.h>
25#include <linux/of.h>
26#include <linux/of_address.h>
27#include <linux/slab.h>
28#include <linux/spinlock.h>
29#include <linux/regmap.h>
30
31#include <dt-bindings/clock/stm32h7-clks.h>
32
33/* Reset Clock Control Registers */
34#define RCC_CR 0x00
35#define RCC_CFGR 0x10
36#define RCC_D1CFGR 0x18
37#define RCC_D2CFGR 0x1C
38#define RCC_D3CFGR 0x20
39#define RCC_PLLCKSELR 0x28
40#define RCC_PLLCFGR 0x2C
41#define RCC_PLL1DIVR 0x30
42#define RCC_PLL1FRACR 0x34
43#define RCC_PLL2DIVR 0x38
44#define RCC_PLL2FRACR 0x3C
45#define RCC_PLL3DIVR 0x40
46#define RCC_PLL3FRACR 0x44
47#define RCC_D1CCIPR 0x4C
48#define RCC_D2CCIP1R 0x50
49#define RCC_D2CCIP2R 0x54
50#define RCC_D3CCIPR 0x58
51#define RCC_BDCR 0x70
52#define RCC_CSR 0x74
53#define RCC_AHB3ENR 0xD4
54#define RCC_AHB1ENR 0xD8
55#define RCC_AHB2ENR 0xDC
56#define RCC_AHB4ENR 0xE0
57#define RCC_APB3ENR 0xE4
58#define RCC_APB1LENR 0xE8
59#define RCC_APB1HENR 0xEC
60#define RCC_APB2ENR 0xF0
61#define RCC_APB4ENR 0xF4
62
63static DEFINE_SPINLOCK(stm32rcc_lock);
64
65static void __iomem *base;
66static struct clk_hw **hws;
67
68/* System clock parent */
69static const char * const sys_src[] = {
70 "hsi_ck", "csi_ck", "hse_ck", "pll1_p" };
71
72static const char * const tracein_src[] = {
73 "hsi_ck", "csi_ck", "hse_ck", "pll1_r" };
74
75static const char * const per_src[] = {
76 "hsi_ker", "csi_ker", "hse_ck", "disabled" };
77
78static const char * const pll_src[] = {
79 "hsi_ck", "csi_ck", "hse_ck", "no clock" };
80
81static const char * const sdmmc_src[] = { "pll1_q", "pll2_r" };
82
83static const char * const dsi_src[] = { "ck_dsi_phy", "pll2_q" };
84
85static const char * const qspi_src[] = {
86 "hclk", "pll1_q", "pll2_r", "per_ck" };
87
88static const char * const fmc_src[] = {
89 "hclk", "pll1_q", "pll2_r", "per_ck" };
90
91/* Kernel clock parent */
92static const char * const swp_src[] = { "pclk1", "hsi_ker" };
93
94static const char * const fdcan_src[] = { "hse_ck", "pll1_q", "pll2_q" };
95
96static const char * const dfsdm1_src[] = { "pclk2", "sys_ck" };
97
98static const char * const spdifrx_src[] = {
99 "pll1_q", "pll2_r", "pll3_r", "hsi_ker" };
100
101static const char *spi_src1[5] = {
102 "pll1_q", "pll2_p", "pll3_p", NULL, "per_ck" };
103
104static const char * const spi_src2[] = {
105 "pclk2", "pll2_q", "pll3_q", "hsi_ker", "csi_ker", "hse_ck" };
106
107static const char * const spi_src3[] = {
108 "pclk4", "pll2_q", "pll3_q", "hsi_ker", "csi_ker", "hse_ck" };
109
110static const char * const lptim_src1[] = {
111 "pclk1", "pll2_p", "pll3_r", "lse_ck", "lsi_ck", "per_ck" };
112
113static const char * const lptim_src2[] = {
114 "pclk4", "pll2_p", "pll3_r", "lse_ck", "lsi_ck", "per_ck" };
115
116static const char * const cec_src[] = {"lse_ck", "lsi_ck", "csi_ker_div122" };
117
118static const char * const usbotg_src[] = {"pll1_q", "pll3_q", "rc48_ck" };
119
120/* i2c 1,2,3 src */
121static const char * const i2c_src1[] = {
122 "pclk1", "pll3_r", "hsi_ker", "csi_ker" };
123
124static const char * const i2c_src2[] = {
125 "pclk4", "pll3_r", "hsi_ker", "csi_ker" };
126
127static const char * const rng_src[] = {
128 "rc48_ck", "pll1_q", "lse_ck", "lsi_ck" };
129
130/* usart 1,6 src */
131static const char * const usart_src1[] = {
132 "pclk2", "pll2_q", "pll3_q", "hsi_ker", "csi_ker", "lse_ck" };
133
134/* usart 2,3,4,5,7,8 src */
135static const char * const usart_src2[] = {
136 "pclk1", "pll2_q", "pll3_q", "hsi_ker", "csi_ker", "lse_ck" };
137
138static const char *sai_src[5] = {
139 "pll1_q", "pll2_p", "pll3_p", NULL, "per_ck" };
140
141static const char * const adc_src[] = { "pll2_p", "pll3_r", "per_ck" };
142
143/* lptim 2,3,4,5 src */
144static const char * const lpuart1_src[] = {
145 "pclk3", "pll2_q", "pll3_q", "csi_ker", "lse_ck" };
146
147static const char * const hrtim_src[] = { "tim2_ker", "d1cpre" };
148
149/* RTC clock parent */
150static const char * const rtc_src[] = { "off", "lse_ck", "lsi_ck", "hse_1M" };
151
152/* Micro-controller output clock parent */
153static const char * const mco_src1[] = {
154 "hsi_ck", "lse_ck", "hse_ck", "pll1_q", "rc48_ck" };
155
156static const char * const mco_src2[] = {
157 "sys_ck", "pll2_p", "hse_ck", "pll1_p", "csi_ck", "lsi_ck" };
158
159/* LCD clock */
160static const char * const ltdc_src[] = {"pll3_r"};
161
162/* Gate clock with ready bit and backup domain management */
163struct stm32_ready_gate {
164 struct clk_gate gate;
165 u8 bit_rdy;
166};
167
168#define to_ready_gate_clk(_rgate) container_of(_rgate, struct stm32_ready_gate,\
169 gate)
170
171#define RGATE_TIMEOUT 10000
172
173static int ready_gate_clk_enable(struct clk_hw *hw)
174{
175 struct clk_gate *gate = to_clk_gate(hw);
176 struct stm32_ready_gate *rgate = to_ready_gate_clk(gate);
177 int bit_status;
178 unsigned int timeout = RGATE_TIMEOUT;
179
180 if (clk_gate_ops.is_enabled(hw))
181 return 0;
182
183 clk_gate_ops.enable(hw);
184
185 /* We can't use readl_poll_timeout() because we can blocked if
186 * someone enables this clock before clocksource changes.
187 * Only jiffies counter is available. Jiffies are incremented by
188 * interruptions and enable op does not allow to be interrupted.
189 */
190 do {
191 bit_status = !(readl(gate->reg) & BIT(rgate->bit_rdy));
192
193 if (bit_status)
194 udelay(100);
195
196 } while (bit_status && --timeout);
197
198 return bit_status;
199}
200
201static void ready_gate_clk_disable(struct clk_hw *hw)
202{
203 struct clk_gate *gate = to_clk_gate(hw);
204 struct stm32_ready_gate *rgate = to_ready_gate_clk(gate);
205 int bit_status;
206 unsigned int timeout = RGATE_TIMEOUT;
207
208 if (!clk_gate_ops.is_enabled(hw))
209 return;
210
211 clk_gate_ops.disable(hw);
212
213 do {
214 bit_status = !!(readl(gate->reg) & BIT(rgate->bit_rdy));
215
216 if (bit_status)
217 udelay(100);
218
219 } while (bit_status && --timeout);
220}
221
222static const struct clk_ops ready_gate_clk_ops = {
223 .enable = ready_gate_clk_enable,
224 .disable = ready_gate_clk_disable,
225 .is_enabled = clk_gate_is_enabled,
226};
227
228static struct clk_hw *clk_register_ready_gate(struct device *dev,
229 const char *name, const char *parent_name,
230 void __iomem *reg, u8 bit_idx, u8 bit_rdy,
231 unsigned long flags, spinlock_t *lock)
232{
233 struct stm32_ready_gate *rgate;
234 struct clk_init_data init = { NULL };
235 struct clk_hw *hw;
236 int ret;
237
238 rgate = kzalloc(sizeof(*rgate), GFP_KERNEL);
239 if (!rgate)
240 return ERR_PTR(-ENOMEM);
241
242 init.name = name;
243 init.ops = &ready_gate_clk_ops;
244 init.flags = flags;
245 init.parent_names = &parent_name;
246 init.num_parents = 1;
247
248 rgate->bit_rdy = bit_rdy;
249 rgate->gate.lock = lock;
250 rgate->gate.reg = reg;
251 rgate->gate.bit_idx = bit_idx;
252 rgate->gate.hw.init = &init;
253
254 hw = &rgate->gate.hw;
255 ret = clk_hw_register(dev, hw);
256 if (ret) {
257 kfree(rgate);
258 hw = ERR_PTR(ret);
259 }
260
261 return hw;
262}
263
264struct gate_cfg {
265 u32 offset;
266 u8 bit_idx;
267};
268
269struct muxdiv_cfg {
270 u32 offset;
271 u8 shift;
272 u8 width;
273};
274
275struct composite_clk_cfg {
276 struct gate_cfg *gate;
277 struct muxdiv_cfg *mux;
278 struct muxdiv_cfg *div;
279 const char *name;
280 const char * const *parent_name;
281 int num_parents;
282 u32 flags;
283};
284
285struct composite_clk_gcfg_t {
286 u8 flags;
287 const struct clk_ops *ops;
288};
289
290/*
291 * General config definition of a composite clock (only clock diviser for rate)
292 */
293struct composite_clk_gcfg {
294 struct composite_clk_gcfg_t *mux;
295 struct composite_clk_gcfg_t *div;
296 struct composite_clk_gcfg_t *gate;
297};
298
299#define M_CFG_MUX(_mux_ops, _mux_flags)\
300 .mux = &(struct composite_clk_gcfg_t) { _mux_flags, _mux_ops}
301
302#define M_CFG_DIV(_rate_ops, _rate_flags)\
303 .div = &(struct composite_clk_gcfg_t) {_rate_flags, _rate_ops}
304
305#define M_CFG_GATE(_gate_ops, _gate_flags)\
306 .gate = &(struct composite_clk_gcfg_t) { _gate_flags, _gate_ops}
307
308static struct clk_mux *_get_cmux(void __iomem *reg, u8 shift, u8 width,
309 u32 flags, spinlock_t *lock)
310{
311 struct clk_mux *mux;
312
313 mux = kzalloc(sizeof(*mux), GFP_KERNEL);
314 if (!mux)
315 return ERR_PTR(-ENOMEM);
316
317 mux->reg = reg;
318 mux->shift = shift;
319 mux->mask = (1 << width) - 1;
320 mux->flags = flags;
321 mux->lock = lock;
322
323 return mux;
324}
325
326static struct clk_divider *_get_cdiv(void __iomem *reg, u8 shift, u8 width,
327 u32 flags, spinlock_t *lock)
328{
329 struct clk_divider *div;
330
331 div = kzalloc(sizeof(*div), GFP_KERNEL);
332
333 if (!div)
334 return ERR_PTR(-ENOMEM);
335
336 div->reg = reg;
337 div->shift = shift;
338 div->width = width;
339 div->flags = flags;
340 div->lock = lock;
341
342 return div;
343}
344
345static struct clk_gate *_get_cgate(void __iomem *reg, u8 bit_idx, u32 flags,
346 spinlock_t *lock)
347{
348 struct clk_gate *gate;
349
350 gate = kzalloc(sizeof(*gate), GFP_KERNEL);
351 if (!gate)
352 return ERR_PTR(-ENOMEM);
353
354 gate->reg = reg;
355 gate->bit_idx = bit_idx;
356 gate->flags = flags;
357 gate->lock = lock;
358
359 return gate;
360}
361
362struct composite_cfg {
363 struct clk_hw *mux_hw;
364 struct clk_hw *div_hw;
365 struct clk_hw *gate_hw;
366
367 const struct clk_ops *mux_ops;
368 const struct clk_ops *div_ops;
369 const struct clk_ops *gate_ops;
370};
371
372static void get_cfg_composite_div(const struct composite_clk_gcfg *gcfg,
373 const struct composite_clk_cfg *cfg,
374 struct composite_cfg *composite, spinlock_t *lock)
375{
376 struct clk_mux *mux = NULL;
377 struct clk_divider *div = NULL;
378 struct clk_gate *gate = NULL;
379 const struct clk_ops *mux_ops, *div_ops, *gate_ops;
380 struct clk_hw *mux_hw;
381 struct clk_hw *div_hw;
382 struct clk_hw *gate_hw;
383
384 mux_ops = div_ops = gate_ops = NULL;
385 mux_hw = div_hw = gate_hw = NULL;
386
387 if (gcfg->mux && gcfg->mux) {
388 mux = _get_cmux(base + cfg->mux->offset,
389 cfg->mux->shift,
390 cfg->mux->width,
391 gcfg->mux->flags, lock);
392
393 if (!IS_ERR(mux)) {
394 mux_hw = &mux->hw;
395 mux_ops = gcfg->mux->ops ?
396 gcfg->mux->ops : &clk_mux_ops;
397 }
398 }
399
400 if (gcfg->div && cfg->div) {
401 div = _get_cdiv(base + cfg->div->offset,
402 cfg->div->shift,
403 cfg->div->width,
404 gcfg->div->flags, lock);
405
406 if (!IS_ERR(div)) {
407 div_hw = &div->hw;
408 div_ops = gcfg->div->ops ?
409 gcfg->div->ops : &clk_divider_ops;
410 }
411 }
412
413 if (gcfg->gate && gcfg->gate) {
414 gate = _get_cgate(base + cfg->gate->offset,
415 cfg->gate->bit_idx,
416 gcfg->gate->flags, lock);
417
418 if (!IS_ERR(gate)) {
419 gate_hw = &gate->hw;
420 gate_ops = gcfg->gate->ops ?
421 gcfg->gate->ops : &clk_gate_ops;
422 }
423 }
424
425 composite->mux_hw = mux_hw;
426 composite->mux_ops = mux_ops;
427
428 composite->div_hw = div_hw;
429 composite->div_ops = div_ops;
430
431 composite->gate_hw = gate_hw;
432 composite->gate_ops = gate_ops;
433}
434
435/* Kernel Timer */
436struct timer_ker {
437 u8 dppre_shift;
438 struct clk_hw hw;
439 spinlock_t *lock;
440};
441
442#define to_timer_ker(_hw) container_of(_hw, struct timer_ker, hw)
443
444static unsigned long timer_ker_recalc_rate(struct clk_hw *hw,
445 unsigned long parent_rate)
446{
447 struct timer_ker *clk_elem = to_timer_ker(hw);
448 u32 timpre;
449 u32 dppre_shift = clk_elem->dppre_shift;
450 u32 prescaler;
451 u32 mul;
452
453 timpre = (readl(base + RCC_CFGR) >> 15) & 0x01;
454
455 prescaler = (readl(base + RCC_D2CFGR) >> dppre_shift) & 0x03;
456
457 mul = 2;
458
459 if (prescaler < 4)
460 mul = 1;
461
462 else if (timpre && prescaler > 4)
463 mul = 4;
464
465 return parent_rate * mul;
466}
467
468static const struct clk_ops timer_ker_ops = {
469 .recalc_rate = timer_ker_recalc_rate,
470};
471
472static struct clk_hw *clk_register_stm32_timer_ker(struct device *dev,
473 const char *name, const char *parent_name,
474 unsigned long flags,
475 u8 dppre_shift,
476 spinlock_t *lock)
477{
478 struct timer_ker *element;
479 struct clk_init_data init;
480 struct clk_hw *hw;
481 int err;
482
483 element = kzalloc(sizeof(*element), GFP_KERNEL);
484 if (!element)
485 return ERR_PTR(-ENOMEM);
486
487 init.name = name;
488 init.ops = &timer_ker_ops;
489 init.flags = flags;
490 init.parent_names = &parent_name;
491 init.num_parents = 1;
492
493 element->hw.init = &init;
494 element->lock = lock;
495 element->dppre_shift = dppre_shift;
496
497 hw = &element->hw;
498 err = clk_hw_register(dev, hw);
499
500 if (err) {
501 kfree(element);
502 return ERR_PTR(err);
503 }
504
505 return hw;
506}
507
508static const struct clk_div_table d1cpre_div_table[] = {
509 { 0, 1 }, { 1, 1 }, { 2, 1 }, { 3, 1},
510 { 4, 1 }, { 5, 1 }, { 6, 1 }, { 7, 1},
511 { 8, 2 }, { 9, 4 }, { 10, 8 }, { 11, 16 },
512 { 12, 64 }, { 13, 128 }, { 14, 256 },
513 { 15, 512 },
514 { 0 },
515};
516
517static const struct clk_div_table ppre_div_table[] = {
518 { 0, 1 }, { 1, 1 }, { 2, 1 }, { 3, 1},
519 { 4, 2 }, { 5, 4 }, { 6, 8 }, { 7, 16 },
520 { 0 },
521};
522
523static void register_core_and_bus_clocks(void)
524{
525 /* CORE AND BUS */
526 hws[SYS_D1CPRE] = clk_hw_register_divider_table(NULL, "d1cpre",
527 "sys_ck", CLK_IGNORE_UNUSED, base + RCC_D1CFGR, 8, 4, 0,
528 d1cpre_div_table, &stm32rcc_lock);
529
530 hws[HCLK] = clk_hw_register_divider_table(NULL, "hclk", "d1cpre",
531 CLK_IGNORE_UNUSED, base + RCC_D1CFGR, 0, 4, 0,
532 d1cpre_div_table, &stm32rcc_lock);
533
534 /* D1 DOMAIN */
535 /* * CPU Systick */
536 hws[CPU_SYSTICK] = clk_hw_register_fixed_factor(NULL, "systick",
537 "d1cpre", 0, 1, 8);
538
539 /* * APB3 peripheral */
540 hws[PCLK3] = clk_hw_register_divider_table(NULL, "pclk3", "hclk", 0,
541 base + RCC_D1CFGR, 4, 3, 0,
542 ppre_div_table, &stm32rcc_lock);
543
544 /* D2 DOMAIN */
545 /* * APB1 peripheral */
546 hws[PCLK1] = clk_hw_register_divider_table(NULL, "pclk1", "hclk", 0,
547 base + RCC_D2CFGR, 4, 3, 0,
548 ppre_div_table, &stm32rcc_lock);
549
550 /* Timers prescaler clocks */
551 clk_register_stm32_timer_ker(NULL, "tim1_ker", "pclk1", 0,
552 4, &stm32rcc_lock);
553
554 /* * APB2 peripheral */
555 hws[PCLK2] = clk_hw_register_divider_table(NULL, "pclk2", "hclk", 0,
556 base + RCC_D2CFGR, 8, 3, 0, ppre_div_table,
557 &stm32rcc_lock);
558
559 clk_register_stm32_timer_ker(NULL, "tim2_ker", "pclk2", 0, 8,
560 &stm32rcc_lock);
561
562 /* D3 DOMAIN */
563 /* * APB4 peripheral */
564 hws[PCLK4] = clk_hw_register_divider_table(NULL, "pclk4", "hclk", 0,
565 base + RCC_D3CFGR, 4, 3, 0,
566 ppre_div_table, &stm32rcc_lock);
567}
568
569/* MUX clock configuration */
570struct stm32_mux_clk {
571 const char *name;
572 const char * const *parents;
573 u8 num_parents;
574 u32 offset;
575 u8 shift;
576 u8 width;
577 u32 flags;
578};
579
580#define M_MCLOCF(_name, _parents, _mux_offset, _mux_shift, _mux_width, _flags)\
581{\
582 .name = _name,\
583 .parents = _parents,\
584 .num_parents = ARRAY_SIZE(_parents),\
585 .offset = _mux_offset,\
586 .shift = _mux_shift,\
587 .width = _mux_width,\
588 .flags = _flags,\
589}
590
591#define M_MCLOC(_name, _parents, _mux_offset, _mux_shift, _mux_width)\
592 M_MCLOCF(_name, _parents, _mux_offset, _mux_shift, _mux_width, 0)\
593
594static const struct stm32_mux_clk stm32_mclk[] __initconst = {
595 M_MCLOC("per_ck", per_src, RCC_D1CCIPR, 28, 3),
596 M_MCLOC("pllsrc", pll_src, RCC_PLLCKSELR, 0, 3),
597 M_MCLOC("sys_ck", sys_src, RCC_CFGR, 0, 3),
598 M_MCLOC("tracein_ck", tracein_src, RCC_CFGR, 0, 3),
599};
600
601/* Oscillary clock configuration */
602struct stm32_osc_clk {
603 const char *name;
604 const char *parent;
605 u32 gate_offset;
606 u8 bit_idx;
607 u8 bit_rdy;
608 u32 flags;
609};
610
611#define OSC_CLKF(_name, _parent, _gate_offset, _bit_idx, _bit_rdy, _flags)\
612{\
613 .name = _name,\
614 .parent = _parent,\
615 .gate_offset = _gate_offset,\
616 .bit_idx = _bit_idx,\
617 .bit_rdy = _bit_rdy,\
618 .flags = _flags,\
619}
620
621#define OSC_CLK(_name, _parent, _gate_offset, _bit_idx, _bit_rdy)\
622 OSC_CLKF(_name, _parent, _gate_offset, _bit_idx, _bit_rdy, 0)
623
624static const struct stm32_osc_clk stm32_oclk[] __initconst = {
625 OSC_CLKF("hsi_ck", "hsidiv", RCC_CR, 0, 2, CLK_IGNORE_UNUSED),
626 OSC_CLKF("hsi_ker", "hsidiv", RCC_CR, 1, 2, CLK_IGNORE_UNUSED),
627 OSC_CLKF("csi_ck", "clk-csi", RCC_CR, 7, 8, CLK_IGNORE_UNUSED),
628 OSC_CLKF("csi_ker", "clk-csi", RCC_CR, 9, 8, CLK_IGNORE_UNUSED),
629 OSC_CLKF("rc48_ck", "clk-rc48", RCC_CR, 12, 13, CLK_IGNORE_UNUSED),
630 OSC_CLKF("lsi_ck", "clk-lsi", RCC_CSR, 0, 1, CLK_IGNORE_UNUSED),
631};
632
633/* PLL configuration */
634struct st32h7_pll_cfg {
635 u8 bit_idx;
636 u32 offset_divr;
637 u8 bit_frac_en;
638 u32 offset_frac;
639 u8 divm;
640};
641
642struct stm32_pll_data {
643 const char *name;
644 const char *parent_name;
645 unsigned long flags;
646 const struct st32h7_pll_cfg *cfg;
647};
648
649static const struct st32h7_pll_cfg stm32h7_pll1 = {
650 .bit_idx = 24,
651 .offset_divr = RCC_PLL1DIVR,
652 .bit_frac_en = 0,
653 .offset_frac = RCC_PLL1FRACR,
654 .divm = 4,
655};
656
657static const struct st32h7_pll_cfg stm32h7_pll2 = {
658 .bit_idx = 26,
659 .offset_divr = RCC_PLL2DIVR,
660 .bit_frac_en = 4,
661 .offset_frac = RCC_PLL2FRACR,
662 .divm = 12,
663};
664
665static const struct st32h7_pll_cfg stm32h7_pll3 = {
666 .bit_idx = 28,
667 .offset_divr = RCC_PLL3DIVR,
668 .bit_frac_en = 8,
669 .offset_frac = RCC_PLL3FRACR,
670 .divm = 20,
671};
672
673static const struct stm32_pll_data stm32_pll[] = {
674 { "vco1", "pllsrc", CLK_IGNORE_UNUSED, &stm32h7_pll1 },
675 { "vco2", "pllsrc", 0, &stm32h7_pll2 },
676 { "vco3", "pllsrc", 0, &stm32h7_pll3 },
677};
678
679struct stm32_fractional_divider {
680 void __iomem *mreg;
681 u8 mshift;
682 u8 mwidth;
683 u32 mmask;
684
685 void __iomem *nreg;
686 u8 nshift;
687 u8 nwidth;
688
689 void __iomem *freg_status;
690 u8 freg_bit;
691 void __iomem *freg_value;
692 u8 fshift;
693 u8 fwidth;
694
695 u8 flags;
696 struct clk_hw hw;
697 spinlock_t *lock;
698};
699
700struct stm32_pll_obj {
701 spinlock_t *lock;
702 struct stm32_fractional_divider div;
703 struct stm32_ready_gate rgate;
704 struct clk_hw hw;
705};
706
707#define to_pll(_hw) container_of(_hw, struct stm32_pll_obj, hw)
708
709static int pll_is_enabled(struct clk_hw *hw)
710{
711 struct stm32_pll_obj *clk_elem = to_pll(hw);
712 struct clk_hw *_hw = &clk_elem->rgate.gate.hw;
713
714 __clk_hw_set_clk(_hw, hw);
715
716 return ready_gate_clk_ops.is_enabled(_hw);
717}
718
719static int pll_enable(struct clk_hw *hw)
720{
721 struct stm32_pll_obj *clk_elem = to_pll(hw);
722 struct clk_hw *_hw = &clk_elem->rgate.gate.hw;
723
724 __clk_hw_set_clk(_hw, hw);
725
726 return ready_gate_clk_ops.enable(_hw);
727}
728
729static void pll_disable(struct clk_hw *hw)
730{
731 struct stm32_pll_obj *clk_elem = to_pll(hw);
732 struct clk_hw *_hw = &clk_elem->rgate.gate.hw;
733
734 __clk_hw_set_clk(_hw, hw);
735
736 ready_gate_clk_ops.disable(_hw);
737}
738
739static int pll_frac_is_enabled(struct clk_hw *hw)
740{
741 struct stm32_pll_obj *clk_elem = to_pll(hw);
742 struct stm32_fractional_divider *fd = &clk_elem->div;
743
744 return (readl(fd->freg_status) >> fd->freg_bit) & 0x01;
745}
746
747static unsigned long pll_read_frac(struct clk_hw *hw)
748{
749 struct stm32_pll_obj *clk_elem = to_pll(hw);
750 struct stm32_fractional_divider *fd = &clk_elem->div;
751
752 return (readl(fd->freg_value) >> fd->fshift) &
753 GENMASK(fd->fwidth - 1, 0);
754}
755
756static unsigned long pll_fd_recalc_rate(struct clk_hw *hw,
757 unsigned long parent_rate)
758{
759 struct stm32_pll_obj *clk_elem = to_pll(hw);
760 struct stm32_fractional_divider *fd = &clk_elem->div;
761 unsigned long m, n;
762 u32 val, mask;
763 u64 rate, rate1 = 0;
764
765 val = readl(fd->mreg);
766 mask = GENMASK(fd->mwidth - 1, 0) << fd->mshift;
767 m = (val & mask) >> fd->mshift;
768
769 val = readl(fd->nreg);
770 mask = GENMASK(fd->nwidth - 1, 0) << fd->nshift;
771 n = ((val & mask) >> fd->nshift) + 1;
772
773 if (!n || !m)
774 return parent_rate;
775
776 rate = (u64)parent_rate * n;
777 do_div(rate, m);
778
779 if (pll_frac_is_enabled(hw)) {
780 val = pll_read_frac(hw);
781 rate1 = (u64)parent_rate * (u64)val;
782 do_div(rate1, (m * 8191));
783 }
784
785 return rate + rate1;
786}
787
788static const struct clk_ops pll_ops = {
789 .enable = pll_enable,
790 .disable = pll_disable,
791 .is_enabled = pll_is_enabled,
792 .recalc_rate = pll_fd_recalc_rate,
793};
794
795static struct clk_hw *clk_register_stm32_pll(struct device *dev,
796 const char *name,
797 const char *parent,
798 unsigned long flags,
799 const struct st32h7_pll_cfg *cfg,
800 spinlock_t *lock)
801{
802 struct stm32_pll_obj *pll;
803 struct clk_init_data init = { NULL };
804 struct clk_hw *hw;
805 int ret;
806 struct stm32_fractional_divider *div = NULL;
807 struct stm32_ready_gate *rgate;
808
809 pll = kzalloc(sizeof(*pll), GFP_KERNEL);
810 if (!pll)
811 return ERR_PTR(-ENOMEM);
812
813 init.name = name;
814 init.ops = &pll_ops;
815 init.flags = flags;
816 init.parent_names = &parent;
817 init.num_parents = 1;
818 pll->hw.init = &init;
819
820 hw = &pll->hw;
821 rgate = &pll->rgate;
822
823 rgate->bit_rdy = cfg->bit_idx + 1;
824 rgate->gate.lock = lock;
825 rgate->gate.reg = base + RCC_CR;
826 rgate->gate.bit_idx = cfg->bit_idx;
827
828 div = &pll->div;
829 div->flags = 0;
830 div->mreg = base + RCC_PLLCKSELR;
831 div->mshift = cfg->divm;
832 div->mwidth = 6;
833 div->nreg = base + cfg->offset_divr;
834 div->nshift = 0;
835 div->nwidth = 9;
836
837 div->freg_status = base + RCC_PLLCFGR;
838 div->freg_bit = cfg->bit_frac_en;
839 div->freg_value = base + cfg->offset_frac;
840 div->fshift = 3;
841 div->fwidth = 13;
842
843 div->lock = lock;
844
845 ret = clk_hw_register(dev, hw);
846 if (ret) {
847 kfree(pll);
848 hw = ERR_PTR(ret);
849 }
850
851 return hw;
852}
853
854/* ODF CLOCKS */
855static unsigned long odf_divider_recalc_rate(struct clk_hw *hw,
856 unsigned long parent_rate)
857{
858 return clk_divider_ops.recalc_rate(hw, parent_rate);
859}
860
861static long odf_divider_round_rate(struct clk_hw *hw, unsigned long rate,
862 unsigned long *prate)
863{
864 return clk_divider_ops.round_rate(hw, rate, prate);
865}
866
867static int odf_divider_set_rate(struct clk_hw *hw, unsigned long rate,
868 unsigned long parent_rate)
869{
870 struct clk_hw *hwp;
871 int pll_status;
872 int ret;
873
874 hwp = clk_hw_get_parent(hw);
875
876 pll_status = pll_is_enabled(hwp);
877
878 if (pll_status)
879 pll_disable(hwp);
880
881 ret = clk_divider_ops.set_rate(hw, rate, parent_rate);
882
883 if (pll_status)
884 pll_enable(hwp);
885
886 return ret;
887}
888
889static const struct clk_ops odf_divider_ops = {
890 .recalc_rate = odf_divider_recalc_rate,
891 .round_rate = odf_divider_round_rate,
892 .set_rate = odf_divider_set_rate,
893};
894
895static int odf_gate_enable(struct clk_hw *hw)
896{
897 struct clk_hw *hwp;
898 int pll_status;
899 int ret;
900
901 if (clk_gate_ops.is_enabled(hw))
902 return 0;
903
904 hwp = clk_hw_get_parent(hw);
905
906 pll_status = pll_is_enabled(hwp);
907
908 if (pll_status)
909 pll_disable(hwp);
910
911 ret = clk_gate_ops.enable(hw);
912
913 if (pll_status)
914 pll_enable(hwp);
915
916 return ret;
917}
918
919static void odf_gate_disable(struct clk_hw *hw)
920{
921 struct clk_hw *hwp;
922 int pll_status;
923
924 if (!clk_gate_ops.is_enabled(hw))
925 return;
926
927 hwp = clk_hw_get_parent(hw);
928
929 pll_status = pll_is_enabled(hwp);
930
931 if (pll_status)
932 pll_disable(hwp);
933
934 clk_gate_ops.disable(hw);
935
936 if (pll_status)
937 pll_enable(hwp);
938}
939
940static const struct clk_ops odf_gate_ops = {
941 .enable = odf_gate_enable,
942 .disable = odf_gate_disable,
943 .is_enabled = clk_gate_is_enabled,
944};
945
946static struct composite_clk_gcfg odf_clk_gcfg = {
947 M_CFG_DIV(&odf_divider_ops, 0),
948 M_CFG_GATE(&odf_gate_ops, 0),
949};
950
951#define M_ODF_F(_name, _parent, _gate_offset, _bit_idx, _rate_offset,\
952 _rate_shift, _rate_width, _flags)\
953{\
954 .mux = NULL,\
955 .div = &(struct muxdiv_cfg) {_rate_offset, _rate_shift, _rate_width},\
956 .gate = &(struct gate_cfg) {_gate_offset, _bit_idx },\
957 .name = _name,\
958 .parent_name = &(const char *) {_parent},\
959 .num_parents = 1,\
960 .flags = _flags,\
961}
962
963#define M_ODF(_name, _parent, _gate_offset, _bit_idx, _rate_offset,\
964 _rate_shift, _rate_width)\
965M_ODF_F(_name, _parent, _gate_offset, _bit_idx, _rate_offset,\
966 _rate_shift, _rate_width, 0)\
967
968static const struct composite_clk_cfg stm32_odf[3][3] = {
969 {
970 M_ODF_F("pll1_p", "vco1", RCC_PLLCFGR, 16, RCC_PLL1DIVR, 9, 7,
971 CLK_IGNORE_UNUSED),
972 M_ODF_F("pll1_q", "vco1", RCC_PLLCFGR, 17, RCC_PLL1DIVR, 16, 7,
973 CLK_IGNORE_UNUSED),
974 M_ODF_F("pll1_r", "vco1", RCC_PLLCFGR, 18, RCC_PLL1DIVR, 24, 7,
975 CLK_IGNORE_UNUSED),
976 },
977
978 {
979 M_ODF("pll2_p", "vco2", RCC_PLLCFGR, 19, RCC_PLL2DIVR, 9, 7),
980 M_ODF("pll2_q", "vco2", RCC_PLLCFGR, 20, RCC_PLL2DIVR, 16, 7),
981 M_ODF("pll2_r", "vco2", RCC_PLLCFGR, 21, RCC_PLL2DIVR, 24, 7),
982 },
983 {
984 M_ODF("pll3_p", "vco3", RCC_PLLCFGR, 22, RCC_PLL3DIVR, 9, 7),
985 M_ODF("pll3_q", "vco3", RCC_PLLCFGR, 23, RCC_PLL3DIVR, 16, 7),
986 M_ODF("pll3_r", "vco3", RCC_PLLCFGR, 24, RCC_PLL3DIVR, 24, 7),
987 }
988};
989
990/* PERIF CLOCKS */
991struct pclk_t {
992 u32 gate_offset;
993 u8 bit_idx;
994 const char *name;
995 const char *parent;
996 u32 flags;
997};
998
999#define PER_CLKF(_gate_offset, _bit_idx, _name, _parent, _flags)\
1000{\
1001 .gate_offset = _gate_offset,\
1002 .bit_idx = _bit_idx,\
1003 .name = _name,\
1004 .parent = _parent,\
1005 .flags = _flags,\
1006}
1007
1008#define PER_CLK(_gate_offset, _bit_idx, _name, _parent)\
1009 PER_CLKF(_gate_offset, _bit_idx, _name, _parent, 0)
1010
1011static const struct pclk_t pclk[] = {
1012 PER_CLK(RCC_AHB3ENR, 31, "d1sram1", "hclk"),
1013 PER_CLK(RCC_AHB3ENR, 30, "itcm", "hclk"),
1014 PER_CLK(RCC_AHB3ENR, 29, "dtcm2", "hclk"),
1015 PER_CLK(RCC_AHB3ENR, 28, "dtcm1", "hclk"),
1016 PER_CLK(RCC_AHB3ENR, 8, "flitf", "hclk"),
1017 PER_CLK(RCC_AHB3ENR, 5, "jpgdec", "hclk"),
1018 PER_CLK(RCC_AHB3ENR, 4, "dma2d", "hclk"),
1019 PER_CLK(RCC_AHB3ENR, 0, "mdma", "hclk"),
1020 PER_CLK(RCC_AHB1ENR, 28, "usb2ulpi", "hclk"),
1021 PER_CLK(RCC_AHB1ENR, 26, "usb1ulpi", "hclk"),
1022 PER_CLK(RCC_AHB1ENR, 17, "eth1rx", "hclk"),
1023 PER_CLK(RCC_AHB1ENR, 16, "eth1tx", "hclk"),
1024 PER_CLK(RCC_AHB1ENR, 15, "eth1mac", "hclk"),
1025 PER_CLK(RCC_AHB1ENR, 14, "art", "hclk"),
1026 PER_CLK(RCC_AHB1ENR, 1, "dma2", "hclk"),
1027 PER_CLK(RCC_AHB1ENR, 0, "dma1", "hclk"),
1028 PER_CLK(RCC_AHB2ENR, 31, "d2sram3", "hclk"),
1029 PER_CLK(RCC_AHB2ENR, 30, "d2sram2", "hclk"),
1030 PER_CLK(RCC_AHB2ENR, 29, "d2sram1", "hclk"),
1031 PER_CLK(RCC_AHB2ENR, 5, "hash", "hclk"),
1032 PER_CLK(RCC_AHB2ENR, 4, "crypt", "hclk"),
1033 PER_CLK(RCC_AHB2ENR, 0, "camitf", "hclk"),
1034 PER_CLK(RCC_AHB4ENR, 28, "bkpram", "hclk"),
1035 PER_CLK(RCC_AHB4ENR, 25, "hsem", "hclk"),
1036 PER_CLK(RCC_AHB4ENR, 21, "bdma", "hclk"),
1037 PER_CLK(RCC_AHB4ENR, 19, "crc", "hclk"),
1038 PER_CLK(RCC_AHB4ENR, 10, "gpiok", "hclk"),
1039 PER_CLK(RCC_AHB4ENR, 9, "gpioj", "hclk"),
1040 PER_CLK(RCC_AHB4ENR, 8, "gpioi", "hclk"),
1041 PER_CLK(RCC_AHB4ENR, 7, "gpioh", "hclk"),
1042 PER_CLK(RCC_AHB4ENR, 6, "gpiog", "hclk"),
1043 PER_CLK(RCC_AHB4ENR, 5, "gpiof", "hclk"),
1044 PER_CLK(RCC_AHB4ENR, 4, "gpioe", "hclk"),
1045 PER_CLK(RCC_AHB4ENR, 3, "gpiod", "hclk"),
1046 PER_CLK(RCC_AHB4ENR, 2, "gpioc", "hclk"),
1047 PER_CLK(RCC_AHB4ENR, 1, "gpiob", "hclk"),
1048 PER_CLK(RCC_AHB4ENR, 0, "gpioa", "hclk"),
1049 PER_CLK(RCC_APB3ENR, 6, "wwdg1", "pclk3"),
1050 PER_CLK(RCC_APB1LENR, 29, "dac12", "pclk1"),
1051 PER_CLK(RCC_APB1LENR, 11, "wwdg2", "pclk1"),
1052 PER_CLK(RCC_APB1LENR, 8, "tim14", "tim1_ker"),
1053 PER_CLK(RCC_APB1LENR, 7, "tim13", "tim1_ker"),
1054 PER_CLK(RCC_APB1LENR, 6, "tim12", "tim1_ker"),
1055 PER_CLK(RCC_APB1LENR, 5, "tim7", "tim1_ker"),
1056 PER_CLK(RCC_APB1LENR, 4, "tim6", "tim1_ker"),
1057 PER_CLK(RCC_APB1LENR, 3, "tim5", "tim1_ker"),
1058 PER_CLK(RCC_APB1LENR, 2, "tim4", "tim1_ker"),
1059 PER_CLK(RCC_APB1LENR, 1, "tim3", "tim1_ker"),
1060 PER_CLK(RCC_APB1LENR, 0, "tim2", "tim1_ker"),
1061 PER_CLK(RCC_APB1HENR, 5, "mdios", "pclk1"),
1062 PER_CLK(RCC_APB1HENR, 4, "opamp", "pclk1"),
1063 PER_CLK(RCC_APB1HENR, 1, "crs", "pclk1"),
1064 PER_CLK(RCC_APB2ENR, 18, "tim17", "tim2_ker"),
1065 PER_CLK(RCC_APB2ENR, 17, "tim16", "tim2_ker"),
1066 PER_CLK(RCC_APB2ENR, 16, "tim15", "tim2_ker"),
1067 PER_CLK(RCC_APB2ENR, 1, "tim8", "tim2_ker"),
1068 PER_CLK(RCC_APB2ENR, 0, "tim1", "tim2_ker"),
1069 PER_CLK(RCC_APB4ENR, 26, "tmpsens", "pclk4"),
1070 PER_CLK(RCC_APB4ENR, 16, "rtcapb", "pclk4"),
1071 PER_CLK(RCC_APB4ENR, 15, "vref", "pclk4"),
1072 PER_CLK(RCC_APB4ENR, 14, "comp12", "pclk4"),
1073 PER_CLK(RCC_APB4ENR, 1, "syscfg", "pclk4"),
1074};
1075
1076/* KERNEL CLOCKS */
1077#define KER_CLKF(_gate_offset, _bit_idx,\
1078 _mux_offset, _mux_shift, _mux_width,\
1079 _name, _parent_name,\
1080 _flags) \
1081{ \
1082 .gate = &(struct gate_cfg) {_gate_offset, _bit_idx},\
1083 .mux = &(struct muxdiv_cfg) {_mux_offset, _mux_shift, _mux_width },\
1084 .name = _name, \
1085 .parent_name = _parent_name, \
1086 .num_parents = ARRAY_SIZE(_parent_name),\
1087 .flags = _flags,\
1088}
1089
1090#define KER_CLK(_gate_offset, _bit_idx, _mux_offset, _mux_shift, _mux_width,\
1091 _name, _parent_name) \
1092KER_CLKF(_gate_offset, _bit_idx, _mux_offset, _mux_shift, _mux_width,\
1093 _name, _parent_name, 0)\
1094
1095#define KER_CLKF_NOMUX(_gate_offset, _bit_idx,\
1096 _name, _parent_name,\
1097 _flags) \
1098{ \
1099 .gate = &(struct gate_cfg) {_gate_offset, _bit_idx},\
1100 .mux = NULL,\
1101 .name = _name, \
1102 .parent_name = _parent_name, \
1103 .num_parents = 1,\
1104 .flags = _flags,\
1105}
1106
1107static const struct composite_clk_cfg kclk[] = {
1108 KER_CLK(RCC_AHB3ENR, 16, RCC_D1CCIPR, 16, 1, "sdmmc1", sdmmc_src),
1109 KER_CLKF(RCC_AHB3ENR, 14, RCC_D1CCIPR, 4, 2, "quadspi", qspi_src,
1110 CLK_IGNORE_UNUSED),
1111 KER_CLKF(RCC_AHB3ENR, 12, RCC_D1CCIPR, 0, 2, "fmc", fmc_src,
1112 CLK_IGNORE_UNUSED),
1113 KER_CLK(RCC_AHB1ENR, 27, RCC_D2CCIP2R, 20, 2, "usb2otg", usbotg_src),
1114 KER_CLK(RCC_AHB1ENR, 25, RCC_D2CCIP2R, 20, 2, "usb1otg", usbotg_src),
1115 KER_CLK(RCC_AHB1ENR, 5, RCC_D3CCIPR, 16, 2, "adc12", adc_src),
1116 KER_CLK(RCC_AHB2ENR, 9, RCC_D1CCIPR, 16, 1, "sdmmc2", sdmmc_src),
1117 KER_CLK(RCC_AHB2ENR, 6, RCC_D2CCIP2R, 8, 2, "rng", rng_src),
1118 KER_CLK(RCC_AHB4ENR, 24, RCC_D3CCIPR, 16, 2, "adc3", adc_src),
1119 KER_CLKF(RCC_APB3ENR, 4, RCC_D1CCIPR, 8, 1, "dsi", dsi_src,
1120 CLK_SET_RATE_PARENT),
1121 KER_CLKF_NOMUX(RCC_APB3ENR, 3, "ltdc", ltdc_src, CLK_SET_RATE_PARENT),
1122 KER_CLK(RCC_APB1LENR, 31, RCC_D2CCIP2R, 0, 3, "usart8", usart_src2),
1123 KER_CLK(RCC_APB1LENR, 30, RCC_D2CCIP2R, 0, 3, "usart7", usart_src2),
1124 KER_CLK(RCC_APB1LENR, 27, RCC_D2CCIP2R, 22, 2, "hdmicec", cec_src),
1125 KER_CLK(RCC_APB1LENR, 23, RCC_D2CCIP2R, 12, 2, "i2c3", i2c_src1),
1126 KER_CLK(RCC_APB1LENR, 22, RCC_D2CCIP2R, 12, 2, "i2c2", i2c_src1),
1127 KER_CLK(RCC_APB1LENR, 21, RCC_D2CCIP2R, 12, 2, "i2c1", i2c_src1),
1128 KER_CLK(RCC_APB1LENR, 20, RCC_D2CCIP2R, 0, 3, "uart5", usart_src2),
1129 KER_CLK(RCC_APB1LENR, 19, RCC_D2CCIP2R, 0, 3, "uart4", usart_src2),
1130 KER_CLK(RCC_APB1LENR, 18, RCC_D2CCIP2R, 0, 3, "usart3", usart_src2),
1131 KER_CLK(RCC_APB1LENR, 17, RCC_D2CCIP2R, 0, 3, "usart2", usart_src2),
1132 KER_CLK(RCC_APB1LENR, 16, RCC_D2CCIP1R, 20, 2, "spdifrx", spdifrx_src),
1133 KER_CLK(RCC_APB1LENR, 15, RCC_D2CCIP1R, 16, 3, "spi3", spi_src1),
1134 KER_CLK(RCC_APB1LENR, 14, RCC_D2CCIP1R, 16, 3, "spi2", spi_src1),
1135 KER_CLK(RCC_APB1LENR, 9, RCC_D2CCIP2R, 28, 3, "lptim1", lptim_src1),
1136 KER_CLK(RCC_APB1HENR, 8, RCC_D2CCIP1R, 28, 2, "fdcan", fdcan_src),
1137 KER_CLK(RCC_APB1HENR, 2, RCC_D2CCIP1R, 31, 1, "swp", swp_src),
1138 KER_CLK(RCC_APB2ENR, 29, RCC_CFGR, 14, 1, "hrtim", hrtim_src),
1139 KER_CLK(RCC_APB2ENR, 28, RCC_D2CCIP1R, 24, 1, "dfsdm1", dfsdm1_src),
1140 KER_CLKF(RCC_APB2ENR, 24, RCC_D2CCIP1R, 6, 3, "sai3", sai_src,
1141 CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT),
1142 KER_CLKF(RCC_APB2ENR, 23, RCC_D2CCIP1R, 6, 3, "sai2", sai_src,
1143 CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT),
1144 KER_CLKF(RCC_APB2ENR, 22, RCC_D2CCIP1R, 0, 3, "sai1", sai_src,
1145 CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT),
1146 KER_CLK(RCC_APB2ENR, 20, RCC_D2CCIP1R, 16, 3, "spi5", spi_src2),
1147 KER_CLK(RCC_APB2ENR, 13, RCC_D2CCIP1R, 16, 3, "spi4", spi_src2),
1148 KER_CLK(RCC_APB2ENR, 12, RCC_D2CCIP1R, 16, 3, "spi1", spi_src1),
1149 KER_CLK(RCC_APB2ENR, 5, RCC_D2CCIP2R, 3, 3, "usart6", usart_src1),
1150 KER_CLK(RCC_APB2ENR, 4, RCC_D2CCIP2R, 3, 3, "usart1", usart_src1),
1151 KER_CLK(RCC_APB4ENR, 21, RCC_D3CCIPR, 24, 3, "sai4b", sai_src),
1152 KER_CLK(RCC_APB4ENR, 21, RCC_D3CCIPR, 21, 3, "sai4a", sai_src),
1153 KER_CLK(RCC_APB4ENR, 12, RCC_D3CCIPR, 13, 3, "lptim5", lptim_src2),
1154 KER_CLK(RCC_APB4ENR, 11, RCC_D3CCIPR, 13, 3, "lptim4", lptim_src2),
1155 KER_CLK(RCC_APB4ENR, 10, RCC_D3CCIPR, 13, 3, "lptim3", lptim_src2),
1156 KER_CLK(RCC_APB4ENR, 9, RCC_D3CCIPR, 10, 3, "lptim2", lptim_src2),
1157 KER_CLK(RCC_APB4ENR, 7, RCC_D3CCIPR, 8, 2, "i2c4", i2c_src2),
1158 KER_CLK(RCC_APB4ENR, 5, RCC_D3CCIPR, 28, 3, "spi6", spi_src3),
1159 KER_CLK(RCC_APB4ENR, 3, RCC_D3CCIPR, 0, 3, "lpuart1", lpuart1_src),
1160};
1161
1162static struct composite_clk_gcfg kernel_clk_cfg = {
1163 M_CFG_MUX(NULL, 0),
1164 M_CFG_GATE(NULL, 0),
1165};
1166
1167/* RTC clock */
1168/*
1169 * RTC & LSE registers are protected against parasitic write access.
1170 * PWR_CR_DBP bit must be set to enable write access to RTC registers.
1171 */
1172/* STM32_PWR_CR */
1173#define PWR_CR 0x00
1174/* STM32_PWR_CR bit field */
1175#define PWR_CR_DBP BIT(8)
1176
1177static struct composite_clk_gcfg rtc_clk_cfg = {
1178 M_CFG_MUX(NULL, 0),
1179 M_CFG_GATE(NULL, 0),
1180};
1181
1182static const struct composite_clk_cfg rtc_clk =
1183 KER_CLK(RCC_BDCR, 15, RCC_BDCR, 8, 2, "rtc_ck", rtc_src);
1184
1185/* Micro-controller output clock */
1186static struct composite_clk_gcfg mco_clk_cfg = {
1187 M_CFG_MUX(NULL, 0),
1188 M_CFG_DIV(NULL, CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO),
1189};
1190
1191#define M_MCO_F(_name, _parents, _mux_offset, _mux_shift, _mux_width,\
1192 _rate_offset, _rate_shift, _rate_width,\
1193 _flags)\
1194{\
1195 .mux = &(struct muxdiv_cfg) {_mux_offset, _mux_shift, _mux_width },\
1196 .div = &(struct muxdiv_cfg) {_rate_offset, _rate_shift, _rate_width},\
1197 .gate = NULL,\
1198 .name = _name,\
1199 .parent_name = _parents,\
1200 .num_parents = ARRAY_SIZE(_parents),\
1201 .flags = _flags,\
1202}
1203
1204static const struct composite_clk_cfg mco_clk[] = {
1205 M_MCO_F("mco1", mco_src1, RCC_CFGR, 22, 4, RCC_CFGR, 18, 4, 0),
1206 M_MCO_F("mco2", mco_src2, RCC_CFGR, 29, 3, RCC_CFGR, 25, 4, 0),
1207};
1208
1209static void __init stm32h7_rcc_init(struct device_node *np)
1210{
1211 struct clk_hw_onecell_data *clk_data;
1212 struct composite_cfg c_cfg;
1213 int n;
1214 const char *hse_clk, *lse_clk, *i2s_clk;
1215 struct regmap *pdrm;
1216
1217 clk_data = kzalloc(sizeof(*clk_data) +
1218 sizeof(*clk_data->hws) * STM32H7_MAX_CLKS,
1219 GFP_KERNEL);
1220 if (!clk_data)
1221 return;
1222
1223 clk_data->num = STM32H7_MAX_CLKS;
1224
1225 hws = clk_data->hws;
1226
1227 for (n = 0; n < STM32H7_MAX_CLKS; n++)
1228 hws[n] = ERR_PTR(-ENOENT);
1229
1230 /* get RCC base @ from DT */
1231 base = of_iomap(np, 0);
1232 if (!base) {
1233 pr_err("%s: unable to map resource", np->name);
1234 goto err_free_clks;
1235 }
1236
1237 pdrm = syscon_regmap_lookup_by_phandle(np, "st,syscfg");
1238 if (IS_ERR(pdrm))
1239 pr_warn("%s: Unable to get syscfg\n", __func__);
1240 else
1241 /* In any case disable backup domain write protection
1242 * and will never be enabled.
1243 * Needed by LSE & RTC clocks.
1244 */
1245 regmap_update_bits(pdrm, PWR_CR, PWR_CR_DBP, PWR_CR_DBP);
1246
1247 /* Put parent names from DT */
1248 hse_clk = of_clk_get_parent_name(np, 0);
1249 lse_clk = of_clk_get_parent_name(np, 1);
1250 i2s_clk = of_clk_get_parent_name(np, 2);
1251
1252 sai_src[3] = i2s_clk;
1253 spi_src1[3] = i2s_clk;
1254
1255 /* Register Internal oscillators */
1256 clk_hw_register_fixed_rate(NULL, "clk-hsi", NULL, 0, 64000000);
1257 clk_hw_register_fixed_rate(NULL, "clk-csi", NULL, 0, 4000000);
1258 clk_hw_register_fixed_rate(NULL, "clk-lsi", NULL, 0, 32000);
1259 clk_hw_register_fixed_rate(NULL, "clk-rc48", NULL, 0, 48000);
1260
1261 /* This clock is coming from outside. Frequencies unknown */
1262 hws[CK_DSI_PHY] = clk_hw_register_fixed_rate(NULL, "ck_dsi_phy", NULL,
1263 0, 0);
1264
1265 hws[HSI_DIV] = clk_hw_register_divider(NULL, "hsidiv", "clk-hsi", 0,
1266 base + RCC_CR, 3, 2, CLK_DIVIDER_POWER_OF_TWO,
1267 &stm32rcc_lock);
1268
1269 hws[HSE_1M] = clk_hw_register_divider(NULL, "hse_1M", "hse_ck", 0,
1270 base + RCC_CFGR, 8, 6, CLK_DIVIDER_ONE_BASED |
1271 CLK_DIVIDER_ALLOW_ZERO,
1272 &stm32rcc_lock);
1273
1274 /* Mux system clocks */
1275 for (n = 0; n < ARRAY_SIZE(stm32_mclk); n++)
1276 hws[MCLK_BANK + n] = clk_hw_register_mux(NULL,
1277 stm32_mclk[n].name,
1278 stm32_mclk[n].parents,
1279 stm32_mclk[n].num_parents,
1280 stm32_mclk[n].flags,
1281 stm32_mclk[n].offset + base,
1282 stm32_mclk[n].shift,
1283 stm32_mclk[n].width,
1284 0,
1285 &stm32rcc_lock);
1286
1287 register_core_and_bus_clocks();
1288
1289 /* Oscillary clocks */
1290 for (n = 0; n < ARRAY_SIZE(stm32_oclk); n++)
1291 hws[OSC_BANK + n] = clk_register_ready_gate(NULL,
1292 stm32_oclk[n].name,
1293 stm32_oclk[n].parent,
1294 stm32_oclk[n].gate_offset + base,
1295 stm32_oclk[n].bit_idx,
1296 stm32_oclk[n].bit_rdy,
1297 stm32_oclk[n].flags,
1298 &stm32rcc_lock);
1299
1300 hws[HSE_CK] = clk_register_ready_gate(NULL,
1301 "hse_ck",
1302 hse_clk,
1303 RCC_CR + base,
1304 16, 17,
1305 0,
1306 &stm32rcc_lock);
1307
1308 hws[LSE_CK] = clk_register_ready_gate(NULL,
1309 "lse_ck",
1310 lse_clk,
1311 RCC_BDCR + base,
1312 0, 1,
1313 0,
1314 &stm32rcc_lock);
1315
1316 hws[CSI_KER_DIV122 + n] = clk_hw_register_fixed_factor(NULL,
1317 "csi_ker_div122", "csi_ker", 0, 1, 122);
1318
1319 /* PLLs */
1320 for (n = 0; n < ARRAY_SIZE(stm32_pll); n++) {
1321 int odf;
1322
1323 /* Register the VCO */
1324 clk_register_stm32_pll(NULL, stm32_pll[n].name,
1325 stm32_pll[n].parent_name, stm32_pll[n].flags,
1326 stm32_pll[n].cfg,
1327 &stm32rcc_lock);
1328
1329 /* Register the 3 output dividers */
1330 for (odf = 0; odf < 3; odf++) {
1331 int idx = n * 3 + odf;
1332
1333 get_cfg_composite_div(&odf_clk_gcfg, &stm32_odf[n][odf],
1334 &c_cfg, &stm32rcc_lock);
1335
1336 hws[ODF_BANK + idx] = clk_hw_register_composite(NULL,
1337 stm32_odf[n][odf].name,
1338 stm32_odf[n][odf].parent_name,
1339 stm32_odf[n][odf].num_parents,
1340 c_cfg.mux_hw, c_cfg.mux_ops,
1341 c_cfg.div_hw, c_cfg.div_ops,
1342 c_cfg.gate_hw, c_cfg.gate_ops,
1343 stm32_odf[n][odf].flags);
1344 }
1345 }
1346
1347 /* Peripheral clocks */
1348 for (n = 0; n < ARRAY_SIZE(pclk); n++)
1349 hws[PERIF_BANK + n] = clk_hw_register_gate(NULL, pclk[n].name,
1350 pclk[n].parent,
1351 pclk[n].flags, base + pclk[n].gate_offset,
1352 pclk[n].bit_idx, pclk[n].flags, &stm32rcc_lock);
1353
1354 /* Kernel clocks */
1355 for (n = 0; n < ARRAY_SIZE(kclk); n++) {
1356 get_cfg_composite_div(&kernel_clk_cfg, &kclk[n], &c_cfg,
1357 &stm32rcc_lock);
1358
1359 hws[KERN_BANK + n] = clk_hw_register_composite(NULL,
1360 kclk[n].name,
1361 kclk[n].parent_name,
1362 kclk[n].num_parents,
1363 c_cfg.mux_hw, c_cfg.mux_ops,
1364 c_cfg.div_hw, c_cfg.div_ops,
1365 c_cfg.gate_hw, c_cfg.gate_ops,
1366 kclk[n].flags);
1367 }
1368
1369 /* RTC clock (default state is off) */
1370 clk_hw_register_fixed_rate(NULL, "off", NULL, 0, 0);
1371
1372 get_cfg_composite_div(&rtc_clk_cfg, &rtc_clk, &c_cfg, &stm32rcc_lock);
1373
1374 hws[RTC_CK] = clk_hw_register_composite(NULL,
1375 rtc_clk.name,
1376 rtc_clk.parent_name,
1377 rtc_clk.num_parents,
1378 c_cfg.mux_hw, c_cfg.mux_ops,
1379 c_cfg.div_hw, c_cfg.div_ops,
1380 c_cfg.gate_hw, c_cfg.gate_ops,
1381 rtc_clk.flags);
1382
1383 /* Micro-controller clocks */
1384 for (n = 0; n < ARRAY_SIZE(mco_clk); n++) {
1385 get_cfg_composite_div(&mco_clk_cfg, &mco_clk[n], &c_cfg,
1386 &stm32rcc_lock);
1387
1388 hws[MCO_BANK + n] = clk_hw_register_composite(NULL,
1389 mco_clk[n].name,
1390 mco_clk[n].parent_name,
1391 mco_clk[n].num_parents,
1392 c_cfg.mux_hw, c_cfg.mux_ops,
1393 c_cfg.div_hw, c_cfg.div_ops,
1394 c_cfg.gate_hw, c_cfg.gate_ops,
1395 mco_clk[n].flags);
1396 }
1397
1398 of_clk_add_hw_provider(np, of_clk_hw_onecell_get, clk_data);
1399
1400 return;
1401
1402err_free_clks:
1403 kfree(clk_data);
1404}
1405
1406/* The RCC node is a clock and reset controller, and these
1407 * functionalities are supported by different drivers that
1408 * matches the same compatible strings.
1409 */
1410CLK_OF_DECLARE_DRIVER(stm32h7_rcc, "st,stm32h743-rcc", stm32h7_rcc_init);