blob: d2d2a9174900e7d84ecfa97acbae6c20206bad77 [file] [log] [blame]
Zhu Yib481de92007-09-25 17:54:57 -07001/******************************************************************************
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
Reinette Chatre1f447802010-01-15 13:43:41 -08008 * Copyright(c) 2005 - 2010 Intel Corporation. All rights reserved.
Zhu Yib481de92007-09-25 17:54:57 -07009 *
10 * This program is free software; you can redistribute it and/or modify
Ian Schram01ebd062007-10-25 17:15:22 +080011 * it under the terms of version 2 of the GNU General Public License as
Zhu Yib481de92007-09-25 17:54:57 -070012 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22 * USA
23 *
24 * The full GNU General Public License is included in this distribution
25 * in the file called LICENSE.GPL.
26 *
27 * Contact Information:
Winkler, Tomas759ef892008-12-09 11:28:58 -080028 * Intel Linux Wireless <ilw@linux.intel.com>
Zhu Yib481de92007-09-25 17:54:57 -070029 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30 *
31 * BSD LICENSE
32 *
Reinette Chatre1f447802010-01-15 13:43:41 -080033 * Copyright(c) 2005 - 2010 Intel Corporation. All rights reserved.
Zhu Yib481de92007-09-25 17:54:57 -070034 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 *
40 * * Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * * Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in
44 * the documentation and/or other materials provided with the
45 * distribution.
46 * * Neither the name Intel Corporation nor the names of its
47 * contributors may be used to endorse or promote products derived
48 * from this software without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 *****************************************************************************/
62
63#ifndef __iwl_prph_h__
64#define __iwl_prph_h__
65
Ben Cahille3851442007-11-29 11:10:07 +080066/*
67 * Registers in this file are internal, not PCI bus memory mapped.
68 * Driver accesses these via HBUS_TARG_PRPH_* registers.
69 */
Zhu Yib481de92007-09-25 17:54:57 -070070#define PRPH_BASE (0x00000)
71#define PRPH_END (0xFFFFF)
72
73/* APMG (power management) constants */
74#define APMG_BASE (PRPH_BASE + 0x3000)
75#define APMG_CLK_CTRL_REG (APMG_BASE + 0x0000)
76#define APMG_CLK_EN_REG (APMG_BASE + 0x0004)
77#define APMG_CLK_DIS_REG (APMG_BASE + 0x0008)
78#define APMG_PS_CTRL_REG (APMG_BASE + 0x000c)
79#define APMG_PCIDEV_STT_REG (APMG_BASE + 0x0010)
80#define APMG_RFKILL_REG (APMG_BASE + 0x0014)
81#define APMG_RTC_INT_STT_REG (APMG_BASE + 0x001c)
82#define APMG_RTC_INT_MSK_REG (APMG_BASE + 0x0020)
Wey-Yi Guy02c06e42009-07-17 09:30:14 -070083#define APMG_DIGITAL_SVR_REG (APMG_BASE + 0x0058)
84#define APMG_ANALOG_SVR_REG (APMG_BASE + 0x006C)
Zhu Yib481de92007-09-25 17:54:57 -070085
86#define APMG_CLK_VAL_DMA_CLK_RQT (0x00000200)
87#define APMG_CLK_VAL_BSM_CLK_RQT (0x00000800)
88
Zhu Yib481de92007-09-25 17:54:57 -070089
Tomas Winkler4c43e0d2008-08-04 16:00:39 +080090#define APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS (0x00400000)
91#define APMG_PS_CTRL_VAL_RESET_REQ (0x04000000)
92#define APMG_PS_CTRL_MSK_PWR_SRC (0x03000000)
93#define APMG_PS_CTRL_VAL_PWR_SRC_VMAIN (0x00000000)
94#define APMG_PS_CTRL_VAL_PWR_SRC_MAX (0x01000000) /* 3945 only */
95#define APMG_PS_CTRL_VAL_PWR_SRC_VAUX (0x02000000)
Wey-Yi Guy02c06e42009-07-17 09:30:14 -070096#define APMG_SVR_VOLTAGE_CONFIG_BIT_MSK (0x000001E0) /* bit 8:5 */
97#define APMG_SVR_DIGITAL_VOLTAGE_1_32 (0x00000060)
Zhu Yib481de92007-09-25 17:54:57 -070098
Tomas Winkler4c43e0d2008-08-04 16:00:39 +080099#define APMG_PCIDEV_STT_VAL_L1_ACT_DIS (0x00000800)
Zhu Yib481de92007-09-25 17:54:57 -0700100
101/**
102 * BSM (Bootstrap State Machine)
103 *
104 * The Bootstrap State Machine (BSM) stores a short bootstrap uCode program
105 * in special SRAM that does not power down when the embedded control
106 * processor is sleeping (e.g. for periodic power-saving shutdowns of radio).
107 *
108 * When powering back up after sleeps (or during initial uCode load), the BSM
109 * internally loads the short bootstrap program from the special SRAM into the
110 * embedded processor's instruction SRAM, and starts the processor so it runs
111 * the bootstrap program.
112 *
113 * This bootstrap program loads (via PCI busmaster DMA) instructions and data
114 * images for a uCode program from host DRAM locations. The host driver
115 * indicates DRAM locations and sizes for instruction and data images via the
116 * four BSM_DRAM_* registers. Once the bootstrap program loads the new program,
117 * the new program starts automatically.
118 *
119 * The uCode used for open-source drivers includes two programs:
120 *
121 * 1) Initialization -- performs hardware calibration and sets up some
122 * internal data, then notifies host via "initialize alive" notification
123 * (struct iwl_init_alive_resp) that it has completed all of its work.
124 * After signal from host, it then loads and starts the runtime program.
125 * The initialization program must be used when initially setting up the
126 * NIC after loading the driver.
127 *
128 * 2) Runtime/Protocol -- performs all normal runtime operations. This
129 * notifies host via "alive" notification (struct iwl_alive_resp) that it
130 * is ready to be used.
131 *
132 * When initializing the NIC, the host driver does the following procedure:
133 *
134 * 1) Load bootstrap program (instructions only, no data image for bootstrap)
135 * into bootstrap memory. Use dword writes starting at BSM_SRAM_LOWER_BOUND
136 *
137 * 2) Point (via BSM_DRAM_*) to the "initialize" uCode data and instruction
138 * images in host DRAM.
139 *
140 * 3) Set up BSM to copy from BSM SRAM into uCode instruction SRAM when asked:
141 * BSM_WR_MEM_SRC_REG = 0
142 * BSM_WR_MEM_DST_REG = RTC_INST_LOWER_BOUND
143 * BSM_WR_MEM_DWCOUNT_REG = # dwords in bootstrap instruction image
144 *
145 * 4) Load bootstrap into instruction SRAM:
146 * BSM_WR_CTRL_REG = BSM_WR_CTRL_REG_BIT_START
147 *
148 * 5) Wait for load completion:
149 * Poll BSM_WR_CTRL_REG for BSM_WR_CTRL_REG_BIT_START = 0
150 *
151 * 6) Enable future boot loads whenever NIC's power management triggers it:
152 * BSM_WR_CTRL_REG = BSM_WR_CTRL_REG_BIT_START_EN
153 *
154 * 7) Start the NIC by removing all reset bits:
155 * CSR_RESET = 0
156 *
157 * The bootstrap uCode (already in instruction SRAM) loads initialization
158 * uCode. Initialization uCode performs data initialization, sends
159 * "initialize alive" notification to host, and waits for a signal from
160 * host to load runtime code.
161 *
162 * 4) Point (via BSM_DRAM_*) to the "runtime" uCode data and instruction
163 * images in host DRAM. The last register loaded must be the instruction
Tomas Winklera96a27f2008-10-23 23:48:56 -0700164 * byte count register ("1" in MSbit tells initialization uCode to load
Zhu Yib481de92007-09-25 17:54:57 -0700165 * the runtime uCode):
Tomas Winklera96a27f2008-10-23 23:48:56 -0700166 * BSM_DRAM_INST_BYTECOUNT_REG = byte count | BSM_DRAM_INST_LOAD
Zhu Yib481de92007-09-25 17:54:57 -0700167 *
168 * 5) Wait for "alive" notification, then issue normal runtime commands.
169 *
170 * Data caching during power-downs:
171 *
172 * Just before the embedded controller powers down (e.g for automatic
173 * power-saving modes, or for RFKILL), uCode stores (via PCI busmaster DMA)
174 * a current snapshot of the embedded processor's data SRAM into host DRAM.
175 * This caches the data while the embedded processor's memory is powered down.
176 * Location and size are controlled by BSM_DRAM_DATA_* registers.
177 *
178 * NOTE: Instruction SRAM does not need to be saved, since that doesn't
179 * change during operation; the original image (from uCode distribution
180 * file) can be used for reload.
181 *
182 * When powering back up, the BSM loads the bootstrap program. Bootstrap looks
183 * at the BSM_DRAM_* registers, which now point to the runtime instruction
184 * image and the cached (modified) runtime data (*not* the initialization
185 * uCode). Bootstrap reloads these runtime images into SRAM, and restarts the
186 * uCode from where it left off before the power-down.
187 *
188 * NOTE: Initialization uCode does *not* run as part of the save/restore
189 * procedure.
190 *
191 * This save/restore method is mostly for autonomous power management during
192 * normal operation (result of POWER_TABLE_CMD). Platform suspend/resume and
193 * RFKILL should use complete restarts (with total re-initialization) of uCode,
194 * allowing total shutdown (including BSM memory).
195 *
196 * Note that, during normal operation, the host DRAM that held the initial
197 * startup data for the runtime code is now being used as a backup data cache
198 * for modified data! If you need to completely re-initialize the NIC, make
199 * sure that you use the runtime data image from the uCode distribution file,
200 * not the modified/saved runtime data. You may want to store a separate
201 * "clean" runtime data image in DRAM to avoid disk reads of distribution file.
202 */
203
204/* BSM bit fields */
205#define BSM_WR_CTRL_REG_BIT_START (0x80000000) /* start boot load now */
206#define BSM_WR_CTRL_REG_BIT_START_EN (0x40000000) /* enable boot after pwrup*/
207#define BSM_DRAM_INST_LOAD (0x80000000) /* start program load now */
208
209/* BSM addresses */
210#define BSM_BASE (PRPH_BASE + 0x3400)
211#define BSM_END (PRPH_BASE + 0x3800)
212
213#define BSM_WR_CTRL_REG (BSM_BASE + 0x000) /* ctl and status */
214#define BSM_WR_MEM_SRC_REG (BSM_BASE + 0x004) /* source in BSM mem */
215#define BSM_WR_MEM_DST_REG (BSM_BASE + 0x008) /* dest in SRAM mem */
216#define BSM_WR_DWCOUNT_REG (BSM_BASE + 0x00C) /* bytes */
217#define BSM_WR_STATUS_REG (BSM_BASE + 0x010) /* bit 0: 1 == done */
218
219/*
220 * Pointers and size regs for bootstrap load and data SRAM save/restore.
221 * NOTE: 3945 pointers use bits 31:0 of DRAM address.
222 * 4965 pointers use bits 35:4 of DRAM address.
223 */
224#define BSM_DRAM_INST_PTR_REG (BSM_BASE + 0x090)
225#define BSM_DRAM_INST_BYTECOUNT_REG (BSM_BASE + 0x094)
226#define BSM_DRAM_DATA_PTR_REG (BSM_BASE + 0x098)
227#define BSM_DRAM_DATA_BYTECOUNT_REG (BSM_BASE + 0x09C)
228
229/*
230 * BSM special memory, stays powered on during power-save sleeps.
231 * Read/write, address range from LOWER_BOUND to (LOWER_BOUND + SIZE -1)
232 */
233#define BSM_SRAM_LOWER_BOUND (PRPH_BASE + 0x3800)
234#define BSM_SRAM_SIZE (1024) /* bytes */
235
Ben Cahille3851442007-11-29 11:10:07 +0800236
237/* 3945 Tx scheduler registers */
Emmanuel Grumbach70883102007-10-25 17:15:39 +0800238#define ALM_SCD_BASE (PRPH_BASE + 0x2E00)
239#define ALM_SCD_MODE_REG (ALM_SCD_BASE + 0x000)
240#define ALM_SCD_ARASTAT_REG (ALM_SCD_BASE + 0x004)
241#define ALM_SCD_TXFACT_REG (ALM_SCD_BASE + 0x010)
242#define ALM_SCD_TXF4MF_REG (ALM_SCD_BASE + 0x014)
243#define ALM_SCD_TXF5MF_REG (ALM_SCD_BASE + 0x020)
244#define ALM_SCD_SBYP_MODE_1_REG (ALM_SCD_BASE + 0x02C)
245#define ALM_SCD_SBYP_MODE_2_REG (ALM_SCD_BASE + 0x030)
246
Emmanuel Grumbach038669e2008-04-23 17:15:04 -0700247/**
248 * Tx Scheduler
249 *
Tomas Winklera96a27f2008-10-23 23:48:56 -0700250 * The Tx Scheduler selects the next frame to be transmitted, choosing TFDs
Emmanuel Grumbach038669e2008-04-23 17:15:04 -0700251 * (Transmit Frame Descriptors) from up to 16 circular Tx queues resident in
252 * host DRAM. It steers each frame's Tx command (which contains the frame
253 * data) into one of up to 7 prioritized Tx DMA FIFO channels within the
254 * device. A queue maps to only one (selectable by driver) Tx DMA channel,
255 * but one DMA channel may take input from several queues.
256 *
Johannes Berg68198862009-11-06 14:52:53 -0800257 * Tx DMA channels have dedicated purposes. For 4965, they are used as follows
258 * (cf. default_queue_to_tx_fifo in iwl-4965.c):
Emmanuel Grumbach038669e2008-04-23 17:15:04 -0700259 *
260 * 0 -- EDCA BK (background) frames, lowest priority
261 * 1 -- EDCA BE (best effort) frames, normal priority
262 * 2 -- EDCA VI (video) frames, higher priority
263 * 3 -- EDCA VO (voice) and management frames, highest priority
264 * 4 -- Commands (e.g. RXON, etc.)
265 * 5 -- HCCA short frames
266 * 6 -- HCCA long frames
267 * 7 -- not used by driver (device-internal only)
268 *
Johannes Berg68198862009-11-06 14:52:53 -0800269 * For 5000 series and up, they are used slightly differently
270 * (cf. iwl5000_default_queue_to_tx_fifo in iwl-5000.c):
271 *
272 * 0 -- EDCA BK (background) frames, lowest priority
273 * 1 -- EDCA BE (best effort) frames, normal priority
274 * 2 -- EDCA VI (video) frames, higher priority
275 * 3 -- EDCA VO (voice) and management frames, highest priority
276 * 4 -- (TBD)
277 * 5 -- HCCA short frames
278 * 6 -- HCCA long frames
279 * 7 -- Commands
280 *
Emmanuel Grumbach038669e2008-04-23 17:15:04 -0700281 * Driver should normally map queues 0-6 to Tx DMA/FIFO channels 0-6.
Johannes Berg68198862009-11-06 14:52:53 -0800282 * In addition, driver can map the remaining queues to Tx DMA/FIFO
283 * channels 0-3 to support 11n aggregation via EDCA DMA channels.
Emmanuel Grumbach038669e2008-04-23 17:15:04 -0700284 *
285 * The driver sets up each queue to work in one of two modes:
286 *
287 * 1) Scheduler-Ack, in which the scheduler automatically supports a
288 * block-ack (BA) window of up to 64 TFDs. In this mode, each queue
289 * contains TFDs for a unique combination of Recipient Address (RA)
290 * and Traffic Identifier (TID), that is, traffic of a given
291 * Quality-Of-Service (QOS) priority, destined for a single station.
292 *
293 * In scheduler-ack mode, the scheduler keeps track of the Tx status of
294 * each frame within the BA window, including whether it's been transmitted,
295 * and whether it's been acknowledged by the receiving station. The device
296 * automatically processes block-acks received from the receiving STA,
297 * and reschedules un-acked frames to be retransmitted (successful
298 * Tx completion may end up being out-of-order).
299 *
300 * The driver must maintain the queue's Byte Count table in host DRAM
301 * (struct iwl4965_sched_queue_byte_cnt_tbl) for this mode.
302 * This mode does not support fragmentation.
303 *
304 * 2) FIFO (a.k.a. non-Scheduler-ACK), in which each TFD is processed in order.
305 * The device may automatically retry Tx, but will retry only one frame
306 * at a time, until receiving ACK from receiving station, or reaching
307 * retry limit and giving up.
308 *
309 * The command queue (#4) must use this mode!
310 * This mode does not require use of the Byte Count table in host DRAM.
311 *
312 * Driver controls scheduler operation via 3 means:
313 * 1) Scheduler registers
314 * 2) Shared scheduler data base in internal 4956 SRAM
315 * 3) Shared data in host DRAM
316 *
317 * Initialization:
318 *
319 * When loading, driver should allocate memory for:
320 * 1) 16 TFD circular buffers, each with space for (typically) 256 TFDs.
321 * 2) 16 Byte Count circular buffers in 16 KBytes contiguous memory
322 * (1024 bytes for each queue).
323 *
324 * After receiving "Alive" response from uCode, driver must initialize
325 * the scheduler (especially for queue #4, the command queue, otherwise
326 * the driver can't issue commands!):
Ben Cahille3851442007-11-29 11:10:07 +0800327 */
Emmanuel Grumbach67dc3202007-10-25 17:15:38 +0800328
Emmanuel Grumbach038669e2008-04-23 17:15:04 -0700329/**
330 * Max Tx window size is the max number of contiguous TFDs that the scheduler
331 * can keep track of at one time when creating block-ack chains of frames.
332 * Note that "64" matches the number of ack bits in a block-ack packet.
333 * Driver should use SCD_WIN_SIZE and SCD_FRAME_LIMIT values to initialize
334 * IWL49_SCD_CONTEXT_QUEUE_OFFSET(x) values.
335 */
336#define SCD_WIN_SIZE 64
337#define SCD_FRAME_LIMIT 64
Zhu Yib481de92007-09-25 17:54:57 -0700338
Emmanuel Grumbach038669e2008-04-23 17:15:04 -0700339/* SCD registers are internal, must be accessed via HBUS_TARG_PRPH regs */
340#define IWL49_SCD_START_OFFSET 0xa02c00
341
342/*
343 * 4965 tells driver SRAM address for internal scheduler structs via this reg.
344 * Value is valid only after "Alive" response from uCode.
345 */
346#define IWL49_SCD_SRAM_BASE_ADDR (IWL49_SCD_START_OFFSET + 0x0)
347
348/*
349 * Driver may need to update queue-empty bits after changing queue's
350 * write and read pointers (indexes) during (re-)initialization (i.e. when
351 * scheduler is not tracking what's happening).
352 * Bit fields:
353 * 31-16: Write mask -- 1: update empty bit, 0: don't change empty bit
354 * 15-00: Empty state, one for each queue -- 1: empty, 0: non-empty
355 * NOTE: This register is not used by Linux driver.
356 */
357#define IWL49_SCD_EMPTY_BITS (IWL49_SCD_START_OFFSET + 0x4)
358
359/*
360 * Physical base address of array of byte count (BC) circular buffers (CBs).
361 * Each Tx queue has a BC CB in host DRAM to support Scheduler-ACK mode.
362 * This register points to BC CB for queue 0, must be on 1024-byte boundary.
363 * Others are spaced by 1024 bytes.
364 * Each BC CB is 2 bytes * (256 + 64) = 740 bytes, followed by 384 bytes pad.
365 * (Index into a queue's BC CB) = (index into queue's TFD CB) = (SSN & 0xff).
366 * Bit fields:
367 * 25-00: Byte Count CB physical address [35:10], must be 1024-byte aligned.
368 */
369#define IWL49_SCD_DRAM_BASE_ADDR (IWL49_SCD_START_OFFSET + 0x10)
370
371/*
372 * Enables any/all Tx DMA/FIFO channels.
373 * Scheduler generates requests for only the active channels.
374 * Set this to 0xff to enable all 8 channels (normal usage).
375 * Bit fields:
376 * 7- 0: Enable (1), disable (0), one bit for each channel 0-7
377 */
378#define IWL49_SCD_TXFACT (IWL49_SCD_START_OFFSET + 0x1c)
Emmanuel Grumbach038669e2008-04-23 17:15:04 -0700379/*
380 * Queue (x) Write Pointers (indexes, really!), one for each Tx queue.
381 * Initialized and updated by driver as new TFDs are added to queue.
382 * NOTE: If using Block Ack, index must correspond to frame's
383 * Start Sequence Number; index = (SSN & 0xff)
384 * NOTE: Alternative to HBUS_TARG_WRPTR, which is what Linux driver uses?
385 */
386#define IWL49_SCD_QUEUE_WRPTR(x) (IWL49_SCD_START_OFFSET + 0x24 + (x) * 4)
387
388/*
389 * Queue (x) Read Pointers (indexes, really!), one for each Tx queue.
390 * For FIFO mode, index indicates next frame to transmit.
391 * For Scheduler-ACK mode, index indicates first frame in Tx window.
392 * Initialized by driver, updated by scheduler.
393 */
394#define IWL49_SCD_QUEUE_RDPTR(x) (IWL49_SCD_START_OFFSET + 0x64 + (x) * 4)
395
396/*
397 * Select which queues work in chain mode (1) vs. not (0).
398 * Use chain mode to build chains of aggregated frames.
399 * Bit fields:
400 * 31-16: Reserved
401 * 15-00: Mode, one bit for each queue -- 1: Chain mode, 0: one-at-a-time
402 * NOTE: If driver sets up queue for chain mode, it should be also set up
403 * Scheduler-ACK mode as well, via SCD_QUEUE_STATUS_BITS(x).
404 */
405#define IWL49_SCD_QUEUECHAIN_SEL (IWL49_SCD_START_OFFSET + 0xd0)
406
407/*
408 * Select which queues interrupt driver when scheduler increments
409 * a queue's read pointer (index).
410 * Bit fields:
411 * 31-16: Reserved
412 * 15-00: Interrupt enable, one bit for each queue -- 1: enabled, 0: disabled
413 * NOTE: This functionality is apparently a no-op; driver relies on interrupts
414 * from Rx queue to read Tx command responses and update Tx queues.
415 */
416#define IWL49_SCD_INTERRUPT_MASK (IWL49_SCD_START_OFFSET + 0xe4)
417
418/*
419 * Queue search status registers. One for each queue.
420 * Sets up queue mode and assigns queue to Tx DMA channel.
421 * Bit fields:
422 * 19-10: Write mask/enable bits for bits 0-9
423 * 9: Driver should init to "0"
424 * 8: Scheduler-ACK mode (1), non-Scheduler-ACK (i.e. FIFO) mode (0).
425 * Driver should init to "1" for aggregation mode, or "0" otherwise.
426 * 7-6: Driver should init to "0"
427 * 5: Window Size Left; indicates whether scheduler can request
428 * another TFD, based on window size, etc. Driver should init
429 * this bit to "1" for aggregation mode, or "0" for non-agg.
430 * 4-1: Tx FIFO to use (range 0-7).
431 * 0: Queue is active (1), not active (0).
432 * Other bits should be written as "0"
433 *
434 * NOTE: If enabling Scheduler-ACK mode, chain mode should also be enabled
435 * via SCD_QUEUECHAIN_SEL.
436 */
437#define IWL49_SCD_QUEUE_STATUS_BITS(x)\
438 (IWL49_SCD_START_OFFSET + 0x104 + (x) * 4)
439
440/* Bit field positions */
441#define IWL49_SCD_QUEUE_STTS_REG_POS_ACTIVE (0)
442#define IWL49_SCD_QUEUE_STTS_REG_POS_TXF (1)
443#define IWL49_SCD_QUEUE_STTS_REG_POS_WSL (5)
444#define IWL49_SCD_QUEUE_STTS_REG_POS_SCD_ACK (8)
445
446/* Write masks */
447#define IWL49_SCD_QUEUE_STTS_REG_POS_SCD_ACT_EN (10)
448#define IWL49_SCD_QUEUE_STTS_REG_MSK (0x0007FC00)
449
450/**
451 * 4965 internal SRAM structures for scheduler, shared with driver ...
452 *
453 * Driver should clear and initialize the following areas after receiving
454 * "Alive" response from 4965 uCode, i.e. after initial
455 * uCode load, or after a uCode load done for error recovery:
456 *
457 * SCD_CONTEXT_DATA_OFFSET (size 128 bytes)
458 * SCD_TX_STTS_BITMAP_OFFSET (size 256 bytes)
459 * SCD_TRANSLATE_TBL_OFFSET (size 32 bytes)
460 *
461 * Driver accesses SRAM via HBUS_TARG_MEM_* registers.
462 * Driver reads base address of this scheduler area from SCD_SRAM_BASE_ADDR.
463 * All OFFSET values must be added to this base address.
464 */
465
466/*
467 * Queue context. One 8-byte entry for each of 16 queues.
468 *
469 * Driver should clear this entire area (size 0x80) to 0 after receiving
470 * "Alive" notification from uCode. Additionally, driver should init
471 * each queue's entry as follows:
472 *
473 * LS Dword bit fields:
474 * 0-06: Max Tx window size for Scheduler-ACK. Driver should init to 64.
475 *
476 * MS Dword bit fields:
477 * 16-22: Frame limit. Driver should init to 10 (0xa).
478 *
479 * Driver should init all other bits to 0.
480 *
481 * Init must be done after driver receives "Alive" response from 4965 uCode,
482 * and when setting up queue for aggregation.
483 */
484#define IWL49_SCD_CONTEXT_DATA_OFFSET 0x380
485#define IWL49_SCD_CONTEXT_QUEUE_OFFSET(x) \
486 (IWL49_SCD_CONTEXT_DATA_OFFSET + ((x) * 8))
487
488#define IWL49_SCD_QUEUE_CTX_REG1_WIN_SIZE_POS (0)
489#define IWL49_SCD_QUEUE_CTX_REG1_WIN_SIZE_MSK (0x0000007F)
490#define IWL49_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS (16)
491#define IWL49_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK (0x007F0000)
492
493/*
494 * Tx Status Bitmap
495 *
496 * Driver should clear this entire area (size 0x100) to 0 after receiving
497 * "Alive" notification from uCode. Area is used only by device itself;
498 * no other support (besides clearing) is required from driver.
499 */
500#define IWL49_SCD_TX_STTS_BITMAP_OFFSET 0x400
501
502/*
503 * RAxTID to queue translation mapping.
504 *
505 * When queue is in Scheduler-ACK mode, frames placed in a that queue must be
506 * for only one combination of receiver address (RA) and traffic ID (TID), i.e.
507 * one QOS priority level destined for one station (for this wireless link,
508 * not final destination). The SCD_TRANSLATE_TABLE area provides 16 16-bit
509 * mappings, one for each of the 16 queues. If queue is not in Scheduler-ACK
510 * mode, the device ignores the mapping value.
511 *
512 * Bit fields, for each 16-bit map:
513 * 15-9: Reserved, set to 0
514 * 8-4: Index into device's station table for recipient station
515 * 3-0: Traffic ID (tid), range 0-15
516 *
517 * Driver should clear this entire area (size 32 bytes) to 0 after receiving
518 * "Alive" notification from uCode. To update a 16-bit map value, driver
519 * must read a dword-aligned value from device SRAM, replace the 16-bit map
520 * value of interest, and write the dword value back into device SRAM.
521 */
522#define IWL49_SCD_TRANSLATE_TBL_OFFSET 0x500
523
524/* Find translation table dword to read/write for given queue */
525#define IWL49_SCD_TRANSLATE_TBL_OFFSET_QUEUE(x) \
526 ((IWL49_SCD_TRANSLATE_TBL_OFFSET + ((x) * 2)) & 0xfffffffc)
527
Tomas Winkler30e553e2008-05-29 16:35:16 +0800528#define IWL_SCD_TXFIFO_POS_TID (0)
529#define IWL_SCD_TXFIFO_POS_RA (4)
530#define IWL_SCD_QUEUE_RA_TID_MAP_RATID_MSK (0x01FF)
Emmanuel Grumbach038669e2008-04-23 17:15:04 -0700531
532/* 5000 SCD */
Ron Rindjunsky99da1b42008-05-15 13:54:13 +0800533#define IWL50_SCD_QUEUE_STTS_REG_POS_TXF (0)
534#define IWL50_SCD_QUEUE_STTS_REG_POS_ACTIVE (3)
535#define IWL50_SCD_QUEUE_STTS_REG_POS_WSL (4)
536#define IWL50_SCD_QUEUE_STTS_REG_POS_SCD_ACT_EN (19)
537#define IWL50_SCD_QUEUE_STTS_REG_MSK (0x00FF0000)
538
539#define IWL50_SCD_QUEUE_CTX_REG1_CREDIT_POS (8)
540#define IWL50_SCD_QUEUE_CTX_REG1_CREDIT_MSK (0x00FFFF00)
541#define IWL50_SCD_QUEUE_CTX_REG1_SUPER_CREDIT_POS (24)
542#define IWL50_SCD_QUEUE_CTX_REG1_SUPER_CREDIT_MSK (0xFF000000)
543#define IWL50_SCD_QUEUE_CTX_REG2_WIN_SIZE_POS (0)
544#define IWL50_SCD_QUEUE_CTX_REG2_WIN_SIZE_MSK (0x0000007F)
545#define IWL50_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS (16)
546#define IWL50_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK (0x007F0000)
547
548#define IWL50_SCD_CONTEXT_DATA_OFFSET (0x600)
549#define IWL50_SCD_TX_STTS_BITMAP_OFFSET (0x7B1)
550#define IWL50_SCD_TRANSLATE_TBL_OFFSET (0x7E0)
551
552#define IWL50_SCD_CONTEXT_QUEUE_OFFSET(x)\
553 (IWL50_SCD_CONTEXT_DATA_OFFSET + ((x) * 8))
554
555#define IWL50_SCD_TRANSLATE_TBL_OFFSET_QUEUE(x) \
556 ((IWL50_SCD_TRANSLATE_TBL_OFFSET + ((x) * 2)) & 0xfffc)
557
558#define IWL50_SCD_QUEUECHAIN_SEL_ALL(x) (((1<<(x)) - 1) &\
559 (~(1<<IWL_CMD_QUEUE_NUM)))
560
Tomas Winkler12a81f62008-04-03 16:05:20 -0700561#define IWL50_SCD_BASE (PRPH_BASE + 0xa02c00)
Emmanuel Grumbachb559e662007-10-25 17:15:40 +0800562
Tomas Winkler12a81f62008-04-03 16:05:20 -0700563#define IWL50_SCD_SRAM_BASE_ADDR (IWL50_SCD_BASE + 0x0)
564#define IWL50_SCD_DRAM_BASE_ADDR (IWL50_SCD_BASE + 0x8)
565#define IWL50_SCD_AIT (IWL50_SCD_BASE + 0x0c)
566#define IWL50_SCD_TXFACT (IWL50_SCD_BASE + 0x10)
567#define IWL50_SCD_ACTIVE (IWL50_SCD_BASE + 0x14)
568#define IWL50_SCD_QUEUE_WRPTR(x) (IWL50_SCD_BASE + 0x18 + (x) * 4)
569#define IWL50_SCD_QUEUE_RDPTR(x) (IWL50_SCD_BASE + 0x68 + (x) * 4)
570#define IWL50_SCD_QUEUECHAIN_SEL (IWL50_SCD_BASE + 0xe8)
571#define IWL50_SCD_AGGR_SEL (IWL50_SCD_BASE + 0x248)
572#define IWL50_SCD_INTERRUPT_MASK (IWL50_SCD_BASE + 0x108)
573#define IWL50_SCD_QUEUE_STATUS_BITS(x) (IWL50_SCD_BASE + 0x10c + (x) * 4)
Emmanuel Grumbachb559e662007-10-25 17:15:40 +0800574
Emmanuel Grumbach038669e2008-04-23 17:15:04 -0700575/*********************** END TX SCHEDULER *************************************/
576
Zhu Yib481de92007-09-25 17:54:57 -0700577#endif /* __iwl_prph_h__ */