blob: c20a94dda61e71c0014fc8945ba6349657e90f9a [file] [log] [blame]
Ingo Molnar425e0962007-07-09 18:51:58 +02001
2#ifdef CONFIG_SCHEDSTATS
3/*
4 * bump this up when changing the output format or the meaning of an existing
5 * format, so that tools can adapt (or abort)
6 */
7#define SCHEDSTAT_VERSION 14
8
9static int show_schedstat(struct seq_file *seq, void *v)
10{
11 int cpu;
12
13 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
14 seq_printf(seq, "timestamp %lu\n", jiffies);
15 for_each_online_cpu(cpu) {
16 struct rq *rq = cpu_rq(cpu);
17#ifdef CONFIG_SMP
18 struct sched_domain *sd;
19 int dcnt = 0;
20#endif
21
22 /* runqueue-specific stats */
23 seq_printf(seq,
Balbir Singh172ba842007-07-09 18:52:00 +020024 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %llu %llu %lu",
Ingo Molnar425e0962007-07-09 18:51:58 +020025 cpu, rq->yld_both_empty,
26 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
27 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
28 rq->ttwu_cnt, rq->ttwu_local,
29 rq->rq_sched_info.cpu_time,
30 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
31
32 seq_printf(seq, "\n");
33
34#ifdef CONFIG_SMP
35 /* domain-specific stats */
36 preempt_disable();
37 for_each_domain(cpu, sd) {
38 enum cpu_idle_type itype;
39 char mask_str[NR_CPUS];
40
41 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
42 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
43 for (itype = CPU_IDLE; itype < CPU_MAX_IDLE_TYPES;
44 itype++) {
45 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu "
46 "%lu",
47 sd->lb_cnt[itype],
48 sd->lb_balanced[itype],
49 sd->lb_failed[itype],
50 sd->lb_imbalance[itype],
51 sd->lb_gained[itype],
52 sd->lb_hot_gained[itype],
53 sd->lb_nobusyq[itype],
54 sd->lb_nobusyg[itype]);
55 }
56 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu"
57 " %lu %lu %lu\n",
58 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
59 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
60 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
61 sd->ttwu_wake_remote, sd->ttwu_move_affine,
62 sd->ttwu_move_balance);
63 }
64 preempt_enable();
65#endif
66 }
67 return 0;
68}
69
70static int schedstat_open(struct inode *inode, struct file *file)
71{
72 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
73 char *buf = kmalloc(size, GFP_KERNEL);
74 struct seq_file *m;
75 int res;
76
77 if (!buf)
78 return -ENOMEM;
79 res = single_open(file, show_schedstat, NULL);
80 if (!res) {
81 m = file->private_data;
82 m->buf = buf;
83 m->size = size;
84 } else
85 kfree(buf);
86 return res;
87}
88
89const struct file_operations proc_schedstat_operations = {
90 .open = schedstat_open,
91 .read = seq_read,
92 .llseek = seq_lseek,
93 .release = single_release,
94};
95
96/*
97 * Expects runqueue lock to be held for atomicity of update
98 */
99static inline void
100rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
101{
102 if (rq) {
103 rq->rq_sched_info.run_delay += delta;
104 rq->rq_sched_info.pcnt++;
105 }
106}
107
108/*
109 * Expects runqueue lock to be held for atomicity of update
110 */
111static inline void
112rq_sched_info_depart(struct rq *rq, unsigned long long delta)
113{
114 if (rq)
115 rq->rq_sched_info.cpu_time += delta;
116}
117# define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
118# define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
Ingo Molnarc3c70112007-08-02 17:41:40 +0200119# define schedstat_set(var, val) do { var = (val); } while (0)
Ingo Molnar425e0962007-07-09 18:51:58 +0200120#else /* !CONFIG_SCHEDSTATS */
121static inline void
122rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
123{}
124static inline void
125rq_sched_info_depart(struct rq *rq, unsigned long long delta)
126{}
127# define schedstat_inc(rq, field) do { } while (0)
128# define schedstat_add(rq, field, amt) do { } while (0)
Ingo Molnarc3c70112007-08-02 17:41:40 +0200129# define schedstat_set(var, val) do { } while (0)
Ingo Molnar425e0962007-07-09 18:51:58 +0200130#endif
131
132#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
133/*
134 * Called when a process is dequeued from the active array and given
135 * the cpu. We should note that with the exception of interactive
136 * tasks, the expired queue will become the active queue after the active
137 * queue is empty, without explicitly dequeuing and requeuing tasks in the
138 * expired queue. (Interactive tasks may be requeued directly to the
139 * active queue, thus delaying tasks in the expired queue from running;
140 * see scheduler_tick()).
141 *
142 * This function is only called from sched_info_arrive(), rather than
143 * dequeue_task(). Even though a task may be queued and dequeued multiple
144 * times as it is shuffled about, we're really interested in knowing how
145 * long it was from the *first* time it was queued to the time that it
146 * finally hit a cpu.
147 */
148static inline void sched_info_dequeued(struct task_struct *t)
149{
150 t->sched_info.last_queued = 0;
151}
152
153/*
154 * Called when a task finally hits the cpu. We can now calculate how
155 * long it was waiting to run. We also note when it began so that we
156 * can keep stats on how long its timeslice is.
157 */
158static void sched_info_arrive(struct task_struct *t)
159{
160 unsigned long long now = sched_clock(), delta = 0;
161
162 if (t->sched_info.last_queued)
163 delta = now - t->sched_info.last_queued;
164 sched_info_dequeued(t);
165 t->sched_info.run_delay += delta;
166 t->sched_info.last_arrival = now;
167 t->sched_info.pcnt++;
168
169 rq_sched_info_arrive(task_rq(t), delta);
170}
171
172/*
173 * Called when a process is queued into either the active or expired
174 * array. The time is noted and later used to determine how long we
175 * had to wait for us to reach the cpu. Since the expired queue will
176 * become the active queue after active queue is empty, without dequeuing
177 * and requeuing any tasks, we are interested in queuing to either. It
178 * is unusual but not impossible for tasks to be dequeued and immediately
179 * requeued in the same or another array: this can happen in sched_yield(),
180 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
181 * to runqueue.
182 *
183 * This function is only called from enqueue_task(), but also only updates
184 * the timestamp if it is already not set. It's assumed that
185 * sched_info_dequeued() will clear that stamp when appropriate.
186 */
187static inline void sched_info_queued(struct task_struct *t)
188{
189 if (unlikely(sched_info_on()))
190 if (!t->sched_info.last_queued)
191 t->sched_info.last_queued = sched_clock();
192}
193
194/*
195 * Called when a process ceases being the active-running process, either
196 * voluntarily or involuntarily. Now we can calculate how long we ran.
197 */
198static inline void sched_info_depart(struct task_struct *t)
199{
200 unsigned long long delta = sched_clock() - t->sched_info.last_arrival;
201
202 t->sched_info.cpu_time += delta;
203 rq_sched_info_depart(task_rq(t), delta);
204}
205
206/*
207 * Called when tasks are switched involuntarily due, typically, to expiring
208 * their time slice. (This may also be called when switching to or from
209 * the idle task.) We are only called when prev != next.
210 */
211static inline void
212__sched_info_switch(struct task_struct *prev, struct task_struct *next)
213{
214 struct rq *rq = task_rq(prev);
215
216 /*
217 * prev now departs the cpu. It's not interesting to record
218 * stats about how efficient we were at scheduling the idle
219 * process, however.
220 */
221 if (prev != rq->idle)
222 sched_info_depart(prev);
223
224 if (next != rq->idle)
225 sched_info_arrive(next);
226}
227static inline void
228sched_info_switch(struct task_struct *prev, struct task_struct *next)
229{
230 if (unlikely(sched_info_on()))
231 __sched_info_switch(prev, next);
232}
233#else
234#define sched_info_queued(t) do { } while (0)
235#define sched_info_switch(t, next) do { } while (0)
236#endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
237