blob: ab8b1bb8caa411d86cecb915329ed7be7ce4de2b [file] [log] [blame]
Waiman Longa23db282015-04-24 14:56:37 -04001#ifndef _GEN_PV_LOCK_SLOWPATH
2#error "do not include this file"
3#endif
4
5#include <linux/hash.h>
6#include <linux/bootmem.h>
Waiman Longcba77f02015-07-11 21:19:19 -04007#include <linux/debug_locks.h>
Waiman Longa23db282015-04-24 14:56:37 -04008
9/*
10 * Implement paravirt qspinlocks; the general idea is to halt the vcpus instead
11 * of spinning them.
12 *
13 * This relies on the architecture to provide two paravirt hypercalls:
14 *
15 * pv_wait(u8 *ptr, u8 val) -- suspends the vcpu if *ptr == val
16 * pv_kick(cpu) -- wakes a suspended vcpu
17 *
18 * Using these we implement __pv_queued_spin_lock_slowpath() and
19 * __pv_queued_spin_unlock() to replace native_queued_spin_lock_slowpath() and
20 * native_queued_spin_unlock().
21 */
22
23#define _Q_SLOW_VAL (3U << _Q_LOCKED_OFFSET)
24
25enum vcpu_state {
26 vcpu_running = 0,
27 vcpu_halted,
28};
29
30struct pv_node {
31 struct mcs_spinlock mcs;
32 struct mcs_spinlock __res[3];
33
34 int cpu;
35 u8 state;
36};
37
38/*
39 * Lock and MCS node addresses hash table for fast lookup
40 *
41 * Hashing is done on a per-cacheline basis to minimize the need to access
42 * more than one cacheline.
43 *
44 * Dynamically allocate a hash table big enough to hold at least 4X the
45 * number of possible cpus in the system. Allocation is done on page
46 * granularity. So the minimum number of hash buckets should be at least
47 * 256 (64-bit) or 512 (32-bit) to fully utilize a 4k page.
48 *
49 * Since we should not be holding locks from NMI context (very rare indeed) the
50 * max load factor is 0.75, which is around the point where open addressing
51 * breaks down.
52 *
53 */
54struct pv_hash_entry {
55 struct qspinlock *lock;
56 struct pv_node *node;
57};
58
59#define PV_HE_PER_LINE (SMP_CACHE_BYTES / sizeof(struct pv_hash_entry))
60#define PV_HE_MIN (PAGE_SIZE / sizeof(struct pv_hash_entry))
61
62static struct pv_hash_entry *pv_lock_hash;
63static unsigned int pv_lock_hash_bits __read_mostly;
64
65/*
66 * Allocate memory for the PV qspinlock hash buckets
67 *
68 * This function should be called from the paravirt spinlock initialization
69 * routine.
70 */
71void __init __pv_init_lock_hash(void)
72{
73 int pv_hash_size = ALIGN(4 * num_possible_cpus(), PV_HE_PER_LINE);
74
75 if (pv_hash_size < PV_HE_MIN)
76 pv_hash_size = PV_HE_MIN;
77
78 /*
79 * Allocate space from bootmem which should be page-size aligned
80 * and hence cacheline aligned.
81 */
82 pv_lock_hash = alloc_large_system_hash("PV qspinlock",
83 sizeof(struct pv_hash_entry),
84 pv_hash_size, 0, HASH_EARLY,
85 &pv_lock_hash_bits, NULL,
86 pv_hash_size, pv_hash_size);
87}
88
89#define for_each_hash_entry(he, offset, hash) \
90 for (hash &= ~(PV_HE_PER_LINE - 1), he = &pv_lock_hash[hash], offset = 0; \
91 offset < (1 << pv_lock_hash_bits); \
92 offset++, he = &pv_lock_hash[(hash + offset) & ((1 << pv_lock_hash_bits) - 1)])
93
94static struct qspinlock **pv_hash(struct qspinlock *lock, struct pv_node *node)
95{
96 unsigned long offset, hash = hash_ptr(lock, pv_lock_hash_bits);
97 struct pv_hash_entry *he;
98
99 for_each_hash_entry(he, offset, hash) {
100 if (!cmpxchg(&he->lock, NULL, lock)) {
101 WRITE_ONCE(he->node, node);
102 return &he->lock;
103 }
104 }
105 /*
106 * Hard assume there is a free entry for us.
107 *
108 * This is guaranteed by ensuring every blocked lock only ever consumes
109 * a single entry, and since we only have 4 nesting levels per CPU
110 * and allocated 4*nr_possible_cpus(), this must be so.
111 *
112 * The single entry is guaranteed by having the lock owner unhash
113 * before it releases.
114 */
115 BUG();
116}
117
118static struct pv_node *pv_unhash(struct qspinlock *lock)
119{
120 unsigned long offset, hash = hash_ptr(lock, pv_lock_hash_bits);
121 struct pv_hash_entry *he;
122 struct pv_node *node;
123
124 for_each_hash_entry(he, offset, hash) {
125 if (READ_ONCE(he->lock) == lock) {
126 node = READ_ONCE(he->node);
127 WRITE_ONCE(he->lock, NULL);
128 return node;
129 }
130 }
131 /*
132 * Hard assume we'll find an entry.
133 *
134 * This guarantees a limited lookup time and is itself guaranteed by
135 * having the lock owner do the unhash -- IFF the unlock sees the
136 * SLOW flag, there MUST be a hash entry.
137 */
138 BUG();
139}
140
141/*
142 * Initialize the PV part of the mcs_spinlock node.
143 */
144static void pv_init_node(struct mcs_spinlock *node)
145{
146 struct pv_node *pn = (struct pv_node *)node;
147
148 BUILD_BUG_ON(sizeof(struct pv_node) > 5*sizeof(struct mcs_spinlock));
149
150 pn->cpu = smp_processor_id();
151 pn->state = vcpu_running;
152}
153
154/*
155 * Wait for node->locked to become true, halt the vcpu after a short spin.
156 * pv_kick_node() is used to wake the vcpu again.
157 */
158static void pv_wait_node(struct mcs_spinlock *node)
159{
160 struct pv_node *pn = (struct pv_node *)node;
161 int loop;
162
163 for (;;) {
164 for (loop = SPIN_THRESHOLD; loop; loop--) {
165 if (READ_ONCE(node->locked))
166 return;
167 cpu_relax();
168 }
169
170 /*
171 * Order pn->state vs pn->locked thusly:
172 *
173 * [S] pn->state = vcpu_halted [S] next->locked = 1
174 * MB MB
175 * [L] pn->locked [RmW] pn->state = vcpu_running
176 *
177 * Matches the xchg() from pv_kick_node().
178 */
Peter Zijlstrab92b8b32015-05-12 10:51:55 +0200179 smp_store_mb(pn->state, vcpu_halted);
Waiman Longa23db282015-04-24 14:56:37 -0400180
181 if (!READ_ONCE(node->locked))
182 pv_wait(&pn->state, vcpu_halted);
183
184 /*
185 * Reset the vCPU state to avoid unncessary CPU kicking
186 */
187 WRITE_ONCE(pn->state, vcpu_running);
188
189 /*
190 * If the locked flag is still not set after wakeup, it is a
191 * spurious wakeup and the vCPU should wait again. However,
192 * there is a pretty high overhead for CPU halting and kicking.
193 * So it is better to spin for a while in the hope that the
194 * MCS lock will be released soon.
195 */
196 }
197 /*
198 * By now our node->locked should be 1 and our caller will not actually
199 * spin-wait for it. We do however rely on our caller to do a
200 * load-acquire for us.
201 */
202}
203
204/*
205 * Called after setting next->locked = 1, used to wake those stuck in
206 * pv_wait_node().
207 */
208static void pv_kick_node(struct mcs_spinlock *node)
209{
210 struct pv_node *pn = (struct pv_node *)node;
211
212 /*
213 * Note that because node->locked is already set, this actual
214 * mcs_spinlock entry could be re-used already.
215 *
216 * This should be fine however, kicking people for no reason is
217 * harmless.
218 *
219 * See the comment in pv_wait_node().
220 */
221 if (xchg(&pn->state, vcpu_running) == vcpu_halted)
222 pv_kick(pn->cpu);
223}
224
225/*
226 * Wait for l->locked to become clear; halt the vcpu after a short spin.
227 * __pv_queued_spin_unlock() will wake us.
228 */
229static void pv_wait_head(struct qspinlock *lock, struct mcs_spinlock *node)
230{
231 struct pv_node *pn = (struct pv_node *)node;
232 struct __qspinlock *l = (void *)lock;
233 struct qspinlock **lp = NULL;
234 int loop;
235
236 for (;;) {
237 for (loop = SPIN_THRESHOLD; loop; loop--) {
238 if (!READ_ONCE(l->locked))
239 return;
240 cpu_relax();
241 }
242
243 WRITE_ONCE(pn->state, vcpu_halted);
244 if (!lp) { /* ONCE */
245 lp = pv_hash(lock, pn);
246 /*
Will Deacon3b3fdf12015-07-13 16:58:30 +0100247 * We must hash before setting _Q_SLOW_VAL, such that
248 * when we observe _Q_SLOW_VAL in __pv_queued_spin_unlock()
249 * we'll be sure to be able to observe our hash entry.
Waiman Longa23db282015-04-24 14:56:37 -0400250 *
Will Deacon3b3fdf12015-07-13 16:58:30 +0100251 * [S] pn->state
252 * [S] <hash> [Rmw] l->locked == _Q_SLOW_VAL
253 * MB RMB
254 * [RmW] l->locked = _Q_SLOW_VAL [L] <unhash>
255 * [L] pn->state
Waiman Longa23db282015-04-24 14:56:37 -0400256 *
Will Deacon3b3fdf12015-07-13 16:58:30 +0100257 * Matches the smp_rmb() in __pv_queued_spin_unlock().
Waiman Longa23db282015-04-24 14:56:37 -0400258 */
259 if (!cmpxchg(&l->locked, _Q_LOCKED_VAL, _Q_SLOW_VAL)) {
260 /*
261 * The lock is free and _Q_SLOW_VAL has never
262 * been set. Therefore we need to unhash before
263 * getting the lock.
264 */
265 WRITE_ONCE(*lp, NULL);
266 return;
267 }
268 }
269 pv_wait(&l->locked, _Q_SLOW_VAL);
270
271 /*
272 * The unlocker should have freed the lock before kicking the
273 * CPU. So if the lock is still not free, it is a spurious
274 * wakeup and so the vCPU should wait again after spinning for
275 * a while.
276 */
277 }
278
279 /*
280 * Lock is unlocked now; the caller will acquire it without waiting.
281 * As with pv_wait_node() we rely on the caller to do a load-acquire
282 * for us.
283 */
284}
285
286/*
287 * PV version of the unlock function to be used in stead of
288 * queued_spin_unlock().
289 */
290__visible void __pv_queued_spin_unlock(struct qspinlock *lock)
291{
292 struct __qspinlock *l = (void *)lock;
293 struct pv_node *node;
Peter Zijlstra0b792bf2015-07-21 12:13:43 +0200294 u8 locked;
Waiman Longa23db282015-04-24 14:56:37 -0400295
296 /*
297 * We must not unlock if SLOW, because in that case we must first
298 * unhash. Otherwise it would be possible to have multiple @lock
299 * entries, which would be BAD.
300 */
Peter Zijlstra0b792bf2015-07-21 12:13:43 +0200301 locked = cmpxchg(&l->locked, _Q_LOCKED_VAL, 0);
302 if (likely(locked == _Q_LOCKED_VAL))
Waiman Longa23db282015-04-24 14:56:37 -0400303 return;
304
Peter Zijlstra0b792bf2015-07-21 12:13:43 +0200305 if (unlikely(locked != _Q_SLOW_VAL)) {
306 WARN(!debug_locks_silent,
307 "pvqspinlock: lock 0x%lx has corrupted value 0x%x!\n",
308 (unsigned long)lock, atomic_read(&lock->val));
Waiman Longcba77f02015-07-11 21:19:19 -0400309 return;
310 }
311
Waiman Longa23db282015-04-24 14:56:37 -0400312 /*
Will Deacon3b3fdf12015-07-13 16:58:30 +0100313 * A failed cmpxchg doesn't provide any memory-ordering guarantees,
314 * so we need a barrier to order the read of the node data in
315 * pv_unhash *after* we've read the lock being _Q_SLOW_VAL.
316 *
317 * Matches the cmpxchg() in pv_wait_head() setting _Q_SLOW_VAL.
318 */
319 smp_rmb();
320
321 /*
Waiman Longa23db282015-04-24 14:56:37 -0400322 * Since the above failed to release, this must be the SLOW path.
323 * Therefore start by looking up the blocked node and unhashing it.
324 */
325 node = pv_unhash(lock);
326
327 /*
328 * Now that we have a reference to the (likely) blocked pv_node,
329 * release the lock.
330 */
331 smp_store_release(&l->locked, 0);
332
333 /*
334 * At this point the memory pointed at by lock can be freed/reused,
335 * however we can still use the pv_node to kick the CPU.
336 */
337 if (READ_ONCE(node->state) == vcpu_halted)
338 pv_kick(node->cpu);
339}
340/*
341 * Include the architecture specific callee-save thunk of the
342 * __pv_queued_spin_unlock(). This thunk is put together with
343 * __pv_queued_spin_unlock() near the top of the file to make sure
344 * that the callee-save thunk and the real unlock function are close
345 * to each other sharing consecutive instruction cachelines.
346 */
347#include <asm/qspinlock_paravirt.h>
348