Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /******************************************************************************* |
| 2 | |
| 3 | |
Malli Chilakala | 2648345 | 2005-04-28 19:44:46 -0700 | [diff] [blame] | 4 | Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5 | |
| 6 | This program is free software; you can redistribute it and/or modify it |
| 7 | under the terms of the GNU General Public License as published by the Free |
| 8 | Software Foundation; either version 2 of the License, or (at your option) |
| 9 | any later version. |
| 10 | |
| 11 | This program is distributed in the hope that it will be useful, but WITHOUT |
| 12 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 13 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| 14 | more details. |
| 15 | |
| 16 | You should have received a copy of the GNU General Public License along with |
| 17 | this program; if not, write to the Free Software Foundation, Inc., 59 |
| 18 | Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| 19 | |
| 20 | The full GNU General Public License is included in this distribution in the |
| 21 | file called LICENSE. |
| 22 | |
| 23 | Contact Information: |
| 24 | Linux NICS <linux.nics@intel.com> |
| 25 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| 26 | |
| 27 | *******************************************************************************/ |
| 28 | |
| 29 | /* e1000_hw.c |
| 30 | * Shared functions for accessing and configuring the MAC |
| 31 | */ |
| 32 | |
| 33 | #include "e1000_hw.h" |
| 34 | |
| 35 | static int32_t e1000_set_phy_type(struct e1000_hw *hw); |
| 36 | static void e1000_phy_init_script(struct e1000_hw *hw); |
| 37 | static int32_t e1000_setup_copper_link(struct e1000_hw *hw); |
| 38 | static int32_t e1000_setup_fiber_serdes_link(struct e1000_hw *hw); |
| 39 | static int32_t e1000_adjust_serdes_amplitude(struct e1000_hw *hw); |
| 40 | static int32_t e1000_phy_force_speed_duplex(struct e1000_hw *hw); |
| 41 | static int32_t e1000_config_mac_to_phy(struct e1000_hw *hw); |
| 42 | static void e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl); |
| 43 | static void e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl); |
| 44 | static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, |
| 45 | uint16_t count); |
| 46 | static uint16_t e1000_shift_in_mdi_bits(struct e1000_hw *hw); |
| 47 | static int32_t e1000_phy_reset_dsp(struct e1000_hw *hw); |
| 48 | static int32_t e1000_write_eeprom_spi(struct e1000_hw *hw, uint16_t offset, |
| 49 | uint16_t words, uint16_t *data); |
| 50 | static int32_t e1000_write_eeprom_microwire(struct e1000_hw *hw, |
| 51 | uint16_t offset, uint16_t words, |
| 52 | uint16_t *data); |
| 53 | static int32_t e1000_spi_eeprom_ready(struct e1000_hw *hw); |
| 54 | static void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t *eecd); |
| 55 | static void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t *eecd); |
| 56 | static void e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, |
| 57 | uint16_t count); |
| 58 | static int32_t e1000_write_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr, |
| 59 | uint16_t phy_data); |
| 60 | static int32_t e1000_read_phy_reg_ex(struct e1000_hw *hw,uint32_t reg_addr, |
| 61 | uint16_t *phy_data); |
| 62 | static uint16_t e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count); |
| 63 | static int32_t e1000_acquire_eeprom(struct e1000_hw *hw); |
| 64 | static void e1000_release_eeprom(struct e1000_hw *hw); |
| 65 | static void e1000_standby_eeprom(struct e1000_hw *hw); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 66 | static int32_t e1000_set_vco_speed(struct e1000_hw *hw); |
| 67 | static int32_t e1000_polarity_reversal_workaround(struct e1000_hw *hw); |
| 68 | static int32_t e1000_set_phy_mode(struct e1000_hw *hw); |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 69 | static int32_t e1000_host_if_read_cookie(struct e1000_hw *hw, uint8_t *buffer); |
| 70 | static uint8_t e1000_calculate_mng_checksum(char *buffer, uint32_t length); |
Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame^] | 71 | static uint8_t e1000_arc_subsystem_valid(struct e1000_hw *hw); |
| 72 | static int32_t e1000_check_downshift(struct e1000_hw *hw); |
| 73 | static int32_t e1000_check_polarity(struct e1000_hw *hw, uint16_t *polarity); |
| 74 | static void e1000_clear_hw_cntrs(struct e1000_hw *hw); |
| 75 | static void e1000_clear_vfta(struct e1000_hw *hw); |
| 76 | static int32_t e1000_commit_shadow_ram(struct e1000_hw *hw); |
| 77 | static int32_t e1000_config_dsp_after_link_change(struct e1000_hw *hw, |
| 78 | boolean_t link_up); |
| 79 | static int32_t e1000_config_fc_after_link_up(struct e1000_hw *hw); |
| 80 | static int32_t e1000_detect_gig_phy(struct e1000_hw *hw); |
| 81 | static int32_t e1000_get_auto_rd_done(struct e1000_hw *hw); |
| 82 | static int32_t e1000_get_cable_length(struct e1000_hw *hw, |
| 83 | uint16_t *min_length, |
| 84 | uint16_t *max_length); |
| 85 | static int32_t e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw); |
| 86 | static int32_t e1000_get_phy_cfg_done(struct e1000_hw *hw); |
| 87 | static int32_t e1000_id_led_init(struct e1000_hw * hw); |
| 88 | static void e1000_init_rx_addrs(struct e1000_hw *hw); |
| 89 | static boolean_t e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw); |
| 90 | static int32_t e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd); |
| 91 | static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw); |
| 92 | static int32_t e1000_read_eeprom_eerd(struct e1000_hw *hw, uint16_t offset, |
| 93 | uint16_t words, uint16_t *data); |
| 94 | static int32_t e1000_set_d0_lplu_state(struct e1000_hw *hw, boolean_t active); |
| 95 | static int32_t e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active); |
| 96 | static int32_t e1000_wait_autoneg(struct e1000_hw *hw); |
| 97 | |
| 98 | static void e1000_write_reg_io(struct e1000_hw *hw, uint32_t offset, |
| 99 | uint32_t value); |
| 100 | |
| 101 | #define E1000_WRITE_REG_IO(a, reg, val) \ |
| 102 | e1000_write_reg_io((a), E1000_##reg, val) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 103 | |
| 104 | /* IGP cable length table */ |
| 105 | static const |
| 106 | uint16_t e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = |
| 107 | { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, |
| 108 | 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25, |
| 109 | 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40, |
| 110 | 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60, |
| 111 | 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90, |
| 112 | 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, |
| 113 | 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, |
| 114 | 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120}; |
| 115 | |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 116 | static const |
| 117 | uint16_t e1000_igp_2_cable_length_table[IGP02E1000_AGC_LENGTH_TABLE_SIZE] = |
Mallikarjuna R Chilakala | 868d530 | 2005-10-04 06:58:59 -0400 | [diff] [blame] | 118 | { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, |
| 119 | 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, |
| 120 | 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, |
| 121 | 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, |
| 122 | 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, |
| 123 | 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, |
| 124 | 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124, |
| 125 | 104, 109, 114, 118, 121, 124}; |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 126 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 127 | |
| 128 | /****************************************************************************** |
| 129 | * Set the phy type member in the hw struct. |
| 130 | * |
| 131 | * hw - Struct containing variables accessed by shared code |
| 132 | *****************************************************************************/ |
| 133 | int32_t |
| 134 | e1000_set_phy_type(struct e1000_hw *hw) |
| 135 | { |
| 136 | DEBUGFUNC("e1000_set_phy_type"); |
| 137 | |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 138 | if(hw->mac_type == e1000_undefined) |
| 139 | return -E1000_ERR_PHY_TYPE; |
| 140 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 141 | switch(hw->phy_id) { |
| 142 | case M88E1000_E_PHY_ID: |
| 143 | case M88E1000_I_PHY_ID: |
| 144 | case M88E1011_I_PHY_ID: |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 145 | case M88E1111_I_PHY_ID: |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 146 | hw->phy_type = e1000_phy_m88; |
| 147 | break; |
| 148 | case IGP01E1000_I_PHY_ID: |
| 149 | if(hw->mac_type == e1000_82541 || |
| 150 | hw->mac_type == e1000_82541_rev_2 || |
| 151 | hw->mac_type == e1000_82547 || |
| 152 | hw->mac_type == e1000_82547_rev_2) { |
| 153 | hw->phy_type = e1000_phy_igp; |
| 154 | break; |
| 155 | } |
| 156 | /* Fall Through */ |
| 157 | default: |
| 158 | /* Should never have loaded on this device */ |
| 159 | hw->phy_type = e1000_phy_undefined; |
| 160 | return -E1000_ERR_PHY_TYPE; |
| 161 | } |
| 162 | |
| 163 | return E1000_SUCCESS; |
| 164 | } |
| 165 | |
| 166 | /****************************************************************************** |
| 167 | * IGP phy init script - initializes the GbE PHY |
| 168 | * |
| 169 | * hw - Struct containing variables accessed by shared code |
| 170 | *****************************************************************************/ |
| 171 | static void |
| 172 | e1000_phy_init_script(struct e1000_hw *hw) |
| 173 | { |
| 174 | uint32_t ret_val; |
| 175 | uint16_t phy_saved_data; |
| 176 | |
| 177 | DEBUGFUNC("e1000_phy_init_script"); |
| 178 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 179 | if(hw->phy_init_script) { |
| 180 | msec_delay(20); |
| 181 | |
| 182 | /* Save off the current value of register 0x2F5B to be restored at |
| 183 | * the end of this routine. */ |
| 184 | ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); |
| 185 | |
| 186 | /* Disabled the PHY transmitter */ |
| 187 | e1000_write_phy_reg(hw, 0x2F5B, 0x0003); |
| 188 | |
| 189 | msec_delay(20); |
| 190 | |
| 191 | e1000_write_phy_reg(hw,0x0000,0x0140); |
| 192 | |
| 193 | msec_delay(5); |
| 194 | |
| 195 | switch(hw->mac_type) { |
| 196 | case e1000_82541: |
| 197 | case e1000_82547: |
| 198 | e1000_write_phy_reg(hw, 0x1F95, 0x0001); |
| 199 | |
| 200 | e1000_write_phy_reg(hw, 0x1F71, 0xBD21); |
| 201 | |
| 202 | e1000_write_phy_reg(hw, 0x1F79, 0x0018); |
| 203 | |
| 204 | e1000_write_phy_reg(hw, 0x1F30, 0x1600); |
| 205 | |
| 206 | e1000_write_phy_reg(hw, 0x1F31, 0x0014); |
| 207 | |
| 208 | e1000_write_phy_reg(hw, 0x1F32, 0x161C); |
| 209 | |
| 210 | e1000_write_phy_reg(hw, 0x1F94, 0x0003); |
| 211 | |
| 212 | e1000_write_phy_reg(hw, 0x1F96, 0x003F); |
| 213 | |
| 214 | e1000_write_phy_reg(hw, 0x2010, 0x0008); |
| 215 | break; |
| 216 | |
| 217 | case e1000_82541_rev_2: |
| 218 | case e1000_82547_rev_2: |
| 219 | e1000_write_phy_reg(hw, 0x1F73, 0x0099); |
| 220 | break; |
| 221 | default: |
| 222 | break; |
| 223 | } |
| 224 | |
| 225 | e1000_write_phy_reg(hw, 0x0000, 0x3300); |
| 226 | |
| 227 | msec_delay(20); |
| 228 | |
| 229 | /* Now enable the transmitter */ |
| 230 | e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); |
| 231 | |
| 232 | if(hw->mac_type == e1000_82547) { |
| 233 | uint16_t fused, fine, coarse; |
| 234 | |
| 235 | /* Move to analog registers page */ |
| 236 | e1000_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused); |
| 237 | |
| 238 | if(!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) { |
| 239 | e1000_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused); |
| 240 | |
| 241 | fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK; |
| 242 | coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK; |
| 243 | |
| 244 | if(coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) { |
| 245 | coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10; |
| 246 | fine -= IGP01E1000_ANALOG_FUSE_FINE_1; |
| 247 | } else if(coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH) |
| 248 | fine -= IGP01E1000_ANALOG_FUSE_FINE_10; |
| 249 | |
| 250 | fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) | |
| 251 | (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) | |
| 252 | (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK); |
| 253 | |
| 254 | e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused); |
| 255 | e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS, |
| 256 | IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL); |
| 257 | } |
| 258 | } |
| 259 | } |
| 260 | } |
| 261 | |
| 262 | /****************************************************************************** |
| 263 | * Set the mac type member in the hw struct. |
| 264 | * |
| 265 | * hw - Struct containing variables accessed by shared code |
| 266 | *****************************************************************************/ |
| 267 | int32_t |
| 268 | e1000_set_mac_type(struct e1000_hw *hw) |
| 269 | { |
| 270 | DEBUGFUNC("e1000_set_mac_type"); |
| 271 | |
| 272 | switch (hw->device_id) { |
| 273 | case E1000_DEV_ID_82542: |
| 274 | switch (hw->revision_id) { |
| 275 | case E1000_82542_2_0_REV_ID: |
| 276 | hw->mac_type = e1000_82542_rev2_0; |
| 277 | break; |
| 278 | case E1000_82542_2_1_REV_ID: |
| 279 | hw->mac_type = e1000_82542_rev2_1; |
| 280 | break; |
| 281 | default: |
| 282 | /* Invalid 82542 revision ID */ |
| 283 | return -E1000_ERR_MAC_TYPE; |
| 284 | } |
| 285 | break; |
| 286 | case E1000_DEV_ID_82543GC_FIBER: |
| 287 | case E1000_DEV_ID_82543GC_COPPER: |
| 288 | hw->mac_type = e1000_82543; |
| 289 | break; |
| 290 | case E1000_DEV_ID_82544EI_COPPER: |
| 291 | case E1000_DEV_ID_82544EI_FIBER: |
| 292 | case E1000_DEV_ID_82544GC_COPPER: |
| 293 | case E1000_DEV_ID_82544GC_LOM: |
| 294 | hw->mac_type = e1000_82544; |
| 295 | break; |
| 296 | case E1000_DEV_ID_82540EM: |
| 297 | case E1000_DEV_ID_82540EM_LOM: |
| 298 | case E1000_DEV_ID_82540EP: |
| 299 | case E1000_DEV_ID_82540EP_LOM: |
| 300 | case E1000_DEV_ID_82540EP_LP: |
| 301 | hw->mac_type = e1000_82540; |
| 302 | break; |
| 303 | case E1000_DEV_ID_82545EM_COPPER: |
| 304 | case E1000_DEV_ID_82545EM_FIBER: |
| 305 | hw->mac_type = e1000_82545; |
| 306 | break; |
| 307 | case E1000_DEV_ID_82545GM_COPPER: |
| 308 | case E1000_DEV_ID_82545GM_FIBER: |
| 309 | case E1000_DEV_ID_82545GM_SERDES: |
| 310 | hw->mac_type = e1000_82545_rev_3; |
| 311 | break; |
| 312 | case E1000_DEV_ID_82546EB_COPPER: |
| 313 | case E1000_DEV_ID_82546EB_FIBER: |
| 314 | case E1000_DEV_ID_82546EB_QUAD_COPPER: |
| 315 | hw->mac_type = e1000_82546; |
| 316 | break; |
| 317 | case E1000_DEV_ID_82546GB_COPPER: |
| 318 | case E1000_DEV_ID_82546GB_FIBER: |
| 319 | case E1000_DEV_ID_82546GB_SERDES: |
| 320 | case E1000_DEV_ID_82546GB_PCIE: |
| 321 | hw->mac_type = e1000_82546_rev_3; |
| 322 | break; |
| 323 | case E1000_DEV_ID_82541EI: |
| 324 | case E1000_DEV_ID_82541EI_MOBILE: |
| 325 | hw->mac_type = e1000_82541; |
| 326 | break; |
| 327 | case E1000_DEV_ID_82541ER: |
| 328 | case E1000_DEV_ID_82541GI: |
| 329 | case E1000_DEV_ID_82541GI_LF: |
| 330 | case E1000_DEV_ID_82541GI_MOBILE: |
| 331 | hw->mac_type = e1000_82541_rev_2; |
| 332 | break; |
| 333 | case E1000_DEV_ID_82547EI: |
| 334 | hw->mac_type = e1000_82547; |
| 335 | break; |
| 336 | case E1000_DEV_ID_82547GI: |
| 337 | hw->mac_type = e1000_82547_rev_2; |
| 338 | break; |
Mallikarjuna R Chilakala | 868d530 | 2005-10-04 06:58:59 -0400 | [diff] [blame] | 339 | case E1000_DEV_ID_82571EB_COPPER: |
| 340 | case E1000_DEV_ID_82571EB_FIBER: |
| 341 | case E1000_DEV_ID_82571EB_SERDES: |
| 342 | hw->mac_type = e1000_82571; |
| 343 | break; |
| 344 | case E1000_DEV_ID_82572EI_COPPER: |
| 345 | case E1000_DEV_ID_82572EI_FIBER: |
| 346 | case E1000_DEV_ID_82572EI_SERDES: |
| 347 | hw->mac_type = e1000_82572; |
| 348 | break; |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 349 | case E1000_DEV_ID_82573E: |
| 350 | case E1000_DEV_ID_82573E_IAMT: |
Mallikarjuna R Chilakala | 868d530 | 2005-10-04 06:58:59 -0400 | [diff] [blame] | 351 | case E1000_DEV_ID_82573L: |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 352 | hw->mac_type = e1000_82573; |
| 353 | break; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 354 | default: |
| 355 | /* Should never have loaded on this device */ |
| 356 | return -E1000_ERR_MAC_TYPE; |
| 357 | } |
| 358 | |
| 359 | switch(hw->mac_type) { |
Mallikarjuna R Chilakala | 868d530 | 2005-10-04 06:58:59 -0400 | [diff] [blame] | 360 | case e1000_82571: |
| 361 | case e1000_82572: |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 362 | case e1000_82573: |
| 363 | hw->eeprom_semaphore_present = TRUE; |
| 364 | /* fall through */ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 365 | case e1000_82541: |
| 366 | case e1000_82547: |
| 367 | case e1000_82541_rev_2: |
| 368 | case e1000_82547_rev_2: |
| 369 | hw->asf_firmware_present = TRUE; |
| 370 | break; |
| 371 | default: |
| 372 | break; |
| 373 | } |
| 374 | |
| 375 | return E1000_SUCCESS; |
| 376 | } |
| 377 | |
| 378 | /***************************************************************************** |
| 379 | * Set media type and TBI compatibility. |
| 380 | * |
| 381 | * hw - Struct containing variables accessed by shared code |
| 382 | * **************************************************************************/ |
| 383 | void |
| 384 | e1000_set_media_type(struct e1000_hw *hw) |
| 385 | { |
| 386 | uint32_t status; |
| 387 | |
| 388 | DEBUGFUNC("e1000_set_media_type"); |
| 389 | |
| 390 | if(hw->mac_type != e1000_82543) { |
| 391 | /* tbi_compatibility is only valid on 82543 */ |
| 392 | hw->tbi_compatibility_en = FALSE; |
| 393 | } |
| 394 | |
| 395 | switch (hw->device_id) { |
| 396 | case E1000_DEV_ID_82545GM_SERDES: |
| 397 | case E1000_DEV_ID_82546GB_SERDES: |
Mallikarjuna R Chilakala | 868d530 | 2005-10-04 06:58:59 -0400 | [diff] [blame] | 398 | case E1000_DEV_ID_82571EB_SERDES: |
| 399 | case E1000_DEV_ID_82572EI_SERDES: |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 400 | hw->media_type = e1000_media_type_internal_serdes; |
| 401 | break; |
| 402 | default: |
Malli Chilakala | 3893d54 | 2005-06-17 17:44:49 -0700 | [diff] [blame] | 403 | switch (hw->mac_type) { |
| 404 | case e1000_82542_rev2_0: |
| 405 | case e1000_82542_rev2_1: |
| 406 | hw->media_type = e1000_media_type_fiber; |
| 407 | break; |
| 408 | case e1000_82573: |
| 409 | /* The STATUS_TBIMODE bit is reserved or reused for the this |
| 410 | * device. |
| 411 | */ |
| 412 | hw->media_type = e1000_media_type_copper; |
| 413 | break; |
| 414 | default: |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 415 | status = E1000_READ_REG(hw, STATUS); |
Malli Chilakala | 3893d54 | 2005-06-17 17:44:49 -0700 | [diff] [blame] | 416 | if (status & E1000_STATUS_TBIMODE) { |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 417 | hw->media_type = e1000_media_type_fiber; |
| 418 | /* tbi_compatibility not valid on fiber */ |
| 419 | hw->tbi_compatibility_en = FALSE; |
| 420 | } else { |
| 421 | hw->media_type = e1000_media_type_copper; |
| 422 | } |
Malli Chilakala | 3893d54 | 2005-06-17 17:44:49 -0700 | [diff] [blame] | 423 | break; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 424 | } |
| 425 | } |
| 426 | } |
| 427 | |
| 428 | /****************************************************************************** |
| 429 | * Reset the transmit and receive units; mask and clear all interrupts. |
| 430 | * |
| 431 | * hw - Struct containing variables accessed by shared code |
| 432 | *****************************************************************************/ |
| 433 | int32_t |
| 434 | e1000_reset_hw(struct e1000_hw *hw) |
| 435 | { |
| 436 | uint32_t ctrl; |
| 437 | uint32_t ctrl_ext; |
| 438 | uint32_t icr; |
| 439 | uint32_t manc; |
| 440 | uint32_t led_ctrl; |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 441 | uint32_t timeout; |
| 442 | uint32_t extcnf_ctrl; |
| 443 | int32_t ret_val; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 444 | |
| 445 | DEBUGFUNC("e1000_reset_hw"); |
| 446 | |
| 447 | /* For 82542 (rev 2.0), disable MWI before issuing a device reset */ |
| 448 | if(hw->mac_type == e1000_82542_rev2_0) { |
| 449 | DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); |
| 450 | e1000_pci_clear_mwi(hw); |
| 451 | } |
| 452 | |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 453 | if(hw->bus_type == e1000_bus_type_pci_express) { |
| 454 | /* Prevent the PCI-E bus from sticking if there is no TLP connection |
| 455 | * on the last TLP read/write transaction when MAC is reset. |
| 456 | */ |
| 457 | if(e1000_disable_pciex_master(hw) != E1000_SUCCESS) { |
| 458 | DEBUGOUT("PCI-E Master disable polling has failed.\n"); |
| 459 | } |
| 460 | } |
| 461 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 462 | /* Clear interrupt mask to stop board from generating interrupts */ |
| 463 | DEBUGOUT("Masking off all interrupts\n"); |
| 464 | E1000_WRITE_REG(hw, IMC, 0xffffffff); |
| 465 | |
| 466 | /* Disable the Transmit and Receive units. Then delay to allow |
| 467 | * any pending transactions to complete before we hit the MAC with |
| 468 | * the global reset. |
| 469 | */ |
| 470 | E1000_WRITE_REG(hw, RCTL, 0); |
| 471 | E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP); |
| 472 | E1000_WRITE_FLUSH(hw); |
| 473 | |
| 474 | /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */ |
| 475 | hw->tbi_compatibility_on = FALSE; |
| 476 | |
| 477 | /* Delay to allow any outstanding PCI transactions to complete before |
| 478 | * resetting the device |
| 479 | */ |
| 480 | msec_delay(10); |
| 481 | |
| 482 | ctrl = E1000_READ_REG(hw, CTRL); |
| 483 | |
| 484 | /* Must reset the PHY before resetting the MAC */ |
| 485 | if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 486 | E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST)); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 487 | msec_delay(5); |
| 488 | } |
| 489 | |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 490 | /* Must acquire the MDIO ownership before MAC reset. |
| 491 | * Ownership defaults to firmware after a reset. */ |
| 492 | if(hw->mac_type == e1000_82573) { |
| 493 | timeout = 10; |
| 494 | |
| 495 | extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL); |
| 496 | extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; |
| 497 | |
| 498 | do { |
| 499 | E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl); |
| 500 | extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL); |
| 501 | |
| 502 | if(extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP) |
| 503 | break; |
| 504 | else |
| 505 | extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; |
| 506 | |
| 507 | msec_delay(2); |
| 508 | timeout--; |
| 509 | } while(timeout); |
| 510 | } |
| 511 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 512 | /* Issue a global reset to the MAC. This will reset the chip's |
| 513 | * transmit, receive, DMA, and link units. It will not effect |
| 514 | * the current PCI configuration. The global reset bit is self- |
| 515 | * clearing, and should clear within a microsecond. |
| 516 | */ |
| 517 | DEBUGOUT("Issuing a global reset to MAC\n"); |
| 518 | |
| 519 | switch(hw->mac_type) { |
| 520 | case e1000_82544: |
| 521 | case e1000_82540: |
| 522 | case e1000_82545: |
| 523 | case e1000_82546: |
| 524 | case e1000_82541: |
| 525 | case e1000_82541_rev_2: |
| 526 | /* These controllers can't ack the 64-bit write when issuing the |
| 527 | * reset, so use IO-mapping as a workaround to issue the reset */ |
| 528 | E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST)); |
| 529 | break; |
| 530 | case e1000_82545_rev_3: |
| 531 | case e1000_82546_rev_3: |
| 532 | /* Reset is performed on a shadow of the control register */ |
| 533 | E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST)); |
| 534 | break; |
| 535 | default: |
| 536 | E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST)); |
| 537 | break; |
| 538 | } |
| 539 | |
| 540 | /* After MAC reset, force reload of EEPROM to restore power-on settings to |
| 541 | * device. Later controllers reload the EEPROM automatically, so just wait |
| 542 | * for reload to complete. |
| 543 | */ |
| 544 | switch(hw->mac_type) { |
| 545 | case e1000_82542_rev2_0: |
| 546 | case e1000_82542_rev2_1: |
| 547 | case e1000_82543: |
| 548 | case e1000_82544: |
| 549 | /* Wait for reset to complete */ |
| 550 | udelay(10); |
| 551 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); |
| 552 | ctrl_ext |= E1000_CTRL_EXT_EE_RST; |
| 553 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); |
| 554 | E1000_WRITE_FLUSH(hw); |
| 555 | /* Wait for EEPROM reload */ |
| 556 | msec_delay(2); |
| 557 | break; |
| 558 | case e1000_82541: |
| 559 | case e1000_82541_rev_2: |
| 560 | case e1000_82547: |
| 561 | case e1000_82547_rev_2: |
| 562 | /* Wait for EEPROM reload */ |
| 563 | msec_delay(20); |
| 564 | break; |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 565 | case e1000_82573: |
| 566 | udelay(10); |
| 567 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); |
| 568 | ctrl_ext |= E1000_CTRL_EXT_EE_RST; |
| 569 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); |
| 570 | E1000_WRITE_FLUSH(hw); |
| 571 | /* fall through */ |
Mallikarjuna R Chilakala | 868d530 | 2005-10-04 06:58:59 -0400 | [diff] [blame] | 572 | case e1000_82571: |
| 573 | case e1000_82572: |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 574 | ret_val = e1000_get_auto_rd_done(hw); |
| 575 | if(ret_val) |
| 576 | /* We don't want to continue accessing MAC registers. */ |
| 577 | return ret_val; |
| 578 | break; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 579 | default: |
| 580 | /* Wait for EEPROM reload (it happens automatically) */ |
| 581 | msec_delay(5); |
| 582 | break; |
| 583 | } |
| 584 | |
| 585 | /* Disable HW ARPs on ASF enabled adapters */ |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 586 | if(hw->mac_type >= e1000_82540 && hw->mac_type <= e1000_82547_rev_2) { |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 587 | manc = E1000_READ_REG(hw, MANC); |
| 588 | manc &= ~(E1000_MANC_ARP_EN); |
| 589 | E1000_WRITE_REG(hw, MANC, manc); |
| 590 | } |
| 591 | |
| 592 | if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { |
| 593 | e1000_phy_init_script(hw); |
| 594 | |
| 595 | /* Configure activity LED after PHY reset */ |
| 596 | led_ctrl = E1000_READ_REG(hw, LEDCTL); |
| 597 | led_ctrl &= IGP_ACTIVITY_LED_MASK; |
| 598 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); |
| 599 | E1000_WRITE_REG(hw, LEDCTL, led_ctrl); |
| 600 | } |
| 601 | |
| 602 | /* Clear interrupt mask to stop board from generating interrupts */ |
| 603 | DEBUGOUT("Masking off all interrupts\n"); |
| 604 | E1000_WRITE_REG(hw, IMC, 0xffffffff); |
| 605 | |
| 606 | /* Clear any pending interrupt events. */ |
| 607 | icr = E1000_READ_REG(hw, ICR); |
| 608 | |
| 609 | /* If MWI was previously enabled, reenable it. */ |
| 610 | if(hw->mac_type == e1000_82542_rev2_0) { |
| 611 | if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE) |
| 612 | e1000_pci_set_mwi(hw); |
| 613 | } |
| 614 | |
| 615 | return E1000_SUCCESS; |
| 616 | } |
| 617 | |
| 618 | /****************************************************************************** |
| 619 | * Performs basic configuration of the adapter. |
| 620 | * |
| 621 | * hw - Struct containing variables accessed by shared code |
| 622 | * |
| 623 | * Assumes that the controller has previously been reset and is in a |
| 624 | * post-reset uninitialized state. Initializes the receive address registers, |
| 625 | * multicast table, and VLAN filter table. Calls routines to setup link |
| 626 | * configuration and flow control settings. Clears all on-chip counters. Leaves |
| 627 | * the transmit and receive units disabled and uninitialized. |
| 628 | *****************************************************************************/ |
| 629 | int32_t |
| 630 | e1000_init_hw(struct e1000_hw *hw) |
| 631 | { |
| 632 | uint32_t ctrl; |
| 633 | uint32_t i; |
| 634 | int32_t ret_val; |
| 635 | uint16_t pcix_cmd_word; |
| 636 | uint16_t pcix_stat_hi_word; |
| 637 | uint16_t cmd_mmrbc; |
| 638 | uint16_t stat_mmrbc; |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 639 | uint32_t mta_size; |
| 640 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 641 | DEBUGFUNC("e1000_init_hw"); |
| 642 | |
| 643 | /* Initialize Identification LED */ |
| 644 | ret_val = e1000_id_led_init(hw); |
| 645 | if(ret_val) { |
| 646 | DEBUGOUT("Error Initializing Identification LED\n"); |
| 647 | return ret_val; |
| 648 | } |
| 649 | |
| 650 | /* Set the media type and TBI compatibility */ |
| 651 | e1000_set_media_type(hw); |
| 652 | |
| 653 | /* Disabling VLAN filtering. */ |
| 654 | DEBUGOUT("Initializing the IEEE VLAN\n"); |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 655 | if (hw->mac_type < e1000_82545_rev_3) |
| 656 | E1000_WRITE_REG(hw, VET, 0); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 657 | e1000_clear_vfta(hw); |
| 658 | |
| 659 | /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ |
| 660 | if(hw->mac_type == e1000_82542_rev2_0) { |
| 661 | DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); |
| 662 | e1000_pci_clear_mwi(hw); |
| 663 | E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST); |
| 664 | E1000_WRITE_FLUSH(hw); |
| 665 | msec_delay(5); |
| 666 | } |
| 667 | |
| 668 | /* Setup the receive address. This involves initializing all of the Receive |
| 669 | * Address Registers (RARs 0 - 15). |
| 670 | */ |
| 671 | e1000_init_rx_addrs(hw); |
| 672 | |
| 673 | /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */ |
| 674 | if(hw->mac_type == e1000_82542_rev2_0) { |
| 675 | E1000_WRITE_REG(hw, RCTL, 0); |
| 676 | E1000_WRITE_FLUSH(hw); |
| 677 | msec_delay(1); |
| 678 | if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE) |
| 679 | e1000_pci_set_mwi(hw); |
| 680 | } |
| 681 | |
| 682 | /* Zero out the Multicast HASH table */ |
| 683 | DEBUGOUT("Zeroing the MTA\n"); |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 684 | mta_size = E1000_MC_TBL_SIZE; |
| 685 | for(i = 0; i < mta_size; i++) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 686 | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); |
| 687 | |
| 688 | /* Set the PCI priority bit correctly in the CTRL register. This |
| 689 | * determines if the adapter gives priority to receives, or if it |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 690 | * gives equal priority to transmits and receives. Valid only on |
| 691 | * 82542 and 82543 silicon. |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 692 | */ |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 693 | if(hw->dma_fairness && hw->mac_type <= e1000_82543) { |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 694 | ctrl = E1000_READ_REG(hw, CTRL); |
| 695 | E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR); |
| 696 | } |
| 697 | |
| 698 | switch(hw->mac_type) { |
| 699 | case e1000_82545_rev_3: |
| 700 | case e1000_82546_rev_3: |
| 701 | break; |
| 702 | default: |
| 703 | /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */ |
| 704 | if(hw->bus_type == e1000_bus_type_pcix) { |
| 705 | e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd_word); |
| 706 | e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI, |
| 707 | &pcix_stat_hi_word); |
| 708 | cmd_mmrbc = (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >> |
| 709 | PCIX_COMMAND_MMRBC_SHIFT; |
| 710 | stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >> |
| 711 | PCIX_STATUS_HI_MMRBC_SHIFT; |
| 712 | if(stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K) |
| 713 | stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K; |
| 714 | if(cmd_mmrbc > stat_mmrbc) { |
| 715 | pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK; |
| 716 | pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT; |
| 717 | e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER, |
| 718 | &pcix_cmd_word); |
| 719 | } |
| 720 | } |
| 721 | break; |
| 722 | } |
| 723 | |
| 724 | /* Call a subroutine to configure the link and setup flow control. */ |
| 725 | ret_val = e1000_setup_link(hw); |
| 726 | |
| 727 | /* Set the transmit descriptor write-back policy */ |
| 728 | if(hw->mac_type > e1000_82544) { |
| 729 | ctrl = E1000_READ_REG(hw, TXDCTL); |
| 730 | ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB; |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 731 | switch (hw->mac_type) { |
| 732 | default: |
| 733 | break; |
Mallikarjuna R Chilakala | 868d530 | 2005-10-04 06:58:59 -0400 | [diff] [blame] | 734 | case e1000_82571: |
| 735 | case e1000_82572: |
| 736 | ctrl |= (1 << 22); |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 737 | case e1000_82573: |
| 738 | ctrl |= E1000_TXDCTL_COUNT_DESC; |
| 739 | break; |
| 740 | } |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 741 | E1000_WRITE_REG(hw, TXDCTL, ctrl); |
| 742 | } |
| 743 | |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 744 | if (hw->mac_type == e1000_82573) { |
| 745 | e1000_enable_tx_pkt_filtering(hw); |
| 746 | } |
| 747 | |
Mallikarjuna R Chilakala | 868d530 | 2005-10-04 06:58:59 -0400 | [diff] [blame] | 748 | switch (hw->mac_type) { |
| 749 | default: |
| 750 | break; |
| 751 | case e1000_82571: |
Mallikarjuna R Chilakala | a7990ba | 2005-10-04 07:08:19 -0400 | [diff] [blame] | 752 | case e1000_82572: |
Mallikarjuna R Chilakala | 868d530 | 2005-10-04 06:58:59 -0400 | [diff] [blame] | 753 | ctrl = E1000_READ_REG(hw, TXDCTL1); |
| 754 | ctrl &= ~E1000_TXDCTL_WTHRESH; |
| 755 | ctrl |= E1000_TXDCTL_COUNT_DESC | E1000_TXDCTL_FULL_TX_DESC_WB; |
| 756 | ctrl |= (1 << 22); |
| 757 | E1000_WRITE_REG(hw, TXDCTL1, ctrl); |
| 758 | break; |
| 759 | } |
| 760 | |
| 761 | |
| 762 | |
| 763 | if (hw->mac_type == e1000_82573) { |
| 764 | uint32_t gcr = E1000_READ_REG(hw, GCR); |
| 765 | gcr |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX; |
| 766 | E1000_WRITE_REG(hw, GCR, gcr); |
| 767 | } |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 768 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 769 | /* Clear all of the statistics registers (clear on read). It is |
| 770 | * important that we do this after we have tried to establish link |
| 771 | * because the symbol error count will increment wildly if there |
| 772 | * is no link. |
| 773 | */ |
| 774 | e1000_clear_hw_cntrs(hw); |
| 775 | |
| 776 | return ret_val; |
| 777 | } |
| 778 | |
| 779 | /****************************************************************************** |
| 780 | * Adjust SERDES output amplitude based on EEPROM setting. |
| 781 | * |
| 782 | * hw - Struct containing variables accessed by shared code. |
| 783 | *****************************************************************************/ |
| 784 | static int32_t |
| 785 | e1000_adjust_serdes_amplitude(struct e1000_hw *hw) |
| 786 | { |
| 787 | uint16_t eeprom_data; |
| 788 | int32_t ret_val; |
| 789 | |
| 790 | DEBUGFUNC("e1000_adjust_serdes_amplitude"); |
| 791 | |
| 792 | if(hw->media_type != e1000_media_type_internal_serdes) |
| 793 | return E1000_SUCCESS; |
| 794 | |
| 795 | switch(hw->mac_type) { |
| 796 | case e1000_82545_rev_3: |
| 797 | case e1000_82546_rev_3: |
| 798 | break; |
| 799 | default: |
| 800 | return E1000_SUCCESS; |
| 801 | } |
| 802 | |
| 803 | ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, &eeprom_data); |
| 804 | if (ret_val) { |
| 805 | return ret_val; |
| 806 | } |
| 807 | |
| 808 | if(eeprom_data != EEPROM_RESERVED_WORD) { |
| 809 | /* Adjust SERDES output amplitude only. */ |
| 810 | eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK; |
| 811 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data); |
| 812 | if(ret_val) |
| 813 | return ret_val; |
| 814 | } |
| 815 | |
| 816 | return E1000_SUCCESS; |
| 817 | } |
| 818 | |
| 819 | /****************************************************************************** |
| 820 | * Configures flow control and link settings. |
| 821 | * |
| 822 | * hw - Struct containing variables accessed by shared code |
| 823 | * |
| 824 | * Determines which flow control settings to use. Calls the apropriate media- |
| 825 | * specific link configuration function. Configures the flow control settings. |
| 826 | * Assuming the adapter has a valid link partner, a valid link should be |
| 827 | * established. Assumes the hardware has previously been reset and the |
| 828 | * transmitter and receiver are not enabled. |
| 829 | *****************************************************************************/ |
| 830 | int32_t |
| 831 | e1000_setup_link(struct e1000_hw *hw) |
| 832 | { |
| 833 | uint32_t ctrl_ext; |
| 834 | int32_t ret_val; |
| 835 | uint16_t eeprom_data; |
| 836 | |
| 837 | DEBUGFUNC("e1000_setup_link"); |
| 838 | |
| 839 | /* Read and store word 0x0F of the EEPROM. This word contains bits |
| 840 | * that determine the hardware's default PAUSE (flow control) mode, |
| 841 | * a bit that determines whether the HW defaults to enabling or |
| 842 | * disabling auto-negotiation, and the direction of the |
| 843 | * SW defined pins. If there is no SW over-ride of the flow |
| 844 | * control setting, then the variable hw->fc will |
| 845 | * be initialized based on a value in the EEPROM. |
| 846 | */ |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 847 | if(e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data)) { |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 848 | DEBUGOUT("EEPROM Read Error\n"); |
| 849 | return -E1000_ERR_EEPROM; |
| 850 | } |
| 851 | |
| 852 | if(hw->fc == e1000_fc_default) { |
| 853 | if((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0) |
| 854 | hw->fc = e1000_fc_none; |
| 855 | else if((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == |
| 856 | EEPROM_WORD0F_ASM_DIR) |
| 857 | hw->fc = e1000_fc_tx_pause; |
| 858 | else |
| 859 | hw->fc = e1000_fc_full; |
| 860 | } |
| 861 | |
| 862 | /* We want to save off the original Flow Control configuration just |
| 863 | * in case we get disconnected and then reconnected into a different |
| 864 | * hub or switch with different Flow Control capabilities. |
| 865 | */ |
| 866 | if(hw->mac_type == e1000_82542_rev2_0) |
| 867 | hw->fc &= (~e1000_fc_tx_pause); |
| 868 | |
| 869 | if((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1)) |
| 870 | hw->fc &= (~e1000_fc_rx_pause); |
| 871 | |
| 872 | hw->original_fc = hw->fc; |
| 873 | |
| 874 | DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc); |
| 875 | |
| 876 | /* Take the 4 bits from EEPROM word 0x0F that determine the initial |
| 877 | * polarity value for the SW controlled pins, and setup the |
| 878 | * Extended Device Control reg with that info. |
| 879 | * This is needed because one of the SW controlled pins is used for |
| 880 | * signal detection. So this should be done before e1000_setup_pcs_link() |
| 881 | * or e1000_phy_setup() is called. |
| 882 | */ |
| 883 | if(hw->mac_type == e1000_82543) { |
| 884 | ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) << |
| 885 | SWDPIO__EXT_SHIFT); |
| 886 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); |
| 887 | } |
| 888 | |
| 889 | /* Call the necessary subroutine to configure the link. */ |
| 890 | ret_val = (hw->media_type == e1000_media_type_copper) ? |
| 891 | e1000_setup_copper_link(hw) : |
| 892 | e1000_setup_fiber_serdes_link(hw); |
| 893 | |
| 894 | /* Initialize the flow control address, type, and PAUSE timer |
| 895 | * registers to their default values. This is done even if flow |
| 896 | * control is disabled, because it does not hurt anything to |
| 897 | * initialize these registers. |
| 898 | */ |
| 899 | DEBUGOUT("Initializing the Flow Control address, type and timer regs\n"); |
| 900 | |
| 901 | E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW); |
| 902 | E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH); |
| 903 | E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE); |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 904 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 905 | E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time); |
| 906 | |
| 907 | /* Set the flow control receive threshold registers. Normally, |
| 908 | * these registers will be set to a default threshold that may be |
| 909 | * adjusted later by the driver's runtime code. However, if the |
| 910 | * ability to transmit pause frames in not enabled, then these |
| 911 | * registers will be set to 0. |
| 912 | */ |
| 913 | if(!(hw->fc & e1000_fc_tx_pause)) { |
| 914 | E1000_WRITE_REG(hw, FCRTL, 0); |
| 915 | E1000_WRITE_REG(hw, FCRTH, 0); |
| 916 | } else { |
| 917 | /* We need to set up the Receive Threshold high and low water marks |
| 918 | * as well as (optionally) enabling the transmission of XON frames. |
| 919 | */ |
| 920 | if(hw->fc_send_xon) { |
| 921 | E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE)); |
| 922 | E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water); |
| 923 | } else { |
| 924 | E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water); |
| 925 | E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water); |
| 926 | } |
| 927 | } |
| 928 | return ret_val; |
| 929 | } |
| 930 | |
| 931 | /****************************************************************************** |
| 932 | * Sets up link for a fiber based or serdes based adapter |
| 933 | * |
| 934 | * hw - Struct containing variables accessed by shared code |
| 935 | * |
| 936 | * Manipulates Physical Coding Sublayer functions in order to configure |
| 937 | * link. Assumes the hardware has been previously reset and the transmitter |
| 938 | * and receiver are not enabled. |
| 939 | *****************************************************************************/ |
| 940 | static int32_t |
| 941 | e1000_setup_fiber_serdes_link(struct e1000_hw *hw) |
| 942 | { |
| 943 | uint32_t ctrl; |
| 944 | uint32_t status; |
| 945 | uint32_t txcw = 0; |
| 946 | uint32_t i; |
| 947 | uint32_t signal = 0; |
| 948 | int32_t ret_val; |
| 949 | |
| 950 | DEBUGFUNC("e1000_setup_fiber_serdes_link"); |
| 951 | |
Mallikarjuna R Chilakala | 868d530 | 2005-10-04 06:58:59 -0400 | [diff] [blame] | 952 | /* On 82571 and 82572 Fiber connections, SerDes loopback mode persists |
| 953 | * until explicitly turned off or a power cycle is performed. A read to |
| 954 | * the register does not indicate its status. Therefore, we ensure |
| 955 | * loopback mode is disabled during initialization. |
| 956 | */ |
| 957 | if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) |
| 958 | E1000_WRITE_REG(hw, SCTL, E1000_DISABLE_SERDES_LOOPBACK); |
| 959 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 960 | /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be |
| 961 | * set when the optics detect a signal. On older adapters, it will be |
| 962 | * cleared when there is a signal. This applies to fiber media only. |
| 963 | * If we're on serdes media, adjust the output amplitude to value set in |
| 964 | * the EEPROM. |
| 965 | */ |
| 966 | ctrl = E1000_READ_REG(hw, CTRL); |
| 967 | if(hw->media_type == e1000_media_type_fiber) |
| 968 | signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; |
| 969 | |
| 970 | ret_val = e1000_adjust_serdes_amplitude(hw); |
| 971 | if(ret_val) |
| 972 | return ret_val; |
| 973 | |
| 974 | /* Take the link out of reset */ |
| 975 | ctrl &= ~(E1000_CTRL_LRST); |
| 976 | |
| 977 | /* Adjust VCO speed to improve BER performance */ |
| 978 | ret_val = e1000_set_vco_speed(hw); |
| 979 | if(ret_val) |
| 980 | return ret_val; |
| 981 | |
| 982 | e1000_config_collision_dist(hw); |
| 983 | |
| 984 | /* Check for a software override of the flow control settings, and setup |
| 985 | * the device accordingly. If auto-negotiation is enabled, then software |
| 986 | * will have to set the "PAUSE" bits to the correct value in the Tranmsit |
| 987 | * Config Word Register (TXCW) and re-start auto-negotiation. However, if |
| 988 | * auto-negotiation is disabled, then software will have to manually |
| 989 | * configure the two flow control enable bits in the CTRL register. |
| 990 | * |
| 991 | * The possible values of the "fc" parameter are: |
| 992 | * 0: Flow control is completely disabled |
| 993 | * 1: Rx flow control is enabled (we can receive pause frames, but |
| 994 | * not send pause frames). |
| 995 | * 2: Tx flow control is enabled (we can send pause frames but we do |
| 996 | * not support receiving pause frames). |
| 997 | * 3: Both Rx and TX flow control (symmetric) are enabled. |
| 998 | */ |
| 999 | switch (hw->fc) { |
| 1000 | case e1000_fc_none: |
| 1001 | /* Flow control is completely disabled by a software over-ride. */ |
| 1002 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); |
| 1003 | break; |
| 1004 | case e1000_fc_rx_pause: |
| 1005 | /* RX Flow control is enabled and TX Flow control is disabled by a |
| 1006 | * software over-ride. Since there really isn't a way to advertise |
| 1007 | * that we are capable of RX Pause ONLY, we will advertise that we |
| 1008 | * support both symmetric and asymmetric RX PAUSE. Later, we will |
| 1009 | * disable the adapter's ability to send PAUSE frames. |
| 1010 | */ |
| 1011 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); |
| 1012 | break; |
| 1013 | case e1000_fc_tx_pause: |
| 1014 | /* TX Flow control is enabled, and RX Flow control is disabled, by a |
| 1015 | * software over-ride. |
| 1016 | */ |
| 1017 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); |
| 1018 | break; |
| 1019 | case e1000_fc_full: |
| 1020 | /* Flow control (both RX and TX) is enabled by a software over-ride. */ |
| 1021 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); |
| 1022 | break; |
| 1023 | default: |
| 1024 | DEBUGOUT("Flow control param set incorrectly\n"); |
| 1025 | return -E1000_ERR_CONFIG; |
| 1026 | break; |
| 1027 | } |
| 1028 | |
| 1029 | /* Since auto-negotiation is enabled, take the link out of reset (the link |
| 1030 | * will be in reset, because we previously reset the chip). This will |
| 1031 | * restart auto-negotiation. If auto-neogtiation is successful then the |
| 1032 | * link-up status bit will be set and the flow control enable bits (RFCE |
| 1033 | * and TFCE) will be set according to their negotiated value. |
| 1034 | */ |
| 1035 | DEBUGOUT("Auto-negotiation enabled\n"); |
| 1036 | |
| 1037 | E1000_WRITE_REG(hw, TXCW, txcw); |
| 1038 | E1000_WRITE_REG(hw, CTRL, ctrl); |
| 1039 | E1000_WRITE_FLUSH(hw); |
| 1040 | |
| 1041 | hw->txcw = txcw; |
| 1042 | msec_delay(1); |
| 1043 | |
| 1044 | /* If we have a signal (the cable is plugged in) then poll for a "Link-Up" |
| 1045 | * indication in the Device Status Register. Time-out if a link isn't |
| 1046 | * seen in 500 milliseconds seconds (Auto-negotiation should complete in |
| 1047 | * less than 500 milliseconds even if the other end is doing it in SW). |
| 1048 | * For internal serdes, we just assume a signal is present, then poll. |
| 1049 | */ |
| 1050 | if(hw->media_type == e1000_media_type_internal_serdes || |
| 1051 | (E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) { |
| 1052 | DEBUGOUT("Looking for Link\n"); |
| 1053 | for(i = 0; i < (LINK_UP_TIMEOUT / 10); i++) { |
| 1054 | msec_delay(10); |
| 1055 | status = E1000_READ_REG(hw, STATUS); |
| 1056 | if(status & E1000_STATUS_LU) break; |
| 1057 | } |
| 1058 | if(i == (LINK_UP_TIMEOUT / 10)) { |
| 1059 | DEBUGOUT("Never got a valid link from auto-neg!!!\n"); |
| 1060 | hw->autoneg_failed = 1; |
| 1061 | /* AutoNeg failed to achieve a link, so we'll call |
| 1062 | * e1000_check_for_link. This routine will force the link up if |
| 1063 | * we detect a signal. This will allow us to communicate with |
| 1064 | * non-autonegotiating link partners. |
| 1065 | */ |
| 1066 | ret_val = e1000_check_for_link(hw); |
| 1067 | if(ret_val) { |
| 1068 | DEBUGOUT("Error while checking for link\n"); |
| 1069 | return ret_val; |
| 1070 | } |
| 1071 | hw->autoneg_failed = 0; |
| 1072 | } else { |
| 1073 | hw->autoneg_failed = 0; |
| 1074 | DEBUGOUT("Valid Link Found\n"); |
| 1075 | } |
| 1076 | } else { |
| 1077 | DEBUGOUT("No Signal Detected\n"); |
| 1078 | } |
| 1079 | return E1000_SUCCESS; |
| 1080 | } |
| 1081 | |
| 1082 | /****************************************************************************** |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1083 | * Make sure we have a valid PHY and change PHY mode before link setup. |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1084 | * |
| 1085 | * hw - Struct containing variables accessed by shared code |
| 1086 | ******************************************************************************/ |
| 1087 | static int32_t |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1088 | e1000_copper_link_preconfig(struct e1000_hw *hw) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1089 | { |
| 1090 | uint32_t ctrl; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1091 | int32_t ret_val; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1092 | uint16_t phy_data; |
| 1093 | |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1094 | DEBUGFUNC("e1000_copper_link_preconfig"); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1095 | |
| 1096 | ctrl = E1000_READ_REG(hw, CTRL); |
| 1097 | /* With 82543, we need to force speed and duplex on the MAC equal to what |
| 1098 | * the PHY speed and duplex configuration is. In addition, we need to |
| 1099 | * perform a hardware reset on the PHY to take it out of reset. |
| 1100 | */ |
| 1101 | if(hw->mac_type > e1000_82543) { |
| 1102 | ctrl |= E1000_CTRL_SLU; |
| 1103 | ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
| 1104 | E1000_WRITE_REG(hw, CTRL, ctrl); |
| 1105 | } else { |
| 1106 | ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU); |
| 1107 | E1000_WRITE_REG(hw, CTRL, ctrl); |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1108 | ret_val = e1000_phy_hw_reset(hw); |
| 1109 | if(ret_val) |
| 1110 | return ret_val; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1111 | } |
| 1112 | |
| 1113 | /* Make sure we have a valid PHY */ |
| 1114 | ret_val = e1000_detect_gig_phy(hw); |
| 1115 | if(ret_val) { |
| 1116 | DEBUGOUT("Error, did not detect valid phy.\n"); |
| 1117 | return ret_val; |
| 1118 | } |
| 1119 | DEBUGOUT1("Phy ID = %x \n", hw->phy_id); |
| 1120 | |
| 1121 | /* Set PHY to class A mode (if necessary) */ |
| 1122 | ret_val = e1000_set_phy_mode(hw); |
| 1123 | if(ret_val) |
| 1124 | return ret_val; |
| 1125 | |
| 1126 | if((hw->mac_type == e1000_82545_rev_3) || |
| 1127 | (hw->mac_type == e1000_82546_rev_3)) { |
| 1128 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
| 1129 | phy_data |= 0x00000008; |
| 1130 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); |
| 1131 | } |
| 1132 | |
| 1133 | if(hw->mac_type <= e1000_82543 || |
| 1134 | hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 || |
| 1135 | hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) |
| 1136 | hw->phy_reset_disable = FALSE; |
| 1137 | |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1138 | return E1000_SUCCESS; |
| 1139 | } |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1140 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1141 | |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1142 | /******************************************************************** |
| 1143 | * Copper link setup for e1000_phy_igp series. |
| 1144 | * |
| 1145 | * hw - Struct containing variables accessed by shared code |
| 1146 | *********************************************************************/ |
| 1147 | static int32_t |
| 1148 | e1000_copper_link_igp_setup(struct e1000_hw *hw) |
| 1149 | { |
| 1150 | uint32_t led_ctrl; |
| 1151 | int32_t ret_val; |
| 1152 | uint16_t phy_data; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1153 | |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1154 | DEBUGFUNC("e1000_copper_link_igp_setup"); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1155 | |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1156 | if (hw->phy_reset_disable) |
| 1157 | return E1000_SUCCESS; |
| 1158 | |
| 1159 | ret_val = e1000_phy_reset(hw); |
| 1160 | if (ret_val) { |
| 1161 | DEBUGOUT("Error Resetting the PHY\n"); |
| 1162 | return ret_val; |
| 1163 | } |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1164 | |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1165 | /* Wait 10ms for MAC to configure PHY from eeprom settings */ |
| 1166 | msec_delay(15); |
| 1167 | |
| 1168 | /* Configure activity LED after PHY reset */ |
| 1169 | led_ctrl = E1000_READ_REG(hw, LEDCTL); |
| 1170 | led_ctrl &= IGP_ACTIVITY_LED_MASK; |
| 1171 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); |
| 1172 | E1000_WRITE_REG(hw, LEDCTL, led_ctrl); |
| 1173 | |
| 1174 | /* disable lplu d3 during driver init */ |
| 1175 | ret_val = e1000_set_d3_lplu_state(hw, FALSE); |
| 1176 | if (ret_val) { |
| 1177 | DEBUGOUT("Error Disabling LPLU D3\n"); |
| 1178 | return ret_val; |
| 1179 | } |
| 1180 | |
| 1181 | /* disable lplu d0 during driver init */ |
| 1182 | ret_val = e1000_set_d0_lplu_state(hw, FALSE); |
| 1183 | if (ret_val) { |
| 1184 | DEBUGOUT("Error Disabling LPLU D0\n"); |
| 1185 | return ret_val; |
| 1186 | } |
| 1187 | /* Configure mdi-mdix settings */ |
| 1188 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); |
| 1189 | if (ret_val) |
| 1190 | return ret_val; |
| 1191 | |
| 1192 | if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { |
| 1193 | hw->dsp_config_state = e1000_dsp_config_disabled; |
| 1194 | /* Force MDI for earlier revs of the IGP PHY */ |
| 1195 | phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | IGP01E1000_PSCR_FORCE_MDI_MDIX); |
| 1196 | hw->mdix = 1; |
| 1197 | |
| 1198 | } else { |
| 1199 | hw->dsp_config_state = e1000_dsp_config_enabled; |
| 1200 | phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; |
| 1201 | |
| 1202 | switch (hw->mdix) { |
| 1203 | case 1: |
| 1204 | phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; |
| 1205 | break; |
| 1206 | case 2: |
| 1207 | phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; |
| 1208 | break; |
| 1209 | case 0: |
| 1210 | default: |
| 1211 | phy_data |= IGP01E1000_PSCR_AUTO_MDIX; |
| 1212 | break; |
| 1213 | } |
| 1214 | } |
| 1215 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); |
| 1216 | if(ret_val) |
| 1217 | return ret_val; |
| 1218 | |
| 1219 | /* set auto-master slave resolution settings */ |
| 1220 | if(hw->autoneg) { |
| 1221 | e1000_ms_type phy_ms_setting = hw->master_slave; |
| 1222 | |
| 1223 | if(hw->ffe_config_state == e1000_ffe_config_active) |
| 1224 | hw->ffe_config_state = e1000_ffe_config_enabled; |
| 1225 | |
| 1226 | if(hw->dsp_config_state == e1000_dsp_config_activated) |
| 1227 | hw->dsp_config_state = e1000_dsp_config_enabled; |
| 1228 | |
| 1229 | /* when autonegotiation advertisment is only 1000Mbps then we |
| 1230 | * should disable SmartSpeed and enable Auto MasterSlave |
| 1231 | * resolution as hardware default. */ |
| 1232 | if(hw->autoneg_advertised == ADVERTISE_1000_FULL) { |
| 1233 | /* Disable SmartSpeed */ |
| 1234 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1235 | if(ret_val) |
| 1236 | return ret_val; |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1237 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
| 1238 | ret_val = e1000_write_phy_reg(hw, |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1239 | IGP01E1000_PHY_PORT_CONFIG, |
| 1240 | phy_data); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1241 | if(ret_val) |
| 1242 | return ret_val; |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1243 | /* Set auto Master/Slave resolution process */ |
| 1244 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); |
| 1245 | if(ret_val) |
| 1246 | return ret_val; |
| 1247 | phy_data &= ~CR_1000T_MS_ENABLE; |
| 1248 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); |
| 1249 | if(ret_val) |
| 1250 | return ret_val; |
| 1251 | } |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1252 | |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1253 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); |
| 1254 | if(ret_val) |
| 1255 | return ret_val; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1256 | |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1257 | /* load defaults for future use */ |
| 1258 | hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ? |
| 1259 | ((phy_data & CR_1000T_MS_VALUE) ? |
| 1260 | e1000_ms_force_master : |
| 1261 | e1000_ms_force_slave) : |
| 1262 | e1000_ms_auto; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1263 | |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1264 | switch (phy_ms_setting) { |
| 1265 | case e1000_ms_force_master: |
| 1266 | phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); |
| 1267 | break; |
| 1268 | case e1000_ms_force_slave: |
| 1269 | phy_data |= CR_1000T_MS_ENABLE; |
| 1270 | phy_data &= ~(CR_1000T_MS_VALUE); |
| 1271 | break; |
| 1272 | case e1000_ms_auto: |
| 1273 | phy_data &= ~CR_1000T_MS_ENABLE; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1274 | default: |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1275 | break; |
| 1276 | } |
| 1277 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); |
| 1278 | if(ret_val) |
| 1279 | return ret_val; |
Malli Chilakala | 2b02893 | 2005-06-17 17:46:06 -0700 | [diff] [blame] | 1280 | } |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1281 | |
Malli Chilakala | 2b02893 | 2005-06-17 17:46:06 -0700 | [diff] [blame] | 1282 | return E1000_SUCCESS; |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1283 | } |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1284 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1285 | |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1286 | /******************************************************************** |
| 1287 | * Copper link setup for e1000_phy_m88 series. |
| 1288 | * |
| 1289 | * hw - Struct containing variables accessed by shared code |
| 1290 | *********************************************************************/ |
| 1291 | static int32_t |
| 1292 | e1000_copper_link_mgp_setup(struct e1000_hw *hw) |
| 1293 | { |
| 1294 | int32_t ret_val; |
| 1295 | uint16_t phy_data; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1296 | |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1297 | DEBUGFUNC("e1000_copper_link_mgp_setup"); |
| 1298 | |
| 1299 | if(hw->phy_reset_disable) |
| 1300 | return E1000_SUCCESS; |
| 1301 | |
| 1302 | /* Enable CRS on TX. This must be set for half-duplex operation. */ |
| 1303 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
| 1304 | if(ret_val) |
| 1305 | return ret_val; |
| 1306 | |
| 1307 | phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; |
| 1308 | |
| 1309 | /* Options: |
| 1310 | * MDI/MDI-X = 0 (default) |
| 1311 | * 0 - Auto for all speeds |
| 1312 | * 1 - MDI mode |
| 1313 | * 2 - MDI-X mode |
| 1314 | * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) |
| 1315 | */ |
| 1316 | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; |
| 1317 | |
| 1318 | switch (hw->mdix) { |
| 1319 | case 1: |
| 1320 | phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; |
| 1321 | break; |
| 1322 | case 2: |
| 1323 | phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; |
| 1324 | break; |
| 1325 | case 3: |
| 1326 | phy_data |= M88E1000_PSCR_AUTO_X_1000T; |
| 1327 | break; |
| 1328 | case 0: |
| 1329 | default: |
| 1330 | phy_data |= M88E1000_PSCR_AUTO_X_MODE; |
| 1331 | break; |
| 1332 | } |
| 1333 | |
| 1334 | /* Options: |
| 1335 | * disable_polarity_correction = 0 (default) |
| 1336 | * Automatic Correction for Reversed Cable Polarity |
| 1337 | * 0 - Disabled |
| 1338 | * 1 - Enabled |
| 1339 | */ |
| 1340 | phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; |
| 1341 | if(hw->disable_polarity_correction == 1) |
| 1342 | phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; |
| 1343 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); |
| 1344 | if(ret_val) |
| 1345 | return ret_val; |
| 1346 | |
| 1347 | /* Force TX_CLK in the Extended PHY Specific Control Register |
| 1348 | * to 25MHz clock. |
| 1349 | */ |
| 1350 | ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); |
| 1351 | if(ret_val) |
| 1352 | return ret_val; |
| 1353 | |
| 1354 | phy_data |= M88E1000_EPSCR_TX_CLK_25; |
| 1355 | |
| 1356 | if (hw->phy_revision < M88E1011_I_REV_4) { |
| 1357 | /* Configure Master and Slave downshift values */ |
| 1358 | phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1359 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1360 | phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1361 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1362 | ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); |
| 1363 | if(ret_val) |
| 1364 | return ret_val; |
| 1365 | } |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1366 | |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1367 | /* SW Reset the PHY so all changes take effect */ |
| 1368 | ret_val = e1000_phy_reset(hw); |
| 1369 | if(ret_val) { |
| 1370 | DEBUGOUT("Error Resetting the PHY\n"); |
| 1371 | return ret_val; |
| 1372 | } |
| 1373 | |
| 1374 | return E1000_SUCCESS; |
| 1375 | } |
| 1376 | |
| 1377 | /******************************************************************** |
| 1378 | * Setup auto-negotiation and flow control advertisements, |
| 1379 | * and then perform auto-negotiation. |
| 1380 | * |
| 1381 | * hw - Struct containing variables accessed by shared code |
| 1382 | *********************************************************************/ |
| 1383 | static int32_t |
| 1384 | e1000_copper_link_autoneg(struct e1000_hw *hw) |
| 1385 | { |
| 1386 | int32_t ret_val; |
| 1387 | uint16_t phy_data; |
| 1388 | |
| 1389 | DEBUGFUNC("e1000_copper_link_autoneg"); |
| 1390 | |
| 1391 | /* Perform some bounds checking on the hw->autoneg_advertised |
| 1392 | * parameter. If this variable is zero, then set it to the default. |
| 1393 | */ |
| 1394 | hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT; |
| 1395 | |
| 1396 | /* If autoneg_advertised is zero, we assume it was not defaulted |
| 1397 | * by the calling code so we set to advertise full capability. |
| 1398 | */ |
| 1399 | if(hw->autoneg_advertised == 0) |
| 1400 | hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; |
| 1401 | |
| 1402 | DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); |
| 1403 | ret_val = e1000_phy_setup_autoneg(hw); |
| 1404 | if(ret_val) { |
| 1405 | DEBUGOUT("Error Setting up Auto-Negotiation\n"); |
| 1406 | return ret_val; |
| 1407 | } |
| 1408 | DEBUGOUT("Restarting Auto-Neg\n"); |
| 1409 | |
| 1410 | /* Restart auto-negotiation by setting the Auto Neg Enable bit and |
| 1411 | * the Auto Neg Restart bit in the PHY control register. |
| 1412 | */ |
| 1413 | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); |
| 1414 | if(ret_val) |
| 1415 | return ret_val; |
| 1416 | |
| 1417 | phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); |
| 1418 | ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); |
| 1419 | if(ret_val) |
| 1420 | return ret_val; |
| 1421 | |
| 1422 | /* Does the user want to wait for Auto-Neg to complete here, or |
| 1423 | * check at a later time (for example, callback routine). |
| 1424 | */ |
| 1425 | if(hw->wait_autoneg_complete) { |
| 1426 | ret_val = e1000_wait_autoneg(hw); |
| 1427 | if(ret_val) { |
| 1428 | DEBUGOUT("Error while waiting for autoneg to complete\n"); |
| 1429 | return ret_val; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1430 | } |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1431 | } |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1432 | |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1433 | hw->get_link_status = TRUE; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1434 | |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1435 | return E1000_SUCCESS; |
| 1436 | } |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1437 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1438 | |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1439 | /****************************************************************************** |
| 1440 | * Config the MAC and the PHY after link is up. |
| 1441 | * 1) Set up the MAC to the current PHY speed/duplex |
| 1442 | * if we are on 82543. If we |
| 1443 | * are on newer silicon, we only need to configure |
| 1444 | * collision distance in the Transmit Control Register. |
| 1445 | * 2) Set up flow control on the MAC to that established with |
| 1446 | * the link partner. |
| 1447 | * 3) Config DSP to improve Gigabit link quality for some PHY revisions. |
| 1448 | * |
| 1449 | * hw - Struct containing variables accessed by shared code |
| 1450 | ******************************************************************************/ |
| 1451 | static int32_t |
| 1452 | e1000_copper_link_postconfig(struct e1000_hw *hw) |
| 1453 | { |
| 1454 | int32_t ret_val; |
| 1455 | DEBUGFUNC("e1000_copper_link_postconfig"); |
| 1456 | |
| 1457 | if(hw->mac_type >= e1000_82544) { |
| 1458 | e1000_config_collision_dist(hw); |
| 1459 | } else { |
| 1460 | ret_val = e1000_config_mac_to_phy(hw); |
| 1461 | if(ret_val) { |
| 1462 | DEBUGOUT("Error configuring MAC to PHY settings\n"); |
| 1463 | return ret_val; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1464 | } |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1465 | } |
| 1466 | ret_val = e1000_config_fc_after_link_up(hw); |
| 1467 | if(ret_val) { |
| 1468 | DEBUGOUT("Error Configuring Flow Control\n"); |
| 1469 | return ret_val; |
| 1470 | } |
| 1471 | |
| 1472 | /* Config DSP to improve Giga link quality */ |
| 1473 | if(hw->phy_type == e1000_phy_igp) { |
| 1474 | ret_val = e1000_config_dsp_after_link_change(hw, TRUE); |
| 1475 | if(ret_val) { |
| 1476 | DEBUGOUT("Error Configuring DSP after link up\n"); |
| 1477 | return ret_val; |
| 1478 | } |
| 1479 | } |
| 1480 | |
| 1481 | return E1000_SUCCESS; |
| 1482 | } |
| 1483 | |
| 1484 | /****************************************************************************** |
| 1485 | * Detects which PHY is present and setup the speed and duplex |
| 1486 | * |
| 1487 | * hw - Struct containing variables accessed by shared code |
| 1488 | ******************************************************************************/ |
| 1489 | static int32_t |
| 1490 | e1000_setup_copper_link(struct e1000_hw *hw) |
| 1491 | { |
| 1492 | int32_t ret_val; |
| 1493 | uint16_t i; |
| 1494 | uint16_t phy_data; |
| 1495 | |
| 1496 | DEBUGFUNC("e1000_setup_copper_link"); |
| 1497 | |
| 1498 | /* Check if it is a valid PHY and set PHY mode if necessary. */ |
| 1499 | ret_val = e1000_copper_link_preconfig(hw); |
| 1500 | if(ret_val) |
| 1501 | return ret_val; |
| 1502 | |
| 1503 | if (hw->phy_type == e1000_phy_igp || |
| 1504 | hw->phy_type == e1000_phy_igp_2) { |
| 1505 | ret_val = e1000_copper_link_igp_setup(hw); |
| 1506 | if(ret_val) |
| 1507 | return ret_val; |
| 1508 | } else if (hw->phy_type == e1000_phy_m88) { |
| 1509 | ret_val = e1000_copper_link_mgp_setup(hw); |
| 1510 | if(ret_val) |
| 1511 | return ret_val; |
| 1512 | } |
| 1513 | |
| 1514 | if(hw->autoneg) { |
| 1515 | /* Setup autoneg and flow control advertisement |
| 1516 | * and perform autonegotiation */ |
| 1517 | ret_val = e1000_copper_link_autoneg(hw); |
| 1518 | if(ret_val) |
| 1519 | return ret_val; |
| 1520 | } else { |
| 1521 | /* PHY will be set to 10H, 10F, 100H,or 100F |
| 1522 | * depending on value from forced_speed_duplex. */ |
| 1523 | DEBUGOUT("Forcing speed and duplex\n"); |
| 1524 | ret_val = e1000_phy_force_speed_duplex(hw); |
| 1525 | if(ret_val) { |
| 1526 | DEBUGOUT("Error Forcing Speed and Duplex\n"); |
| 1527 | return ret_val; |
| 1528 | } |
| 1529 | } |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1530 | |
| 1531 | /* Check link status. Wait up to 100 microseconds for link to become |
| 1532 | * valid. |
| 1533 | */ |
| 1534 | for(i = 0; i < 10; i++) { |
| 1535 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
| 1536 | if(ret_val) |
| 1537 | return ret_val; |
| 1538 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
| 1539 | if(ret_val) |
| 1540 | return ret_val; |
| 1541 | |
| 1542 | if(phy_data & MII_SR_LINK_STATUS) { |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1543 | /* Config the MAC and PHY after link is up */ |
| 1544 | ret_val = e1000_copper_link_postconfig(hw); |
| 1545 | if(ret_val) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1546 | return ret_val; |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1547 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1548 | DEBUGOUT("Valid link established!!!\n"); |
| 1549 | return E1000_SUCCESS; |
| 1550 | } |
| 1551 | udelay(10); |
| 1552 | } |
| 1553 | |
| 1554 | DEBUGOUT("Unable to establish link!!!\n"); |
| 1555 | return E1000_SUCCESS; |
| 1556 | } |
| 1557 | |
| 1558 | /****************************************************************************** |
| 1559 | * Configures PHY autoneg and flow control advertisement settings |
| 1560 | * |
| 1561 | * hw - Struct containing variables accessed by shared code |
| 1562 | ******************************************************************************/ |
| 1563 | int32_t |
| 1564 | e1000_phy_setup_autoneg(struct e1000_hw *hw) |
| 1565 | { |
| 1566 | int32_t ret_val; |
| 1567 | uint16_t mii_autoneg_adv_reg; |
| 1568 | uint16_t mii_1000t_ctrl_reg; |
| 1569 | |
| 1570 | DEBUGFUNC("e1000_phy_setup_autoneg"); |
| 1571 | |
| 1572 | /* Read the MII Auto-Neg Advertisement Register (Address 4). */ |
| 1573 | ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); |
| 1574 | if(ret_val) |
| 1575 | return ret_val; |
| 1576 | |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1577 | /* Read the MII 1000Base-T Control Register (Address 9). */ |
| 1578 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); |
| 1579 | if(ret_val) |
| 1580 | return ret_val; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1581 | |
| 1582 | /* Need to parse both autoneg_advertised and fc and set up |
| 1583 | * the appropriate PHY registers. First we will parse for |
| 1584 | * autoneg_advertised software override. Since we can advertise |
| 1585 | * a plethora of combinations, we need to check each bit |
| 1586 | * individually. |
| 1587 | */ |
| 1588 | |
| 1589 | /* First we clear all the 10/100 mb speed bits in the Auto-Neg |
| 1590 | * Advertisement Register (Address 4) and the 1000 mb speed bits in |
| 1591 | * the 1000Base-T Control Register (Address 9). |
| 1592 | */ |
| 1593 | mii_autoneg_adv_reg &= ~REG4_SPEED_MASK; |
| 1594 | mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK; |
| 1595 | |
| 1596 | DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised); |
| 1597 | |
| 1598 | /* Do we want to advertise 10 Mb Half Duplex? */ |
| 1599 | if(hw->autoneg_advertised & ADVERTISE_10_HALF) { |
| 1600 | DEBUGOUT("Advertise 10mb Half duplex\n"); |
| 1601 | mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; |
| 1602 | } |
| 1603 | |
| 1604 | /* Do we want to advertise 10 Mb Full Duplex? */ |
| 1605 | if(hw->autoneg_advertised & ADVERTISE_10_FULL) { |
| 1606 | DEBUGOUT("Advertise 10mb Full duplex\n"); |
| 1607 | mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; |
| 1608 | } |
| 1609 | |
| 1610 | /* Do we want to advertise 100 Mb Half Duplex? */ |
| 1611 | if(hw->autoneg_advertised & ADVERTISE_100_HALF) { |
| 1612 | DEBUGOUT("Advertise 100mb Half duplex\n"); |
| 1613 | mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; |
| 1614 | } |
| 1615 | |
| 1616 | /* Do we want to advertise 100 Mb Full Duplex? */ |
| 1617 | if(hw->autoneg_advertised & ADVERTISE_100_FULL) { |
| 1618 | DEBUGOUT("Advertise 100mb Full duplex\n"); |
| 1619 | mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; |
| 1620 | } |
| 1621 | |
| 1622 | /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ |
| 1623 | if(hw->autoneg_advertised & ADVERTISE_1000_HALF) { |
| 1624 | DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n"); |
| 1625 | } |
| 1626 | |
| 1627 | /* Do we want to advertise 1000 Mb Full Duplex? */ |
| 1628 | if(hw->autoneg_advertised & ADVERTISE_1000_FULL) { |
| 1629 | DEBUGOUT("Advertise 1000mb Full duplex\n"); |
| 1630 | mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; |
| 1631 | } |
| 1632 | |
| 1633 | /* Check for a software override of the flow control settings, and |
| 1634 | * setup the PHY advertisement registers accordingly. If |
| 1635 | * auto-negotiation is enabled, then software will have to set the |
| 1636 | * "PAUSE" bits to the correct value in the Auto-Negotiation |
| 1637 | * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation. |
| 1638 | * |
| 1639 | * The possible values of the "fc" parameter are: |
| 1640 | * 0: Flow control is completely disabled |
| 1641 | * 1: Rx flow control is enabled (we can receive pause frames |
| 1642 | * but not send pause frames). |
| 1643 | * 2: Tx flow control is enabled (we can send pause frames |
| 1644 | * but we do not support receiving pause frames). |
| 1645 | * 3: Both Rx and TX flow control (symmetric) are enabled. |
| 1646 | * other: No software override. The flow control configuration |
| 1647 | * in the EEPROM is used. |
| 1648 | */ |
| 1649 | switch (hw->fc) { |
| 1650 | case e1000_fc_none: /* 0 */ |
| 1651 | /* Flow control (RX & TX) is completely disabled by a |
| 1652 | * software over-ride. |
| 1653 | */ |
| 1654 | mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); |
| 1655 | break; |
| 1656 | case e1000_fc_rx_pause: /* 1 */ |
| 1657 | /* RX Flow control is enabled, and TX Flow control is |
| 1658 | * disabled, by a software over-ride. |
| 1659 | */ |
| 1660 | /* Since there really isn't a way to advertise that we are |
| 1661 | * capable of RX Pause ONLY, we will advertise that we |
| 1662 | * support both symmetric and asymmetric RX PAUSE. Later |
| 1663 | * (in e1000_config_fc_after_link_up) we will disable the |
| 1664 | *hw's ability to send PAUSE frames. |
| 1665 | */ |
| 1666 | mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); |
| 1667 | break; |
| 1668 | case e1000_fc_tx_pause: /* 2 */ |
| 1669 | /* TX Flow control is enabled, and RX Flow control is |
| 1670 | * disabled, by a software over-ride. |
| 1671 | */ |
| 1672 | mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; |
| 1673 | mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; |
| 1674 | break; |
| 1675 | case e1000_fc_full: /* 3 */ |
| 1676 | /* Flow control (both RX and TX) is enabled by a software |
| 1677 | * over-ride. |
| 1678 | */ |
| 1679 | mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); |
| 1680 | break; |
| 1681 | default: |
| 1682 | DEBUGOUT("Flow control param set incorrectly\n"); |
| 1683 | return -E1000_ERR_CONFIG; |
| 1684 | } |
| 1685 | |
| 1686 | ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); |
| 1687 | if(ret_val) |
| 1688 | return ret_val; |
| 1689 | |
| 1690 | DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); |
| 1691 | |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1692 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1693 | if(ret_val) |
| 1694 | return ret_val; |
| 1695 | |
| 1696 | return E1000_SUCCESS; |
| 1697 | } |
| 1698 | |
| 1699 | /****************************************************************************** |
| 1700 | * Force PHY speed and duplex settings to hw->forced_speed_duplex |
| 1701 | * |
| 1702 | * hw - Struct containing variables accessed by shared code |
| 1703 | ******************************************************************************/ |
| 1704 | static int32_t |
| 1705 | e1000_phy_force_speed_duplex(struct e1000_hw *hw) |
| 1706 | { |
| 1707 | uint32_t ctrl; |
| 1708 | int32_t ret_val; |
| 1709 | uint16_t mii_ctrl_reg; |
| 1710 | uint16_t mii_status_reg; |
| 1711 | uint16_t phy_data; |
| 1712 | uint16_t i; |
| 1713 | |
| 1714 | DEBUGFUNC("e1000_phy_force_speed_duplex"); |
| 1715 | |
| 1716 | /* Turn off Flow control if we are forcing speed and duplex. */ |
| 1717 | hw->fc = e1000_fc_none; |
| 1718 | |
| 1719 | DEBUGOUT1("hw->fc = %d\n", hw->fc); |
| 1720 | |
| 1721 | /* Read the Device Control Register. */ |
| 1722 | ctrl = E1000_READ_REG(hw, CTRL); |
| 1723 | |
| 1724 | /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */ |
| 1725 | ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
| 1726 | ctrl &= ~(DEVICE_SPEED_MASK); |
| 1727 | |
| 1728 | /* Clear the Auto Speed Detect Enable bit. */ |
| 1729 | ctrl &= ~E1000_CTRL_ASDE; |
| 1730 | |
| 1731 | /* Read the MII Control Register. */ |
| 1732 | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg); |
| 1733 | if(ret_val) |
| 1734 | return ret_val; |
| 1735 | |
| 1736 | /* We need to disable autoneg in order to force link and duplex. */ |
| 1737 | |
| 1738 | mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN; |
| 1739 | |
| 1740 | /* Are we forcing Full or Half Duplex? */ |
| 1741 | if(hw->forced_speed_duplex == e1000_100_full || |
| 1742 | hw->forced_speed_duplex == e1000_10_full) { |
| 1743 | /* We want to force full duplex so we SET the full duplex bits in the |
| 1744 | * Device and MII Control Registers. |
| 1745 | */ |
| 1746 | ctrl |= E1000_CTRL_FD; |
| 1747 | mii_ctrl_reg |= MII_CR_FULL_DUPLEX; |
| 1748 | DEBUGOUT("Full Duplex\n"); |
| 1749 | } else { |
| 1750 | /* We want to force half duplex so we CLEAR the full duplex bits in |
| 1751 | * the Device and MII Control Registers. |
| 1752 | */ |
| 1753 | ctrl &= ~E1000_CTRL_FD; |
| 1754 | mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX; |
| 1755 | DEBUGOUT("Half Duplex\n"); |
| 1756 | } |
| 1757 | |
| 1758 | /* Are we forcing 100Mbps??? */ |
| 1759 | if(hw->forced_speed_duplex == e1000_100_full || |
| 1760 | hw->forced_speed_duplex == e1000_100_half) { |
| 1761 | /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */ |
| 1762 | ctrl |= E1000_CTRL_SPD_100; |
| 1763 | mii_ctrl_reg |= MII_CR_SPEED_100; |
| 1764 | mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10); |
| 1765 | DEBUGOUT("Forcing 100mb "); |
| 1766 | } else { |
| 1767 | /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */ |
| 1768 | ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); |
| 1769 | mii_ctrl_reg |= MII_CR_SPEED_10; |
| 1770 | mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); |
| 1771 | DEBUGOUT("Forcing 10mb "); |
| 1772 | } |
| 1773 | |
| 1774 | e1000_config_collision_dist(hw); |
| 1775 | |
| 1776 | /* Write the configured values back to the Device Control Reg. */ |
| 1777 | E1000_WRITE_REG(hw, CTRL, ctrl); |
| 1778 | |
| 1779 | if (hw->phy_type == e1000_phy_m88) { |
| 1780 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
| 1781 | if(ret_val) |
| 1782 | return ret_val; |
| 1783 | |
| 1784 | /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI |
| 1785 | * forced whenever speed are duplex are forced. |
| 1786 | */ |
| 1787 | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; |
| 1788 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); |
| 1789 | if(ret_val) |
| 1790 | return ret_val; |
| 1791 | |
| 1792 | DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data); |
| 1793 | |
| 1794 | /* Need to reset the PHY or these changes will be ignored */ |
| 1795 | mii_ctrl_reg |= MII_CR_RESET; |
| 1796 | } else { |
| 1797 | /* Clear Auto-Crossover to force MDI manually. IGP requires MDI |
| 1798 | * forced whenever speed or duplex are forced. |
| 1799 | */ |
| 1800 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); |
| 1801 | if(ret_val) |
| 1802 | return ret_val; |
| 1803 | |
| 1804 | phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; |
| 1805 | phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; |
| 1806 | |
| 1807 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); |
| 1808 | if(ret_val) |
| 1809 | return ret_val; |
| 1810 | } |
| 1811 | |
| 1812 | /* Write back the modified PHY MII control register. */ |
| 1813 | ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg); |
| 1814 | if(ret_val) |
| 1815 | return ret_val; |
| 1816 | |
| 1817 | udelay(1); |
| 1818 | |
| 1819 | /* The wait_autoneg_complete flag may be a little misleading here. |
| 1820 | * Since we are forcing speed and duplex, Auto-Neg is not enabled. |
| 1821 | * But we do want to delay for a period while forcing only so we |
| 1822 | * don't generate false No Link messages. So we will wait here |
| 1823 | * only if the user has set wait_autoneg_complete to 1, which is |
| 1824 | * the default. |
| 1825 | */ |
| 1826 | if(hw->wait_autoneg_complete) { |
| 1827 | /* We will wait for autoneg to complete. */ |
| 1828 | DEBUGOUT("Waiting for forced speed/duplex link.\n"); |
| 1829 | mii_status_reg = 0; |
| 1830 | |
| 1831 | /* We will wait for autoneg to complete or 4.5 seconds to expire. */ |
| 1832 | for(i = PHY_FORCE_TIME; i > 0; i--) { |
| 1833 | /* Read the MII Status Register and wait for Auto-Neg Complete bit |
| 1834 | * to be set. |
| 1835 | */ |
| 1836 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
| 1837 | if(ret_val) |
| 1838 | return ret_val; |
| 1839 | |
| 1840 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
| 1841 | if(ret_val) |
| 1842 | return ret_val; |
| 1843 | |
| 1844 | if(mii_status_reg & MII_SR_LINK_STATUS) break; |
| 1845 | msec_delay(100); |
| 1846 | } |
| 1847 | if((i == 0) && |
| 1848 | (hw->phy_type == e1000_phy_m88)) { |
| 1849 | /* We didn't get link. Reset the DSP and wait again for link. */ |
| 1850 | ret_val = e1000_phy_reset_dsp(hw); |
| 1851 | if(ret_val) { |
| 1852 | DEBUGOUT("Error Resetting PHY DSP\n"); |
| 1853 | return ret_val; |
| 1854 | } |
| 1855 | } |
| 1856 | /* This loop will early-out if the link condition has been met. */ |
| 1857 | for(i = PHY_FORCE_TIME; i > 0; i--) { |
| 1858 | if(mii_status_reg & MII_SR_LINK_STATUS) break; |
| 1859 | msec_delay(100); |
| 1860 | /* Read the MII Status Register and wait for Auto-Neg Complete bit |
| 1861 | * to be set. |
| 1862 | */ |
| 1863 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
| 1864 | if(ret_val) |
| 1865 | return ret_val; |
| 1866 | |
| 1867 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
| 1868 | if(ret_val) |
| 1869 | return ret_val; |
| 1870 | } |
| 1871 | } |
| 1872 | |
| 1873 | if (hw->phy_type == e1000_phy_m88) { |
| 1874 | /* Because we reset the PHY above, we need to re-force TX_CLK in the |
| 1875 | * Extended PHY Specific Control Register to 25MHz clock. This value |
| 1876 | * defaults back to a 2.5MHz clock when the PHY is reset. |
| 1877 | */ |
| 1878 | ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); |
| 1879 | if(ret_val) |
| 1880 | return ret_val; |
| 1881 | |
| 1882 | phy_data |= M88E1000_EPSCR_TX_CLK_25; |
| 1883 | ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); |
| 1884 | if(ret_val) |
| 1885 | return ret_val; |
| 1886 | |
| 1887 | /* In addition, because of the s/w reset above, we need to enable CRS on |
| 1888 | * TX. This must be set for both full and half duplex operation. |
| 1889 | */ |
| 1890 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
| 1891 | if(ret_val) |
| 1892 | return ret_val; |
| 1893 | |
| 1894 | phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; |
| 1895 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); |
| 1896 | if(ret_val) |
| 1897 | return ret_val; |
| 1898 | |
| 1899 | if((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) && |
| 1900 | (!hw->autoneg) && |
| 1901 | (hw->forced_speed_duplex == e1000_10_full || |
| 1902 | hw->forced_speed_duplex == e1000_10_half)) { |
| 1903 | ret_val = e1000_polarity_reversal_workaround(hw); |
| 1904 | if(ret_val) |
| 1905 | return ret_val; |
| 1906 | } |
| 1907 | } |
| 1908 | return E1000_SUCCESS; |
| 1909 | } |
| 1910 | |
| 1911 | /****************************************************************************** |
| 1912 | * Sets the collision distance in the Transmit Control register |
| 1913 | * |
| 1914 | * hw - Struct containing variables accessed by shared code |
| 1915 | * |
| 1916 | * Link should have been established previously. Reads the speed and duplex |
| 1917 | * information from the Device Status register. |
| 1918 | ******************************************************************************/ |
| 1919 | void |
| 1920 | e1000_config_collision_dist(struct e1000_hw *hw) |
| 1921 | { |
| 1922 | uint32_t tctl; |
| 1923 | |
| 1924 | DEBUGFUNC("e1000_config_collision_dist"); |
| 1925 | |
| 1926 | tctl = E1000_READ_REG(hw, TCTL); |
| 1927 | |
| 1928 | tctl &= ~E1000_TCTL_COLD; |
| 1929 | tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; |
| 1930 | |
| 1931 | E1000_WRITE_REG(hw, TCTL, tctl); |
| 1932 | E1000_WRITE_FLUSH(hw); |
| 1933 | } |
| 1934 | |
| 1935 | /****************************************************************************** |
| 1936 | * Sets MAC speed and duplex settings to reflect the those in the PHY |
| 1937 | * |
| 1938 | * hw - Struct containing variables accessed by shared code |
| 1939 | * mii_reg - data to write to the MII control register |
| 1940 | * |
| 1941 | * The contents of the PHY register containing the needed information need to |
| 1942 | * be passed in. |
| 1943 | ******************************************************************************/ |
| 1944 | static int32_t |
| 1945 | e1000_config_mac_to_phy(struct e1000_hw *hw) |
| 1946 | { |
| 1947 | uint32_t ctrl; |
| 1948 | int32_t ret_val; |
| 1949 | uint16_t phy_data; |
| 1950 | |
| 1951 | DEBUGFUNC("e1000_config_mac_to_phy"); |
| 1952 | |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1953 | /* 82544 or newer MAC, Auto Speed Detection takes care of |
| 1954 | * MAC speed/duplex configuration.*/ |
| 1955 | if (hw->mac_type >= e1000_82544) |
| 1956 | return E1000_SUCCESS; |
| 1957 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1958 | /* Read the Device Control Register and set the bits to Force Speed |
| 1959 | * and Duplex. |
| 1960 | */ |
| 1961 | ctrl = E1000_READ_REG(hw, CTRL); |
| 1962 | ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
| 1963 | ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS); |
| 1964 | |
| 1965 | /* Set up duplex in the Device Control and Transmit Control |
| 1966 | * registers depending on negotiated values. |
| 1967 | */ |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1968 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); |
| 1969 | if(ret_val) |
| 1970 | return ret_val; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1971 | |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1972 | if(phy_data & M88E1000_PSSR_DPLX) |
| 1973 | ctrl |= E1000_CTRL_FD; |
| 1974 | else |
| 1975 | ctrl &= ~E1000_CTRL_FD; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1976 | |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1977 | e1000_config_collision_dist(hw); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1978 | |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1979 | /* Set up speed in the Device Control register depending on |
| 1980 | * negotiated values. |
| 1981 | */ |
| 1982 | if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) |
| 1983 | ctrl |= E1000_CTRL_SPD_1000; |
| 1984 | else if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS) |
| 1985 | ctrl |= E1000_CTRL_SPD_100; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1986 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1987 | /* Write the configured values back to the Device Control Reg. */ |
| 1988 | E1000_WRITE_REG(hw, CTRL, ctrl); |
| 1989 | return E1000_SUCCESS; |
| 1990 | } |
| 1991 | |
| 1992 | /****************************************************************************** |
| 1993 | * Forces the MAC's flow control settings. |
| 1994 | * |
| 1995 | * hw - Struct containing variables accessed by shared code |
| 1996 | * |
| 1997 | * Sets the TFCE and RFCE bits in the device control register to reflect |
| 1998 | * the adapter settings. TFCE and RFCE need to be explicitly set by |
| 1999 | * software when a Copper PHY is used because autonegotiation is managed |
| 2000 | * by the PHY rather than the MAC. Software must also configure these |
| 2001 | * bits when link is forced on a fiber connection. |
| 2002 | *****************************************************************************/ |
| 2003 | int32_t |
| 2004 | e1000_force_mac_fc(struct e1000_hw *hw) |
| 2005 | { |
| 2006 | uint32_t ctrl; |
| 2007 | |
| 2008 | DEBUGFUNC("e1000_force_mac_fc"); |
| 2009 | |
| 2010 | /* Get the current configuration of the Device Control Register */ |
| 2011 | ctrl = E1000_READ_REG(hw, CTRL); |
| 2012 | |
| 2013 | /* Because we didn't get link via the internal auto-negotiation |
| 2014 | * mechanism (we either forced link or we got link via PHY |
| 2015 | * auto-neg), we have to manually enable/disable transmit an |
| 2016 | * receive flow control. |
| 2017 | * |
| 2018 | * The "Case" statement below enables/disable flow control |
| 2019 | * according to the "hw->fc" parameter. |
| 2020 | * |
| 2021 | * The possible values of the "fc" parameter are: |
| 2022 | * 0: Flow control is completely disabled |
| 2023 | * 1: Rx flow control is enabled (we can receive pause |
| 2024 | * frames but not send pause frames). |
| 2025 | * 2: Tx flow control is enabled (we can send pause frames |
| 2026 | * frames but we do not receive pause frames). |
| 2027 | * 3: Both Rx and TX flow control (symmetric) is enabled. |
| 2028 | * other: No other values should be possible at this point. |
| 2029 | */ |
| 2030 | |
| 2031 | switch (hw->fc) { |
| 2032 | case e1000_fc_none: |
| 2033 | ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); |
| 2034 | break; |
| 2035 | case e1000_fc_rx_pause: |
| 2036 | ctrl &= (~E1000_CTRL_TFCE); |
| 2037 | ctrl |= E1000_CTRL_RFCE; |
| 2038 | break; |
| 2039 | case e1000_fc_tx_pause: |
| 2040 | ctrl &= (~E1000_CTRL_RFCE); |
| 2041 | ctrl |= E1000_CTRL_TFCE; |
| 2042 | break; |
| 2043 | case e1000_fc_full: |
| 2044 | ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); |
| 2045 | break; |
| 2046 | default: |
| 2047 | DEBUGOUT("Flow control param set incorrectly\n"); |
| 2048 | return -E1000_ERR_CONFIG; |
| 2049 | } |
| 2050 | |
| 2051 | /* Disable TX Flow Control for 82542 (rev 2.0) */ |
| 2052 | if(hw->mac_type == e1000_82542_rev2_0) |
| 2053 | ctrl &= (~E1000_CTRL_TFCE); |
| 2054 | |
| 2055 | E1000_WRITE_REG(hw, CTRL, ctrl); |
| 2056 | return E1000_SUCCESS; |
| 2057 | } |
| 2058 | |
| 2059 | /****************************************************************************** |
| 2060 | * Configures flow control settings after link is established |
| 2061 | * |
| 2062 | * hw - Struct containing variables accessed by shared code |
| 2063 | * |
| 2064 | * Should be called immediately after a valid link has been established. |
| 2065 | * Forces MAC flow control settings if link was forced. When in MII/GMII mode |
| 2066 | * and autonegotiation is enabled, the MAC flow control settings will be set |
| 2067 | * based on the flow control negotiated by the PHY. In TBI mode, the TFCE |
| 2068 | * and RFCE bits will be automaticaly set to the negotiated flow control mode. |
| 2069 | *****************************************************************************/ |
Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame^] | 2070 | static int32_t |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2071 | e1000_config_fc_after_link_up(struct e1000_hw *hw) |
| 2072 | { |
| 2073 | int32_t ret_val; |
| 2074 | uint16_t mii_status_reg; |
| 2075 | uint16_t mii_nway_adv_reg; |
| 2076 | uint16_t mii_nway_lp_ability_reg; |
| 2077 | uint16_t speed; |
| 2078 | uint16_t duplex; |
| 2079 | |
| 2080 | DEBUGFUNC("e1000_config_fc_after_link_up"); |
| 2081 | |
| 2082 | /* Check for the case where we have fiber media and auto-neg failed |
| 2083 | * so we had to force link. In this case, we need to force the |
| 2084 | * configuration of the MAC to match the "fc" parameter. |
| 2085 | */ |
| 2086 | if(((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) || |
| 2087 | ((hw->media_type == e1000_media_type_internal_serdes) && (hw->autoneg_failed)) || |
| 2088 | ((hw->media_type == e1000_media_type_copper) && (!hw->autoneg))) { |
| 2089 | ret_val = e1000_force_mac_fc(hw); |
| 2090 | if(ret_val) { |
| 2091 | DEBUGOUT("Error forcing flow control settings\n"); |
| 2092 | return ret_val; |
| 2093 | } |
| 2094 | } |
| 2095 | |
| 2096 | /* Check for the case where we have copper media and auto-neg is |
| 2097 | * enabled. In this case, we need to check and see if Auto-Neg |
| 2098 | * has completed, and if so, how the PHY and link partner has |
| 2099 | * flow control configured. |
| 2100 | */ |
| 2101 | if((hw->media_type == e1000_media_type_copper) && hw->autoneg) { |
| 2102 | /* Read the MII Status Register and check to see if AutoNeg |
| 2103 | * has completed. We read this twice because this reg has |
| 2104 | * some "sticky" (latched) bits. |
| 2105 | */ |
| 2106 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
| 2107 | if(ret_val) |
| 2108 | return ret_val; |
| 2109 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
| 2110 | if(ret_val) |
| 2111 | return ret_val; |
| 2112 | |
| 2113 | if(mii_status_reg & MII_SR_AUTONEG_COMPLETE) { |
| 2114 | /* The AutoNeg process has completed, so we now need to |
| 2115 | * read both the Auto Negotiation Advertisement Register |
| 2116 | * (Address 4) and the Auto_Negotiation Base Page Ability |
| 2117 | * Register (Address 5) to determine how flow control was |
| 2118 | * negotiated. |
| 2119 | */ |
| 2120 | ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, |
| 2121 | &mii_nway_adv_reg); |
| 2122 | if(ret_val) |
| 2123 | return ret_val; |
| 2124 | ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, |
| 2125 | &mii_nway_lp_ability_reg); |
| 2126 | if(ret_val) |
| 2127 | return ret_val; |
| 2128 | |
| 2129 | /* Two bits in the Auto Negotiation Advertisement Register |
| 2130 | * (Address 4) and two bits in the Auto Negotiation Base |
| 2131 | * Page Ability Register (Address 5) determine flow control |
| 2132 | * for both the PHY and the link partner. The following |
| 2133 | * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, |
| 2134 | * 1999, describes these PAUSE resolution bits and how flow |
| 2135 | * control is determined based upon these settings. |
| 2136 | * NOTE: DC = Don't Care |
| 2137 | * |
| 2138 | * LOCAL DEVICE | LINK PARTNER |
| 2139 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution |
| 2140 | *-------|---------|-------|---------|-------------------- |
| 2141 | * 0 | 0 | DC | DC | e1000_fc_none |
| 2142 | * 0 | 1 | 0 | DC | e1000_fc_none |
| 2143 | * 0 | 1 | 1 | 0 | e1000_fc_none |
| 2144 | * 0 | 1 | 1 | 1 | e1000_fc_tx_pause |
| 2145 | * 1 | 0 | 0 | DC | e1000_fc_none |
| 2146 | * 1 | DC | 1 | DC | e1000_fc_full |
| 2147 | * 1 | 1 | 0 | 0 | e1000_fc_none |
| 2148 | * 1 | 1 | 0 | 1 | e1000_fc_rx_pause |
| 2149 | * |
| 2150 | */ |
| 2151 | /* Are both PAUSE bits set to 1? If so, this implies |
| 2152 | * Symmetric Flow Control is enabled at both ends. The |
| 2153 | * ASM_DIR bits are irrelevant per the spec. |
| 2154 | * |
| 2155 | * For Symmetric Flow Control: |
| 2156 | * |
| 2157 | * LOCAL DEVICE | LINK PARTNER |
| 2158 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result |
| 2159 | *-------|---------|-------|---------|-------------------- |
| 2160 | * 1 | DC | 1 | DC | e1000_fc_full |
| 2161 | * |
| 2162 | */ |
| 2163 | if((mii_nway_adv_reg & NWAY_AR_PAUSE) && |
| 2164 | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { |
| 2165 | /* Now we need to check if the user selected RX ONLY |
| 2166 | * of pause frames. In this case, we had to advertise |
| 2167 | * FULL flow control because we could not advertise RX |
| 2168 | * ONLY. Hence, we must now check to see if we need to |
| 2169 | * turn OFF the TRANSMISSION of PAUSE frames. |
| 2170 | */ |
| 2171 | if(hw->original_fc == e1000_fc_full) { |
| 2172 | hw->fc = e1000_fc_full; |
| 2173 | DEBUGOUT("Flow Control = FULL.\r\n"); |
| 2174 | } else { |
| 2175 | hw->fc = e1000_fc_rx_pause; |
| 2176 | DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n"); |
| 2177 | } |
| 2178 | } |
| 2179 | /* For receiving PAUSE frames ONLY. |
| 2180 | * |
| 2181 | * LOCAL DEVICE | LINK PARTNER |
| 2182 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result |
| 2183 | *-------|---------|-------|---------|-------------------- |
| 2184 | * 0 | 1 | 1 | 1 | e1000_fc_tx_pause |
| 2185 | * |
| 2186 | */ |
| 2187 | else if(!(mii_nway_adv_reg & NWAY_AR_PAUSE) && |
| 2188 | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && |
| 2189 | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && |
| 2190 | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { |
| 2191 | hw->fc = e1000_fc_tx_pause; |
| 2192 | DEBUGOUT("Flow Control = TX PAUSE frames only.\r\n"); |
| 2193 | } |
| 2194 | /* For transmitting PAUSE frames ONLY. |
| 2195 | * |
| 2196 | * LOCAL DEVICE | LINK PARTNER |
| 2197 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result |
| 2198 | *-------|---------|-------|---------|-------------------- |
| 2199 | * 1 | 1 | 0 | 1 | e1000_fc_rx_pause |
| 2200 | * |
| 2201 | */ |
| 2202 | else if((mii_nway_adv_reg & NWAY_AR_PAUSE) && |
| 2203 | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && |
| 2204 | !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && |
| 2205 | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { |
| 2206 | hw->fc = e1000_fc_rx_pause; |
| 2207 | DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n"); |
| 2208 | } |
| 2209 | /* Per the IEEE spec, at this point flow control should be |
| 2210 | * disabled. However, we want to consider that we could |
| 2211 | * be connected to a legacy switch that doesn't advertise |
| 2212 | * desired flow control, but can be forced on the link |
| 2213 | * partner. So if we advertised no flow control, that is |
| 2214 | * what we will resolve to. If we advertised some kind of |
| 2215 | * receive capability (Rx Pause Only or Full Flow Control) |
| 2216 | * and the link partner advertised none, we will configure |
| 2217 | * ourselves to enable Rx Flow Control only. We can do |
| 2218 | * this safely for two reasons: If the link partner really |
| 2219 | * didn't want flow control enabled, and we enable Rx, no |
| 2220 | * harm done since we won't be receiving any PAUSE frames |
| 2221 | * anyway. If the intent on the link partner was to have |
| 2222 | * flow control enabled, then by us enabling RX only, we |
| 2223 | * can at least receive pause frames and process them. |
| 2224 | * This is a good idea because in most cases, since we are |
| 2225 | * predominantly a server NIC, more times than not we will |
| 2226 | * be asked to delay transmission of packets than asking |
| 2227 | * our link partner to pause transmission of frames. |
| 2228 | */ |
| 2229 | else if((hw->original_fc == e1000_fc_none || |
| 2230 | hw->original_fc == e1000_fc_tx_pause) || |
| 2231 | hw->fc_strict_ieee) { |
| 2232 | hw->fc = e1000_fc_none; |
| 2233 | DEBUGOUT("Flow Control = NONE.\r\n"); |
| 2234 | } else { |
| 2235 | hw->fc = e1000_fc_rx_pause; |
| 2236 | DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n"); |
| 2237 | } |
| 2238 | |
| 2239 | /* Now we need to do one last check... If we auto- |
| 2240 | * negotiated to HALF DUPLEX, flow control should not be |
| 2241 | * enabled per IEEE 802.3 spec. |
| 2242 | */ |
| 2243 | ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex); |
| 2244 | if(ret_val) { |
| 2245 | DEBUGOUT("Error getting link speed and duplex\n"); |
| 2246 | return ret_val; |
| 2247 | } |
| 2248 | |
| 2249 | if(duplex == HALF_DUPLEX) |
| 2250 | hw->fc = e1000_fc_none; |
| 2251 | |
| 2252 | /* Now we call a subroutine to actually force the MAC |
| 2253 | * controller to use the correct flow control settings. |
| 2254 | */ |
| 2255 | ret_val = e1000_force_mac_fc(hw); |
| 2256 | if(ret_val) { |
| 2257 | DEBUGOUT("Error forcing flow control settings\n"); |
| 2258 | return ret_val; |
| 2259 | } |
| 2260 | } else { |
| 2261 | DEBUGOUT("Copper PHY and Auto Neg has not completed.\r\n"); |
| 2262 | } |
| 2263 | } |
| 2264 | return E1000_SUCCESS; |
| 2265 | } |
| 2266 | |
| 2267 | /****************************************************************************** |
| 2268 | * Checks to see if the link status of the hardware has changed. |
| 2269 | * |
| 2270 | * hw - Struct containing variables accessed by shared code |
| 2271 | * |
| 2272 | * Called by any function that needs to check the link status of the adapter. |
| 2273 | *****************************************************************************/ |
| 2274 | int32_t |
| 2275 | e1000_check_for_link(struct e1000_hw *hw) |
| 2276 | { |
| 2277 | uint32_t rxcw = 0; |
| 2278 | uint32_t ctrl; |
| 2279 | uint32_t status; |
| 2280 | uint32_t rctl; |
| 2281 | uint32_t icr; |
| 2282 | uint32_t signal = 0; |
| 2283 | int32_t ret_val; |
| 2284 | uint16_t phy_data; |
| 2285 | |
| 2286 | DEBUGFUNC("e1000_check_for_link"); |
| 2287 | |
| 2288 | ctrl = E1000_READ_REG(hw, CTRL); |
| 2289 | status = E1000_READ_REG(hw, STATUS); |
| 2290 | |
| 2291 | /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be |
| 2292 | * set when the optics detect a signal. On older adapters, it will be |
| 2293 | * cleared when there is a signal. This applies to fiber media only. |
| 2294 | */ |
| 2295 | if((hw->media_type == e1000_media_type_fiber) || |
| 2296 | (hw->media_type == e1000_media_type_internal_serdes)) { |
| 2297 | rxcw = E1000_READ_REG(hw, RXCW); |
| 2298 | |
| 2299 | if(hw->media_type == e1000_media_type_fiber) { |
| 2300 | signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; |
| 2301 | if(status & E1000_STATUS_LU) |
| 2302 | hw->get_link_status = FALSE; |
| 2303 | } |
| 2304 | } |
| 2305 | |
| 2306 | /* If we have a copper PHY then we only want to go out to the PHY |
| 2307 | * registers to see if Auto-Neg has completed and/or if our link |
| 2308 | * status has changed. The get_link_status flag will be set if we |
| 2309 | * receive a Link Status Change interrupt or we have Rx Sequence |
| 2310 | * Errors. |
| 2311 | */ |
| 2312 | if((hw->media_type == e1000_media_type_copper) && hw->get_link_status) { |
| 2313 | /* First we want to see if the MII Status Register reports |
| 2314 | * link. If so, then we want to get the current speed/duplex |
| 2315 | * of the PHY. |
| 2316 | * Read the register twice since the link bit is sticky. |
| 2317 | */ |
| 2318 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
| 2319 | if(ret_val) |
| 2320 | return ret_val; |
| 2321 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
| 2322 | if(ret_val) |
| 2323 | return ret_val; |
| 2324 | |
| 2325 | if(phy_data & MII_SR_LINK_STATUS) { |
| 2326 | hw->get_link_status = FALSE; |
| 2327 | /* Check if there was DownShift, must be checked immediately after |
| 2328 | * link-up */ |
| 2329 | e1000_check_downshift(hw); |
| 2330 | |
| 2331 | /* If we are on 82544 or 82543 silicon and speed/duplex |
| 2332 | * are forced to 10H or 10F, then we will implement the polarity |
| 2333 | * reversal workaround. We disable interrupts first, and upon |
| 2334 | * returning, place the devices interrupt state to its previous |
| 2335 | * value except for the link status change interrupt which will |
| 2336 | * happen due to the execution of this workaround. |
| 2337 | */ |
| 2338 | |
| 2339 | if((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) && |
| 2340 | (!hw->autoneg) && |
| 2341 | (hw->forced_speed_duplex == e1000_10_full || |
| 2342 | hw->forced_speed_duplex == e1000_10_half)) { |
| 2343 | E1000_WRITE_REG(hw, IMC, 0xffffffff); |
| 2344 | ret_val = e1000_polarity_reversal_workaround(hw); |
| 2345 | icr = E1000_READ_REG(hw, ICR); |
| 2346 | E1000_WRITE_REG(hw, ICS, (icr & ~E1000_ICS_LSC)); |
| 2347 | E1000_WRITE_REG(hw, IMS, IMS_ENABLE_MASK); |
| 2348 | } |
| 2349 | |
| 2350 | } else { |
| 2351 | /* No link detected */ |
| 2352 | e1000_config_dsp_after_link_change(hw, FALSE); |
| 2353 | return 0; |
| 2354 | } |
| 2355 | |
| 2356 | /* If we are forcing speed/duplex, then we simply return since |
| 2357 | * we have already determined whether we have link or not. |
| 2358 | */ |
| 2359 | if(!hw->autoneg) return -E1000_ERR_CONFIG; |
| 2360 | |
| 2361 | /* optimize the dsp settings for the igp phy */ |
| 2362 | e1000_config_dsp_after_link_change(hw, TRUE); |
| 2363 | |
| 2364 | /* We have a M88E1000 PHY and Auto-Neg is enabled. If we |
| 2365 | * have Si on board that is 82544 or newer, Auto |
| 2366 | * Speed Detection takes care of MAC speed/duplex |
| 2367 | * configuration. So we only need to configure Collision |
| 2368 | * Distance in the MAC. Otherwise, we need to force |
| 2369 | * speed/duplex on the MAC to the current PHY speed/duplex |
| 2370 | * settings. |
| 2371 | */ |
| 2372 | if(hw->mac_type >= e1000_82544) |
| 2373 | e1000_config_collision_dist(hw); |
| 2374 | else { |
| 2375 | ret_val = e1000_config_mac_to_phy(hw); |
| 2376 | if(ret_val) { |
| 2377 | DEBUGOUT("Error configuring MAC to PHY settings\n"); |
| 2378 | return ret_val; |
| 2379 | } |
| 2380 | } |
| 2381 | |
| 2382 | /* Configure Flow Control now that Auto-Neg has completed. First, we |
| 2383 | * need to restore the desired flow control settings because we may |
| 2384 | * have had to re-autoneg with a different link partner. |
| 2385 | */ |
| 2386 | ret_val = e1000_config_fc_after_link_up(hw); |
| 2387 | if(ret_val) { |
| 2388 | DEBUGOUT("Error configuring flow control\n"); |
| 2389 | return ret_val; |
| 2390 | } |
| 2391 | |
| 2392 | /* At this point we know that we are on copper and we have |
| 2393 | * auto-negotiated link. These are conditions for checking the link |
| 2394 | * partner capability register. We use the link speed to determine if |
| 2395 | * TBI compatibility needs to be turned on or off. If the link is not |
| 2396 | * at gigabit speed, then TBI compatibility is not needed. If we are |
| 2397 | * at gigabit speed, we turn on TBI compatibility. |
| 2398 | */ |
| 2399 | if(hw->tbi_compatibility_en) { |
| 2400 | uint16_t speed, duplex; |
| 2401 | e1000_get_speed_and_duplex(hw, &speed, &duplex); |
| 2402 | if(speed != SPEED_1000) { |
| 2403 | /* If link speed is not set to gigabit speed, we do not need |
| 2404 | * to enable TBI compatibility. |
| 2405 | */ |
| 2406 | if(hw->tbi_compatibility_on) { |
| 2407 | /* If we previously were in the mode, turn it off. */ |
| 2408 | rctl = E1000_READ_REG(hw, RCTL); |
| 2409 | rctl &= ~E1000_RCTL_SBP; |
| 2410 | E1000_WRITE_REG(hw, RCTL, rctl); |
| 2411 | hw->tbi_compatibility_on = FALSE; |
| 2412 | } |
| 2413 | } else { |
| 2414 | /* If TBI compatibility is was previously off, turn it on. For |
| 2415 | * compatibility with a TBI link partner, we will store bad |
| 2416 | * packets. Some frames have an additional byte on the end and |
| 2417 | * will look like CRC errors to to the hardware. |
| 2418 | */ |
| 2419 | if(!hw->tbi_compatibility_on) { |
| 2420 | hw->tbi_compatibility_on = TRUE; |
| 2421 | rctl = E1000_READ_REG(hw, RCTL); |
| 2422 | rctl |= E1000_RCTL_SBP; |
| 2423 | E1000_WRITE_REG(hw, RCTL, rctl); |
| 2424 | } |
| 2425 | } |
| 2426 | } |
| 2427 | } |
| 2428 | /* If we don't have link (auto-negotiation failed or link partner cannot |
| 2429 | * auto-negotiate), the cable is plugged in (we have signal), and our |
| 2430 | * link partner is not trying to auto-negotiate with us (we are receiving |
| 2431 | * idles or data), we need to force link up. We also need to give |
| 2432 | * auto-negotiation time to complete, in case the cable was just plugged |
| 2433 | * in. The autoneg_failed flag does this. |
| 2434 | */ |
| 2435 | else if((((hw->media_type == e1000_media_type_fiber) && |
| 2436 | ((ctrl & E1000_CTRL_SWDPIN1) == signal)) || |
| 2437 | (hw->media_type == e1000_media_type_internal_serdes)) && |
| 2438 | (!(status & E1000_STATUS_LU)) && |
| 2439 | (!(rxcw & E1000_RXCW_C))) { |
| 2440 | if(hw->autoneg_failed == 0) { |
| 2441 | hw->autoneg_failed = 1; |
| 2442 | return 0; |
| 2443 | } |
| 2444 | DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n"); |
| 2445 | |
| 2446 | /* Disable auto-negotiation in the TXCW register */ |
| 2447 | E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE)); |
| 2448 | |
| 2449 | /* Force link-up and also force full-duplex. */ |
| 2450 | ctrl = E1000_READ_REG(hw, CTRL); |
| 2451 | ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); |
| 2452 | E1000_WRITE_REG(hw, CTRL, ctrl); |
| 2453 | |
| 2454 | /* Configure Flow Control after forcing link up. */ |
| 2455 | ret_val = e1000_config_fc_after_link_up(hw); |
| 2456 | if(ret_val) { |
| 2457 | DEBUGOUT("Error configuring flow control\n"); |
| 2458 | return ret_val; |
| 2459 | } |
| 2460 | } |
| 2461 | /* If we are forcing link and we are receiving /C/ ordered sets, re-enable |
| 2462 | * auto-negotiation in the TXCW register and disable forced link in the |
| 2463 | * Device Control register in an attempt to auto-negotiate with our link |
| 2464 | * partner. |
| 2465 | */ |
| 2466 | else if(((hw->media_type == e1000_media_type_fiber) || |
| 2467 | (hw->media_type == e1000_media_type_internal_serdes)) && |
| 2468 | (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { |
| 2469 | DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\r\n"); |
| 2470 | E1000_WRITE_REG(hw, TXCW, hw->txcw); |
| 2471 | E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU)); |
| 2472 | |
| 2473 | hw->serdes_link_down = FALSE; |
| 2474 | } |
| 2475 | /* If we force link for non-auto-negotiation switch, check link status |
| 2476 | * based on MAC synchronization for internal serdes media type. |
| 2477 | */ |
| 2478 | else if((hw->media_type == e1000_media_type_internal_serdes) && |
| 2479 | !(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) { |
| 2480 | /* SYNCH bit and IV bit are sticky. */ |
| 2481 | udelay(10); |
| 2482 | if(E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) { |
| 2483 | if(!(rxcw & E1000_RXCW_IV)) { |
| 2484 | hw->serdes_link_down = FALSE; |
| 2485 | DEBUGOUT("SERDES: Link is up.\n"); |
| 2486 | } |
| 2487 | } else { |
| 2488 | hw->serdes_link_down = TRUE; |
| 2489 | DEBUGOUT("SERDES: Link is down.\n"); |
| 2490 | } |
| 2491 | } |
| 2492 | if((hw->media_type == e1000_media_type_internal_serdes) && |
| 2493 | (E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) { |
| 2494 | hw->serdes_link_down = !(E1000_STATUS_LU & E1000_READ_REG(hw, STATUS)); |
| 2495 | } |
| 2496 | return E1000_SUCCESS; |
| 2497 | } |
| 2498 | |
| 2499 | /****************************************************************************** |
| 2500 | * Detects the current speed and duplex settings of the hardware. |
| 2501 | * |
| 2502 | * hw - Struct containing variables accessed by shared code |
| 2503 | * speed - Speed of the connection |
| 2504 | * duplex - Duplex setting of the connection |
| 2505 | *****************************************************************************/ |
| 2506 | int32_t |
| 2507 | e1000_get_speed_and_duplex(struct e1000_hw *hw, |
| 2508 | uint16_t *speed, |
| 2509 | uint16_t *duplex) |
| 2510 | { |
| 2511 | uint32_t status; |
| 2512 | int32_t ret_val; |
| 2513 | uint16_t phy_data; |
| 2514 | |
| 2515 | DEBUGFUNC("e1000_get_speed_and_duplex"); |
| 2516 | |
| 2517 | if(hw->mac_type >= e1000_82543) { |
| 2518 | status = E1000_READ_REG(hw, STATUS); |
| 2519 | if(status & E1000_STATUS_SPEED_1000) { |
| 2520 | *speed = SPEED_1000; |
| 2521 | DEBUGOUT("1000 Mbs, "); |
| 2522 | } else if(status & E1000_STATUS_SPEED_100) { |
| 2523 | *speed = SPEED_100; |
| 2524 | DEBUGOUT("100 Mbs, "); |
| 2525 | } else { |
| 2526 | *speed = SPEED_10; |
| 2527 | DEBUGOUT("10 Mbs, "); |
| 2528 | } |
| 2529 | |
| 2530 | if(status & E1000_STATUS_FD) { |
| 2531 | *duplex = FULL_DUPLEX; |
| 2532 | DEBUGOUT("Full Duplex\r\n"); |
| 2533 | } else { |
| 2534 | *duplex = HALF_DUPLEX; |
| 2535 | DEBUGOUT(" Half Duplex\r\n"); |
| 2536 | } |
| 2537 | } else { |
| 2538 | DEBUGOUT("1000 Mbs, Full Duplex\r\n"); |
| 2539 | *speed = SPEED_1000; |
| 2540 | *duplex = FULL_DUPLEX; |
| 2541 | } |
| 2542 | |
| 2543 | /* IGP01 PHY may advertise full duplex operation after speed downgrade even |
| 2544 | * if it is operating at half duplex. Here we set the duplex settings to |
| 2545 | * match the duplex in the link partner's capabilities. |
| 2546 | */ |
| 2547 | if(hw->phy_type == e1000_phy_igp && hw->speed_downgraded) { |
| 2548 | ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data); |
| 2549 | if(ret_val) |
| 2550 | return ret_val; |
| 2551 | |
| 2552 | if(!(phy_data & NWAY_ER_LP_NWAY_CAPS)) |
| 2553 | *duplex = HALF_DUPLEX; |
| 2554 | else { |
| 2555 | ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data); |
| 2556 | if(ret_val) |
| 2557 | return ret_val; |
| 2558 | if((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) || |
| 2559 | (*speed == SPEED_10 && !(phy_data & NWAY_LPAR_10T_FD_CAPS))) |
| 2560 | *duplex = HALF_DUPLEX; |
| 2561 | } |
| 2562 | } |
| 2563 | |
| 2564 | return E1000_SUCCESS; |
| 2565 | } |
| 2566 | |
| 2567 | /****************************************************************************** |
| 2568 | * Blocks until autoneg completes or times out (~4.5 seconds) |
| 2569 | * |
| 2570 | * hw - Struct containing variables accessed by shared code |
| 2571 | ******************************************************************************/ |
Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame^] | 2572 | static int32_t |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2573 | e1000_wait_autoneg(struct e1000_hw *hw) |
| 2574 | { |
| 2575 | int32_t ret_val; |
| 2576 | uint16_t i; |
| 2577 | uint16_t phy_data; |
| 2578 | |
| 2579 | DEBUGFUNC("e1000_wait_autoneg"); |
| 2580 | DEBUGOUT("Waiting for Auto-Neg to complete.\n"); |
| 2581 | |
| 2582 | /* We will wait for autoneg to complete or 4.5 seconds to expire. */ |
| 2583 | for(i = PHY_AUTO_NEG_TIME; i > 0; i--) { |
| 2584 | /* Read the MII Status Register and wait for Auto-Neg |
| 2585 | * Complete bit to be set. |
| 2586 | */ |
| 2587 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
| 2588 | if(ret_val) |
| 2589 | return ret_val; |
| 2590 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
| 2591 | if(ret_val) |
| 2592 | return ret_val; |
| 2593 | if(phy_data & MII_SR_AUTONEG_COMPLETE) { |
| 2594 | return E1000_SUCCESS; |
| 2595 | } |
| 2596 | msec_delay(100); |
| 2597 | } |
| 2598 | return E1000_SUCCESS; |
| 2599 | } |
| 2600 | |
| 2601 | /****************************************************************************** |
| 2602 | * Raises the Management Data Clock |
| 2603 | * |
| 2604 | * hw - Struct containing variables accessed by shared code |
| 2605 | * ctrl - Device control register's current value |
| 2606 | ******************************************************************************/ |
| 2607 | static void |
| 2608 | e1000_raise_mdi_clk(struct e1000_hw *hw, |
| 2609 | uint32_t *ctrl) |
| 2610 | { |
| 2611 | /* Raise the clock input to the Management Data Clock (by setting the MDC |
| 2612 | * bit), and then delay 10 microseconds. |
| 2613 | */ |
| 2614 | E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC)); |
| 2615 | E1000_WRITE_FLUSH(hw); |
| 2616 | udelay(10); |
| 2617 | } |
| 2618 | |
| 2619 | /****************************************************************************** |
| 2620 | * Lowers the Management Data Clock |
| 2621 | * |
| 2622 | * hw - Struct containing variables accessed by shared code |
| 2623 | * ctrl - Device control register's current value |
| 2624 | ******************************************************************************/ |
| 2625 | static void |
| 2626 | e1000_lower_mdi_clk(struct e1000_hw *hw, |
| 2627 | uint32_t *ctrl) |
| 2628 | { |
| 2629 | /* Lower the clock input to the Management Data Clock (by clearing the MDC |
| 2630 | * bit), and then delay 10 microseconds. |
| 2631 | */ |
| 2632 | E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC)); |
| 2633 | E1000_WRITE_FLUSH(hw); |
| 2634 | udelay(10); |
| 2635 | } |
| 2636 | |
| 2637 | /****************************************************************************** |
| 2638 | * Shifts data bits out to the PHY |
| 2639 | * |
| 2640 | * hw - Struct containing variables accessed by shared code |
| 2641 | * data - Data to send out to the PHY |
| 2642 | * count - Number of bits to shift out |
| 2643 | * |
| 2644 | * Bits are shifted out in MSB to LSB order. |
| 2645 | ******************************************************************************/ |
| 2646 | static void |
| 2647 | e1000_shift_out_mdi_bits(struct e1000_hw *hw, |
| 2648 | uint32_t data, |
| 2649 | uint16_t count) |
| 2650 | { |
| 2651 | uint32_t ctrl; |
| 2652 | uint32_t mask; |
| 2653 | |
| 2654 | /* We need to shift "count" number of bits out to the PHY. So, the value |
| 2655 | * in the "data" parameter will be shifted out to the PHY one bit at a |
| 2656 | * time. In order to do this, "data" must be broken down into bits. |
| 2657 | */ |
| 2658 | mask = 0x01; |
| 2659 | mask <<= (count - 1); |
| 2660 | |
| 2661 | ctrl = E1000_READ_REG(hw, CTRL); |
| 2662 | |
| 2663 | /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */ |
| 2664 | ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR); |
| 2665 | |
| 2666 | while(mask) { |
| 2667 | /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and |
| 2668 | * then raising and lowering the Management Data Clock. A "0" is |
| 2669 | * shifted out to the PHY by setting the MDIO bit to "0" and then |
| 2670 | * raising and lowering the clock. |
| 2671 | */ |
| 2672 | if(data & mask) ctrl |= E1000_CTRL_MDIO; |
| 2673 | else ctrl &= ~E1000_CTRL_MDIO; |
| 2674 | |
| 2675 | E1000_WRITE_REG(hw, CTRL, ctrl); |
| 2676 | E1000_WRITE_FLUSH(hw); |
| 2677 | |
| 2678 | udelay(10); |
| 2679 | |
| 2680 | e1000_raise_mdi_clk(hw, &ctrl); |
| 2681 | e1000_lower_mdi_clk(hw, &ctrl); |
| 2682 | |
| 2683 | mask = mask >> 1; |
| 2684 | } |
| 2685 | } |
| 2686 | |
| 2687 | /****************************************************************************** |
| 2688 | * Shifts data bits in from the PHY |
| 2689 | * |
| 2690 | * hw - Struct containing variables accessed by shared code |
| 2691 | * |
| 2692 | * Bits are shifted in in MSB to LSB order. |
| 2693 | ******************************************************************************/ |
| 2694 | static uint16_t |
| 2695 | e1000_shift_in_mdi_bits(struct e1000_hw *hw) |
| 2696 | { |
| 2697 | uint32_t ctrl; |
| 2698 | uint16_t data = 0; |
| 2699 | uint8_t i; |
| 2700 | |
| 2701 | /* In order to read a register from the PHY, we need to shift in a total |
| 2702 | * of 18 bits from the PHY. The first two bit (turnaround) times are used |
| 2703 | * to avoid contention on the MDIO pin when a read operation is performed. |
| 2704 | * These two bits are ignored by us and thrown away. Bits are "shifted in" |
| 2705 | * by raising the input to the Management Data Clock (setting the MDC bit), |
| 2706 | * and then reading the value of the MDIO bit. |
| 2707 | */ |
| 2708 | ctrl = E1000_READ_REG(hw, CTRL); |
| 2709 | |
| 2710 | /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */ |
| 2711 | ctrl &= ~E1000_CTRL_MDIO_DIR; |
| 2712 | ctrl &= ~E1000_CTRL_MDIO; |
| 2713 | |
| 2714 | E1000_WRITE_REG(hw, CTRL, ctrl); |
| 2715 | E1000_WRITE_FLUSH(hw); |
| 2716 | |
| 2717 | /* Raise and Lower the clock before reading in the data. This accounts for |
| 2718 | * the turnaround bits. The first clock occurred when we clocked out the |
| 2719 | * last bit of the Register Address. |
| 2720 | */ |
| 2721 | e1000_raise_mdi_clk(hw, &ctrl); |
| 2722 | e1000_lower_mdi_clk(hw, &ctrl); |
| 2723 | |
| 2724 | for(data = 0, i = 0; i < 16; i++) { |
| 2725 | data = data << 1; |
| 2726 | e1000_raise_mdi_clk(hw, &ctrl); |
| 2727 | ctrl = E1000_READ_REG(hw, CTRL); |
| 2728 | /* Check to see if we shifted in a "1". */ |
| 2729 | if(ctrl & E1000_CTRL_MDIO) data |= 1; |
| 2730 | e1000_lower_mdi_clk(hw, &ctrl); |
| 2731 | } |
| 2732 | |
| 2733 | e1000_raise_mdi_clk(hw, &ctrl); |
| 2734 | e1000_lower_mdi_clk(hw, &ctrl); |
| 2735 | |
| 2736 | return data; |
| 2737 | } |
| 2738 | |
| 2739 | /***************************************************************************** |
| 2740 | * Reads the value from a PHY register, if the value is on a specific non zero |
| 2741 | * page, sets the page first. |
| 2742 | * hw - Struct containing variables accessed by shared code |
| 2743 | * reg_addr - address of the PHY register to read |
| 2744 | ******************************************************************************/ |
| 2745 | int32_t |
| 2746 | e1000_read_phy_reg(struct e1000_hw *hw, |
| 2747 | uint32_t reg_addr, |
| 2748 | uint16_t *phy_data) |
| 2749 | { |
| 2750 | uint32_t ret_val; |
| 2751 | |
| 2752 | DEBUGFUNC("e1000_read_phy_reg"); |
| 2753 | |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 2754 | if((hw->phy_type == e1000_phy_igp || |
| 2755 | hw->phy_type == e1000_phy_igp_2) && |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2756 | (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { |
| 2757 | ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, |
| 2758 | (uint16_t)reg_addr); |
| 2759 | if(ret_val) { |
| 2760 | return ret_val; |
| 2761 | } |
| 2762 | } |
| 2763 | |
| 2764 | ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, |
| 2765 | phy_data); |
| 2766 | |
| 2767 | return ret_val; |
| 2768 | } |
| 2769 | |
| 2770 | int32_t |
| 2771 | e1000_read_phy_reg_ex(struct e1000_hw *hw, |
| 2772 | uint32_t reg_addr, |
| 2773 | uint16_t *phy_data) |
| 2774 | { |
| 2775 | uint32_t i; |
| 2776 | uint32_t mdic = 0; |
| 2777 | const uint32_t phy_addr = 1; |
| 2778 | |
| 2779 | DEBUGFUNC("e1000_read_phy_reg_ex"); |
| 2780 | |
| 2781 | if(reg_addr > MAX_PHY_REG_ADDRESS) { |
| 2782 | DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); |
| 2783 | return -E1000_ERR_PARAM; |
| 2784 | } |
| 2785 | |
| 2786 | if(hw->mac_type > e1000_82543) { |
| 2787 | /* Set up Op-code, Phy Address, and register address in the MDI |
| 2788 | * Control register. The MAC will take care of interfacing with the |
| 2789 | * PHY to retrieve the desired data. |
| 2790 | */ |
| 2791 | mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) | |
| 2792 | (phy_addr << E1000_MDIC_PHY_SHIFT) | |
| 2793 | (E1000_MDIC_OP_READ)); |
| 2794 | |
| 2795 | E1000_WRITE_REG(hw, MDIC, mdic); |
| 2796 | |
| 2797 | /* Poll the ready bit to see if the MDI read completed */ |
| 2798 | for(i = 0; i < 64; i++) { |
| 2799 | udelay(50); |
| 2800 | mdic = E1000_READ_REG(hw, MDIC); |
| 2801 | if(mdic & E1000_MDIC_READY) break; |
| 2802 | } |
| 2803 | if(!(mdic & E1000_MDIC_READY)) { |
| 2804 | DEBUGOUT("MDI Read did not complete\n"); |
| 2805 | return -E1000_ERR_PHY; |
| 2806 | } |
| 2807 | if(mdic & E1000_MDIC_ERROR) { |
| 2808 | DEBUGOUT("MDI Error\n"); |
| 2809 | return -E1000_ERR_PHY; |
| 2810 | } |
| 2811 | *phy_data = (uint16_t) mdic; |
| 2812 | } else { |
| 2813 | /* We must first send a preamble through the MDIO pin to signal the |
| 2814 | * beginning of an MII instruction. This is done by sending 32 |
| 2815 | * consecutive "1" bits. |
| 2816 | */ |
| 2817 | e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); |
| 2818 | |
| 2819 | /* Now combine the next few fields that are required for a read |
| 2820 | * operation. We use this method instead of calling the |
| 2821 | * e1000_shift_out_mdi_bits routine five different times. The format of |
| 2822 | * a MII read instruction consists of a shift out of 14 bits and is |
| 2823 | * defined as follows: |
| 2824 | * <Preamble><SOF><Op Code><Phy Addr><Reg Addr> |
| 2825 | * followed by a shift in of 18 bits. This first two bits shifted in |
| 2826 | * are TurnAround bits used to avoid contention on the MDIO pin when a |
| 2827 | * READ operation is performed. These two bits are thrown away |
| 2828 | * followed by a shift in of 16 bits which contains the desired data. |
| 2829 | */ |
| 2830 | mdic = ((reg_addr) | (phy_addr << 5) | |
| 2831 | (PHY_OP_READ << 10) | (PHY_SOF << 12)); |
| 2832 | |
| 2833 | e1000_shift_out_mdi_bits(hw, mdic, 14); |
| 2834 | |
| 2835 | /* Now that we've shifted out the read command to the MII, we need to |
| 2836 | * "shift in" the 16-bit value (18 total bits) of the requested PHY |
| 2837 | * register address. |
| 2838 | */ |
| 2839 | *phy_data = e1000_shift_in_mdi_bits(hw); |
| 2840 | } |
| 2841 | return E1000_SUCCESS; |
| 2842 | } |
| 2843 | |
| 2844 | /****************************************************************************** |
| 2845 | * Writes a value to a PHY register |
| 2846 | * |
| 2847 | * hw - Struct containing variables accessed by shared code |
| 2848 | * reg_addr - address of the PHY register to write |
| 2849 | * data - data to write to the PHY |
| 2850 | ******************************************************************************/ |
| 2851 | int32_t |
| 2852 | e1000_write_phy_reg(struct e1000_hw *hw, |
| 2853 | uint32_t reg_addr, |
| 2854 | uint16_t phy_data) |
| 2855 | { |
| 2856 | uint32_t ret_val; |
| 2857 | |
| 2858 | DEBUGFUNC("e1000_write_phy_reg"); |
| 2859 | |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 2860 | if((hw->phy_type == e1000_phy_igp || |
| 2861 | hw->phy_type == e1000_phy_igp_2) && |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2862 | (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { |
| 2863 | ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, |
| 2864 | (uint16_t)reg_addr); |
| 2865 | if(ret_val) { |
| 2866 | return ret_val; |
| 2867 | } |
| 2868 | } |
| 2869 | |
| 2870 | ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, |
| 2871 | phy_data); |
| 2872 | |
| 2873 | return ret_val; |
| 2874 | } |
| 2875 | |
| 2876 | int32_t |
| 2877 | e1000_write_phy_reg_ex(struct e1000_hw *hw, |
| 2878 | uint32_t reg_addr, |
| 2879 | uint16_t phy_data) |
| 2880 | { |
| 2881 | uint32_t i; |
| 2882 | uint32_t mdic = 0; |
| 2883 | const uint32_t phy_addr = 1; |
| 2884 | |
| 2885 | DEBUGFUNC("e1000_write_phy_reg_ex"); |
| 2886 | |
| 2887 | if(reg_addr > MAX_PHY_REG_ADDRESS) { |
| 2888 | DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); |
| 2889 | return -E1000_ERR_PARAM; |
| 2890 | } |
| 2891 | |
| 2892 | if(hw->mac_type > e1000_82543) { |
| 2893 | /* Set up Op-code, Phy Address, register address, and data intended |
| 2894 | * for the PHY register in the MDI Control register. The MAC will take |
| 2895 | * care of interfacing with the PHY to send the desired data. |
| 2896 | */ |
| 2897 | mdic = (((uint32_t) phy_data) | |
| 2898 | (reg_addr << E1000_MDIC_REG_SHIFT) | |
| 2899 | (phy_addr << E1000_MDIC_PHY_SHIFT) | |
| 2900 | (E1000_MDIC_OP_WRITE)); |
| 2901 | |
| 2902 | E1000_WRITE_REG(hw, MDIC, mdic); |
| 2903 | |
| 2904 | /* Poll the ready bit to see if the MDI read completed */ |
| 2905 | for(i = 0; i < 640; i++) { |
| 2906 | udelay(5); |
| 2907 | mdic = E1000_READ_REG(hw, MDIC); |
| 2908 | if(mdic & E1000_MDIC_READY) break; |
| 2909 | } |
| 2910 | if(!(mdic & E1000_MDIC_READY)) { |
| 2911 | DEBUGOUT("MDI Write did not complete\n"); |
| 2912 | return -E1000_ERR_PHY; |
| 2913 | } |
| 2914 | } else { |
| 2915 | /* We'll need to use the SW defined pins to shift the write command |
| 2916 | * out to the PHY. We first send a preamble to the PHY to signal the |
| 2917 | * beginning of the MII instruction. This is done by sending 32 |
| 2918 | * consecutive "1" bits. |
| 2919 | */ |
| 2920 | e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); |
| 2921 | |
| 2922 | /* Now combine the remaining required fields that will indicate a |
| 2923 | * write operation. We use this method instead of calling the |
| 2924 | * e1000_shift_out_mdi_bits routine for each field in the command. The |
| 2925 | * format of a MII write instruction is as follows: |
| 2926 | * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>. |
| 2927 | */ |
| 2928 | mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) | |
| 2929 | (PHY_OP_WRITE << 12) | (PHY_SOF << 14)); |
| 2930 | mdic <<= 16; |
| 2931 | mdic |= (uint32_t) phy_data; |
| 2932 | |
| 2933 | e1000_shift_out_mdi_bits(hw, mdic, 32); |
| 2934 | } |
| 2935 | |
| 2936 | return E1000_SUCCESS; |
| 2937 | } |
| 2938 | |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 2939 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2940 | /****************************************************************************** |
| 2941 | * Returns the PHY to the power-on reset state |
| 2942 | * |
| 2943 | * hw - Struct containing variables accessed by shared code |
| 2944 | ******************************************************************************/ |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 2945 | int32_t |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2946 | e1000_phy_hw_reset(struct e1000_hw *hw) |
| 2947 | { |
| 2948 | uint32_t ctrl, ctrl_ext; |
| 2949 | uint32_t led_ctrl; |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 2950 | int32_t ret_val; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2951 | |
| 2952 | DEBUGFUNC("e1000_phy_hw_reset"); |
| 2953 | |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 2954 | /* In the case of the phy reset being blocked, it's not an error, we |
| 2955 | * simply return success without performing the reset. */ |
| 2956 | ret_val = e1000_check_phy_reset_block(hw); |
| 2957 | if (ret_val) |
| 2958 | return E1000_SUCCESS; |
| 2959 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2960 | DEBUGOUT("Resetting Phy...\n"); |
| 2961 | |
| 2962 | if(hw->mac_type > e1000_82543) { |
| 2963 | /* Read the device control register and assert the E1000_CTRL_PHY_RST |
| 2964 | * bit. Then, take it out of reset. |
| 2965 | */ |
| 2966 | ctrl = E1000_READ_REG(hw, CTRL); |
| 2967 | E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST); |
| 2968 | E1000_WRITE_FLUSH(hw); |
| 2969 | msec_delay(10); |
| 2970 | E1000_WRITE_REG(hw, CTRL, ctrl); |
| 2971 | E1000_WRITE_FLUSH(hw); |
| 2972 | } else { |
| 2973 | /* Read the Extended Device Control Register, assert the PHY_RESET_DIR |
| 2974 | * bit to put the PHY into reset. Then, take it out of reset. |
| 2975 | */ |
| 2976 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); |
| 2977 | ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR; |
| 2978 | ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA; |
| 2979 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); |
| 2980 | E1000_WRITE_FLUSH(hw); |
| 2981 | msec_delay(10); |
| 2982 | ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA; |
| 2983 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); |
| 2984 | E1000_WRITE_FLUSH(hw); |
| 2985 | } |
| 2986 | udelay(150); |
| 2987 | |
| 2988 | if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { |
| 2989 | /* Configure activity LED after PHY reset */ |
| 2990 | led_ctrl = E1000_READ_REG(hw, LEDCTL); |
| 2991 | led_ctrl &= IGP_ACTIVITY_LED_MASK; |
| 2992 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); |
| 2993 | E1000_WRITE_REG(hw, LEDCTL, led_ctrl); |
| 2994 | } |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 2995 | |
| 2996 | /* Wait for FW to finish PHY configuration. */ |
| 2997 | ret_val = e1000_get_phy_cfg_done(hw); |
| 2998 | |
| 2999 | return ret_val; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3000 | } |
| 3001 | |
| 3002 | /****************************************************************************** |
| 3003 | * Resets the PHY |
| 3004 | * |
| 3005 | * hw - Struct containing variables accessed by shared code |
| 3006 | * |
| 3007 | * Sets bit 15 of the MII Control regiser |
| 3008 | ******************************************************************************/ |
| 3009 | int32_t |
| 3010 | e1000_phy_reset(struct e1000_hw *hw) |
| 3011 | { |
| 3012 | int32_t ret_val; |
| 3013 | uint16_t phy_data; |
| 3014 | |
| 3015 | DEBUGFUNC("e1000_phy_reset"); |
| 3016 | |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3017 | /* In the case of the phy reset being blocked, it's not an error, we |
| 3018 | * simply return success without performing the reset. */ |
| 3019 | ret_val = e1000_check_phy_reset_block(hw); |
| 3020 | if (ret_val) |
| 3021 | return E1000_SUCCESS; |
| 3022 | |
| 3023 | switch (hw->mac_type) { |
| 3024 | case e1000_82541_rev_2: |
Mallikarjuna R Chilakala | 868d530 | 2005-10-04 06:58:59 -0400 | [diff] [blame] | 3025 | case e1000_82571: |
| 3026 | case e1000_82572: |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3027 | ret_val = e1000_phy_hw_reset(hw); |
| 3028 | if(ret_val) |
| 3029 | return ret_val; |
| 3030 | break; |
| 3031 | default: |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3032 | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); |
| 3033 | if(ret_val) |
| 3034 | return ret_val; |
| 3035 | |
| 3036 | phy_data |= MII_CR_RESET; |
| 3037 | ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); |
| 3038 | if(ret_val) |
| 3039 | return ret_val; |
| 3040 | |
| 3041 | udelay(1); |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3042 | break; |
| 3043 | } |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3044 | |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3045 | if(hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3046 | e1000_phy_init_script(hw); |
| 3047 | |
| 3048 | return E1000_SUCCESS; |
| 3049 | } |
| 3050 | |
| 3051 | /****************************************************************************** |
| 3052 | * Probes the expected PHY address for known PHY IDs |
| 3053 | * |
| 3054 | * hw - Struct containing variables accessed by shared code |
| 3055 | ******************************************************************************/ |
Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame^] | 3056 | static int32_t |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3057 | e1000_detect_gig_phy(struct e1000_hw *hw) |
| 3058 | { |
| 3059 | int32_t phy_init_status, ret_val; |
| 3060 | uint16_t phy_id_high, phy_id_low; |
| 3061 | boolean_t match = FALSE; |
| 3062 | |
| 3063 | DEBUGFUNC("e1000_detect_gig_phy"); |
| 3064 | |
Mallikarjuna R Chilakala | 868d530 | 2005-10-04 06:58:59 -0400 | [diff] [blame] | 3065 | /* The 82571 firmware may still be configuring the PHY. In this |
| 3066 | * case, we cannot access the PHY until the configuration is done. So |
| 3067 | * we explicitly set the PHY values. */ |
| 3068 | if(hw->mac_type == e1000_82571 || |
| 3069 | hw->mac_type == e1000_82572) { |
| 3070 | hw->phy_id = IGP01E1000_I_PHY_ID; |
| 3071 | hw->phy_type = e1000_phy_igp_2; |
| 3072 | return E1000_SUCCESS; |
| 3073 | } |
| 3074 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3075 | /* Read the PHY ID Registers to identify which PHY is onboard. */ |
| 3076 | ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high); |
| 3077 | if(ret_val) |
| 3078 | return ret_val; |
| 3079 | |
| 3080 | hw->phy_id = (uint32_t) (phy_id_high << 16); |
| 3081 | udelay(20); |
| 3082 | ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low); |
| 3083 | if(ret_val) |
| 3084 | return ret_val; |
| 3085 | |
| 3086 | hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK); |
| 3087 | hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK; |
| 3088 | |
| 3089 | switch(hw->mac_type) { |
| 3090 | case e1000_82543: |
| 3091 | if(hw->phy_id == M88E1000_E_PHY_ID) match = TRUE; |
| 3092 | break; |
| 3093 | case e1000_82544: |
| 3094 | if(hw->phy_id == M88E1000_I_PHY_ID) match = TRUE; |
| 3095 | break; |
| 3096 | case e1000_82540: |
| 3097 | case e1000_82545: |
| 3098 | case e1000_82545_rev_3: |
| 3099 | case e1000_82546: |
| 3100 | case e1000_82546_rev_3: |
| 3101 | if(hw->phy_id == M88E1011_I_PHY_ID) match = TRUE; |
| 3102 | break; |
| 3103 | case e1000_82541: |
| 3104 | case e1000_82541_rev_2: |
| 3105 | case e1000_82547: |
| 3106 | case e1000_82547_rev_2: |
| 3107 | if(hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE; |
| 3108 | break; |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3109 | case e1000_82573: |
| 3110 | if(hw->phy_id == M88E1111_I_PHY_ID) match = TRUE; |
| 3111 | break; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3112 | default: |
| 3113 | DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type); |
| 3114 | return -E1000_ERR_CONFIG; |
| 3115 | } |
| 3116 | phy_init_status = e1000_set_phy_type(hw); |
| 3117 | |
| 3118 | if ((match) && (phy_init_status == E1000_SUCCESS)) { |
| 3119 | DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id); |
| 3120 | return E1000_SUCCESS; |
| 3121 | } |
| 3122 | DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id); |
| 3123 | return -E1000_ERR_PHY; |
| 3124 | } |
| 3125 | |
| 3126 | /****************************************************************************** |
| 3127 | * Resets the PHY's DSP |
| 3128 | * |
| 3129 | * hw - Struct containing variables accessed by shared code |
| 3130 | ******************************************************************************/ |
| 3131 | static int32_t |
| 3132 | e1000_phy_reset_dsp(struct e1000_hw *hw) |
| 3133 | { |
| 3134 | int32_t ret_val; |
| 3135 | DEBUGFUNC("e1000_phy_reset_dsp"); |
| 3136 | |
| 3137 | do { |
| 3138 | ret_val = e1000_write_phy_reg(hw, 29, 0x001d); |
| 3139 | if(ret_val) break; |
| 3140 | ret_val = e1000_write_phy_reg(hw, 30, 0x00c1); |
| 3141 | if(ret_val) break; |
| 3142 | ret_val = e1000_write_phy_reg(hw, 30, 0x0000); |
| 3143 | if(ret_val) break; |
| 3144 | ret_val = E1000_SUCCESS; |
| 3145 | } while(0); |
| 3146 | |
| 3147 | return ret_val; |
| 3148 | } |
| 3149 | |
| 3150 | /****************************************************************************** |
| 3151 | * Get PHY information from various PHY registers for igp PHY only. |
| 3152 | * |
| 3153 | * hw - Struct containing variables accessed by shared code |
| 3154 | * phy_info - PHY information structure |
| 3155 | ******************************************************************************/ |
Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame^] | 3156 | static int32_t |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3157 | e1000_phy_igp_get_info(struct e1000_hw *hw, |
| 3158 | struct e1000_phy_info *phy_info) |
| 3159 | { |
| 3160 | int32_t ret_val; |
| 3161 | uint16_t phy_data, polarity, min_length, max_length, average; |
| 3162 | |
| 3163 | DEBUGFUNC("e1000_phy_igp_get_info"); |
| 3164 | |
| 3165 | /* The downshift status is checked only once, after link is established, |
| 3166 | * and it stored in the hw->speed_downgraded parameter. */ |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3167 | phy_info->downshift = (e1000_downshift)hw->speed_downgraded; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3168 | |
| 3169 | /* IGP01E1000 does not need to support it. */ |
| 3170 | phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal; |
| 3171 | |
| 3172 | /* IGP01E1000 always correct polarity reversal */ |
| 3173 | phy_info->polarity_correction = e1000_polarity_reversal_enabled; |
| 3174 | |
| 3175 | /* Check polarity status */ |
| 3176 | ret_val = e1000_check_polarity(hw, &polarity); |
| 3177 | if(ret_val) |
| 3178 | return ret_val; |
| 3179 | |
| 3180 | phy_info->cable_polarity = polarity; |
| 3181 | |
| 3182 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data); |
| 3183 | if(ret_val) |
| 3184 | return ret_val; |
| 3185 | |
| 3186 | phy_info->mdix_mode = (phy_data & IGP01E1000_PSSR_MDIX) >> |
| 3187 | IGP01E1000_PSSR_MDIX_SHIFT; |
| 3188 | |
| 3189 | if((phy_data & IGP01E1000_PSSR_SPEED_MASK) == |
| 3190 | IGP01E1000_PSSR_SPEED_1000MBPS) { |
| 3191 | /* Local/Remote Receiver Information are only valid at 1000 Mbps */ |
| 3192 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); |
| 3193 | if(ret_val) |
| 3194 | return ret_val; |
| 3195 | |
| 3196 | phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >> |
| 3197 | SR_1000T_LOCAL_RX_STATUS_SHIFT; |
| 3198 | phy_info->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) >> |
| 3199 | SR_1000T_REMOTE_RX_STATUS_SHIFT; |
| 3200 | |
| 3201 | /* Get cable length */ |
| 3202 | ret_val = e1000_get_cable_length(hw, &min_length, &max_length); |
| 3203 | if(ret_val) |
| 3204 | return ret_val; |
| 3205 | |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3206 | /* Translate to old method */ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3207 | average = (max_length + min_length) / 2; |
| 3208 | |
| 3209 | if(average <= e1000_igp_cable_length_50) |
| 3210 | phy_info->cable_length = e1000_cable_length_50; |
| 3211 | else if(average <= e1000_igp_cable_length_80) |
| 3212 | phy_info->cable_length = e1000_cable_length_50_80; |
| 3213 | else if(average <= e1000_igp_cable_length_110) |
| 3214 | phy_info->cable_length = e1000_cable_length_80_110; |
| 3215 | else if(average <= e1000_igp_cable_length_140) |
| 3216 | phy_info->cable_length = e1000_cable_length_110_140; |
| 3217 | else |
| 3218 | phy_info->cable_length = e1000_cable_length_140; |
| 3219 | } |
| 3220 | |
| 3221 | return E1000_SUCCESS; |
| 3222 | } |
| 3223 | |
| 3224 | /****************************************************************************** |
| 3225 | * Get PHY information from various PHY registers fot m88 PHY only. |
| 3226 | * |
| 3227 | * hw - Struct containing variables accessed by shared code |
| 3228 | * phy_info - PHY information structure |
| 3229 | ******************************************************************************/ |
Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame^] | 3230 | static int32_t |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3231 | e1000_phy_m88_get_info(struct e1000_hw *hw, |
| 3232 | struct e1000_phy_info *phy_info) |
| 3233 | { |
| 3234 | int32_t ret_val; |
| 3235 | uint16_t phy_data, polarity; |
| 3236 | |
| 3237 | DEBUGFUNC("e1000_phy_m88_get_info"); |
| 3238 | |
| 3239 | /* The downshift status is checked only once, after link is established, |
| 3240 | * and it stored in the hw->speed_downgraded parameter. */ |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3241 | phy_info->downshift = (e1000_downshift)hw->speed_downgraded; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3242 | |
| 3243 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
| 3244 | if(ret_val) |
| 3245 | return ret_val; |
| 3246 | |
| 3247 | phy_info->extended_10bt_distance = |
| 3248 | (phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >> |
| 3249 | M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT; |
| 3250 | phy_info->polarity_correction = |
| 3251 | (phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >> |
| 3252 | M88E1000_PSCR_POLARITY_REVERSAL_SHIFT; |
| 3253 | |
| 3254 | /* Check polarity status */ |
| 3255 | ret_val = e1000_check_polarity(hw, &polarity); |
| 3256 | if(ret_val) |
| 3257 | return ret_val; |
| 3258 | phy_info->cable_polarity = polarity; |
| 3259 | |
| 3260 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); |
| 3261 | if(ret_val) |
| 3262 | return ret_val; |
| 3263 | |
| 3264 | phy_info->mdix_mode = (phy_data & M88E1000_PSSR_MDIX) >> |
| 3265 | M88E1000_PSSR_MDIX_SHIFT; |
| 3266 | |
| 3267 | if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { |
| 3268 | /* Cable Length Estimation and Local/Remote Receiver Information |
| 3269 | * are only valid at 1000 Mbps. |
| 3270 | */ |
| 3271 | phy_info->cable_length = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >> |
| 3272 | M88E1000_PSSR_CABLE_LENGTH_SHIFT); |
| 3273 | |
| 3274 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); |
| 3275 | if(ret_val) |
| 3276 | return ret_val; |
| 3277 | |
| 3278 | phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >> |
| 3279 | SR_1000T_LOCAL_RX_STATUS_SHIFT; |
| 3280 | |
| 3281 | phy_info->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) >> |
| 3282 | SR_1000T_REMOTE_RX_STATUS_SHIFT; |
| 3283 | } |
| 3284 | |
| 3285 | return E1000_SUCCESS; |
| 3286 | } |
| 3287 | |
| 3288 | /****************************************************************************** |
| 3289 | * Get PHY information from various PHY registers |
| 3290 | * |
| 3291 | * hw - Struct containing variables accessed by shared code |
| 3292 | * phy_info - PHY information structure |
| 3293 | ******************************************************************************/ |
| 3294 | int32_t |
| 3295 | e1000_phy_get_info(struct e1000_hw *hw, |
| 3296 | struct e1000_phy_info *phy_info) |
| 3297 | { |
| 3298 | int32_t ret_val; |
| 3299 | uint16_t phy_data; |
| 3300 | |
| 3301 | DEBUGFUNC("e1000_phy_get_info"); |
| 3302 | |
| 3303 | phy_info->cable_length = e1000_cable_length_undefined; |
| 3304 | phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined; |
| 3305 | phy_info->cable_polarity = e1000_rev_polarity_undefined; |
| 3306 | phy_info->downshift = e1000_downshift_undefined; |
| 3307 | phy_info->polarity_correction = e1000_polarity_reversal_undefined; |
| 3308 | phy_info->mdix_mode = e1000_auto_x_mode_undefined; |
| 3309 | phy_info->local_rx = e1000_1000t_rx_status_undefined; |
| 3310 | phy_info->remote_rx = e1000_1000t_rx_status_undefined; |
| 3311 | |
| 3312 | if(hw->media_type != e1000_media_type_copper) { |
| 3313 | DEBUGOUT("PHY info is only valid for copper media\n"); |
| 3314 | return -E1000_ERR_CONFIG; |
| 3315 | } |
| 3316 | |
| 3317 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
| 3318 | if(ret_val) |
| 3319 | return ret_val; |
| 3320 | |
| 3321 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
| 3322 | if(ret_val) |
| 3323 | return ret_val; |
| 3324 | |
| 3325 | if((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) { |
| 3326 | DEBUGOUT("PHY info is only valid if link is up\n"); |
| 3327 | return -E1000_ERR_CONFIG; |
| 3328 | } |
| 3329 | |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3330 | if(hw->phy_type == e1000_phy_igp || |
| 3331 | hw->phy_type == e1000_phy_igp_2) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3332 | return e1000_phy_igp_get_info(hw, phy_info); |
| 3333 | else |
| 3334 | return e1000_phy_m88_get_info(hw, phy_info); |
| 3335 | } |
| 3336 | |
| 3337 | int32_t |
| 3338 | e1000_validate_mdi_setting(struct e1000_hw *hw) |
| 3339 | { |
| 3340 | DEBUGFUNC("e1000_validate_mdi_settings"); |
| 3341 | |
| 3342 | if(!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) { |
| 3343 | DEBUGOUT("Invalid MDI setting detected\n"); |
| 3344 | hw->mdix = 1; |
| 3345 | return -E1000_ERR_CONFIG; |
| 3346 | } |
| 3347 | return E1000_SUCCESS; |
| 3348 | } |
| 3349 | |
| 3350 | |
| 3351 | /****************************************************************************** |
| 3352 | * Sets up eeprom variables in the hw struct. Must be called after mac_type |
| 3353 | * is configured. |
| 3354 | * |
| 3355 | * hw - Struct containing variables accessed by shared code |
| 3356 | *****************************************************************************/ |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3357 | int32_t |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3358 | e1000_init_eeprom_params(struct e1000_hw *hw) |
| 3359 | { |
| 3360 | struct e1000_eeprom_info *eeprom = &hw->eeprom; |
| 3361 | uint32_t eecd = E1000_READ_REG(hw, EECD); |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3362 | int32_t ret_val = E1000_SUCCESS; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3363 | uint16_t eeprom_size; |
| 3364 | |
| 3365 | DEBUGFUNC("e1000_init_eeprom_params"); |
| 3366 | |
| 3367 | switch (hw->mac_type) { |
| 3368 | case e1000_82542_rev2_0: |
| 3369 | case e1000_82542_rev2_1: |
| 3370 | case e1000_82543: |
| 3371 | case e1000_82544: |
| 3372 | eeprom->type = e1000_eeprom_microwire; |
| 3373 | eeprom->word_size = 64; |
| 3374 | eeprom->opcode_bits = 3; |
| 3375 | eeprom->address_bits = 6; |
| 3376 | eeprom->delay_usec = 50; |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3377 | eeprom->use_eerd = FALSE; |
| 3378 | eeprom->use_eewr = FALSE; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3379 | break; |
| 3380 | case e1000_82540: |
| 3381 | case e1000_82545: |
| 3382 | case e1000_82545_rev_3: |
| 3383 | case e1000_82546: |
| 3384 | case e1000_82546_rev_3: |
| 3385 | eeprom->type = e1000_eeprom_microwire; |
| 3386 | eeprom->opcode_bits = 3; |
| 3387 | eeprom->delay_usec = 50; |
| 3388 | if(eecd & E1000_EECD_SIZE) { |
| 3389 | eeprom->word_size = 256; |
| 3390 | eeprom->address_bits = 8; |
| 3391 | } else { |
| 3392 | eeprom->word_size = 64; |
| 3393 | eeprom->address_bits = 6; |
| 3394 | } |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3395 | eeprom->use_eerd = FALSE; |
| 3396 | eeprom->use_eewr = FALSE; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3397 | break; |
| 3398 | case e1000_82541: |
| 3399 | case e1000_82541_rev_2: |
| 3400 | case e1000_82547: |
| 3401 | case e1000_82547_rev_2: |
| 3402 | if (eecd & E1000_EECD_TYPE) { |
| 3403 | eeprom->type = e1000_eeprom_spi; |
| 3404 | eeprom->opcode_bits = 8; |
| 3405 | eeprom->delay_usec = 1; |
| 3406 | if (eecd & E1000_EECD_ADDR_BITS) { |
| 3407 | eeprom->page_size = 32; |
| 3408 | eeprom->address_bits = 16; |
| 3409 | } else { |
| 3410 | eeprom->page_size = 8; |
| 3411 | eeprom->address_bits = 8; |
| 3412 | } |
| 3413 | } else { |
| 3414 | eeprom->type = e1000_eeprom_microwire; |
| 3415 | eeprom->opcode_bits = 3; |
| 3416 | eeprom->delay_usec = 50; |
| 3417 | if (eecd & E1000_EECD_ADDR_BITS) { |
| 3418 | eeprom->word_size = 256; |
| 3419 | eeprom->address_bits = 8; |
| 3420 | } else { |
| 3421 | eeprom->word_size = 64; |
| 3422 | eeprom->address_bits = 6; |
| 3423 | } |
| 3424 | } |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3425 | eeprom->use_eerd = FALSE; |
| 3426 | eeprom->use_eewr = FALSE; |
| 3427 | break; |
Mallikarjuna R Chilakala | 868d530 | 2005-10-04 06:58:59 -0400 | [diff] [blame] | 3428 | case e1000_82571: |
| 3429 | case e1000_82572: |
| 3430 | eeprom->type = e1000_eeprom_spi; |
| 3431 | eeprom->opcode_bits = 8; |
| 3432 | eeprom->delay_usec = 1; |
| 3433 | if (eecd & E1000_EECD_ADDR_BITS) { |
| 3434 | eeprom->page_size = 32; |
| 3435 | eeprom->address_bits = 16; |
| 3436 | } else { |
| 3437 | eeprom->page_size = 8; |
| 3438 | eeprom->address_bits = 8; |
| 3439 | } |
| 3440 | eeprom->use_eerd = FALSE; |
| 3441 | eeprom->use_eewr = FALSE; |
| 3442 | break; |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3443 | case e1000_82573: |
| 3444 | eeprom->type = e1000_eeprom_spi; |
| 3445 | eeprom->opcode_bits = 8; |
| 3446 | eeprom->delay_usec = 1; |
| 3447 | if (eecd & E1000_EECD_ADDR_BITS) { |
| 3448 | eeprom->page_size = 32; |
| 3449 | eeprom->address_bits = 16; |
| 3450 | } else { |
| 3451 | eeprom->page_size = 8; |
| 3452 | eeprom->address_bits = 8; |
| 3453 | } |
| 3454 | eeprom->use_eerd = TRUE; |
| 3455 | eeprom->use_eewr = TRUE; |
| 3456 | if(e1000_is_onboard_nvm_eeprom(hw) == FALSE) { |
| 3457 | eeprom->type = e1000_eeprom_flash; |
| 3458 | eeprom->word_size = 2048; |
| 3459 | |
| 3460 | /* Ensure that the Autonomous FLASH update bit is cleared due to |
| 3461 | * Flash update issue on parts which use a FLASH for NVM. */ |
| 3462 | eecd &= ~E1000_EECD_AUPDEN; |
| 3463 | E1000_WRITE_REG(hw, EECD, eecd); |
| 3464 | } |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3465 | break; |
| 3466 | default: |
| 3467 | break; |
| 3468 | } |
| 3469 | |
| 3470 | if (eeprom->type == e1000_eeprom_spi) { |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3471 | /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to |
| 3472 | * 32KB (incremented by powers of 2). |
| 3473 | */ |
| 3474 | if(hw->mac_type <= e1000_82547_rev_2) { |
| 3475 | /* Set to default value for initial eeprom read. */ |
| 3476 | eeprom->word_size = 64; |
| 3477 | ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size); |
| 3478 | if(ret_val) |
| 3479 | return ret_val; |
| 3480 | eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT; |
| 3481 | /* 256B eeprom size was not supported in earlier hardware, so we |
| 3482 | * bump eeprom_size up one to ensure that "1" (which maps to 256B) |
| 3483 | * is never the result used in the shifting logic below. */ |
| 3484 | if(eeprom_size) |
| 3485 | eeprom_size++; |
| 3486 | } else { |
| 3487 | eeprom_size = (uint16_t)((eecd & E1000_EECD_SIZE_EX_MASK) >> |
| 3488 | E1000_EECD_SIZE_EX_SHIFT); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3489 | } |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3490 | |
| 3491 | eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3492 | } |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3493 | return ret_val; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3494 | } |
| 3495 | |
| 3496 | /****************************************************************************** |
| 3497 | * Raises the EEPROM's clock input. |
| 3498 | * |
| 3499 | * hw - Struct containing variables accessed by shared code |
| 3500 | * eecd - EECD's current value |
| 3501 | *****************************************************************************/ |
| 3502 | static void |
| 3503 | e1000_raise_ee_clk(struct e1000_hw *hw, |
| 3504 | uint32_t *eecd) |
| 3505 | { |
| 3506 | /* Raise the clock input to the EEPROM (by setting the SK bit), and then |
| 3507 | * wait <delay> microseconds. |
| 3508 | */ |
| 3509 | *eecd = *eecd | E1000_EECD_SK; |
| 3510 | E1000_WRITE_REG(hw, EECD, *eecd); |
| 3511 | E1000_WRITE_FLUSH(hw); |
| 3512 | udelay(hw->eeprom.delay_usec); |
| 3513 | } |
| 3514 | |
| 3515 | /****************************************************************************** |
| 3516 | * Lowers the EEPROM's clock input. |
| 3517 | * |
| 3518 | * hw - Struct containing variables accessed by shared code |
| 3519 | * eecd - EECD's current value |
| 3520 | *****************************************************************************/ |
| 3521 | static void |
| 3522 | e1000_lower_ee_clk(struct e1000_hw *hw, |
| 3523 | uint32_t *eecd) |
| 3524 | { |
| 3525 | /* Lower the clock input to the EEPROM (by clearing the SK bit), and then |
| 3526 | * wait 50 microseconds. |
| 3527 | */ |
| 3528 | *eecd = *eecd & ~E1000_EECD_SK; |
| 3529 | E1000_WRITE_REG(hw, EECD, *eecd); |
| 3530 | E1000_WRITE_FLUSH(hw); |
| 3531 | udelay(hw->eeprom.delay_usec); |
| 3532 | } |
| 3533 | |
| 3534 | /****************************************************************************** |
| 3535 | * Shift data bits out to the EEPROM. |
| 3536 | * |
| 3537 | * hw - Struct containing variables accessed by shared code |
| 3538 | * data - data to send to the EEPROM |
| 3539 | * count - number of bits to shift out |
| 3540 | *****************************************************************************/ |
| 3541 | static void |
| 3542 | e1000_shift_out_ee_bits(struct e1000_hw *hw, |
| 3543 | uint16_t data, |
| 3544 | uint16_t count) |
| 3545 | { |
| 3546 | struct e1000_eeprom_info *eeprom = &hw->eeprom; |
| 3547 | uint32_t eecd; |
| 3548 | uint32_t mask; |
| 3549 | |
| 3550 | /* We need to shift "count" bits out to the EEPROM. So, value in the |
| 3551 | * "data" parameter will be shifted out to the EEPROM one bit at a time. |
| 3552 | * In order to do this, "data" must be broken down into bits. |
| 3553 | */ |
| 3554 | mask = 0x01 << (count - 1); |
| 3555 | eecd = E1000_READ_REG(hw, EECD); |
| 3556 | if (eeprom->type == e1000_eeprom_microwire) { |
| 3557 | eecd &= ~E1000_EECD_DO; |
| 3558 | } else if (eeprom->type == e1000_eeprom_spi) { |
| 3559 | eecd |= E1000_EECD_DO; |
| 3560 | } |
| 3561 | do { |
| 3562 | /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1", |
| 3563 | * and then raising and then lowering the clock (the SK bit controls |
| 3564 | * the clock input to the EEPROM). A "0" is shifted out to the EEPROM |
| 3565 | * by setting "DI" to "0" and then raising and then lowering the clock. |
| 3566 | */ |
| 3567 | eecd &= ~E1000_EECD_DI; |
| 3568 | |
| 3569 | if(data & mask) |
| 3570 | eecd |= E1000_EECD_DI; |
| 3571 | |
| 3572 | E1000_WRITE_REG(hw, EECD, eecd); |
| 3573 | E1000_WRITE_FLUSH(hw); |
| 3574 | |
| 3575 | udelay(eeprom->delay_usec); |
| 3576 | |
| 3577 | e1000_raise_ee_clk(hw, &eecd); |
| 3578 | e1000_lower_ee_clk(hw, &eecd); |
| 3579 | |
| 3580 | mask = mask >> 1; |
| 3581 | |
| 3582 | } while(mask); |
| 3583 | |
| 3584 | /* We leave the "DI" bit set to "0" when we leave this routine. */ |
| 3585 | eecd &= ~E1000_EECD_DI; |
| 3586 | E1000_WRITE_REG(hw, EECD, eecd); |
| 3587 | } |
| 3588 | |
| 3589 | /****************************************************************************** |
| 3590 | * Shift data bits in from the EEPROM |
| 3591 | * |
| 3592 | * hw - Struct containing variables accessed by shared code |
| 3593 | *****************************************************************************/ |
| 3594 | static uint16_t |
| 3595 | e1000_shift_in_ee_bits(struct e1000_hw *hw, |
| 3596 | uint16_t count) |
| 3597 | { |
| 3598 | uint32_t eecd; |
| 3599 | uint32_t i; |
| 3600 | uint16_t data; |
| 3601 | |
| 3602 | /* In order to read a register from the EEPROM, we need to shift 'count' |
| 3603 | * bits in from the EEPROM. Bits are "shifted in" by raising the clock |
| 3604 | * input to the EEPROM (setting the SK bit), and then reading the value of |
| 3605 | * the "DO" bit. During this "shifting in" process the "DI" bit should |
| 3606 | * always be clear. |
| 3607 | */ |
| 3608 | |
| 3609 | eecd = E1000_READ_REG(hw, EECD); |
| 3610 | |
| 3611 | eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); |
| 3612 | data = 0; |
| 3613 | |
| 3614 | for(i = 0; i < count; i++) { |
| 3615 | data = data << 1; |
| 3616 | e1000_raise_ee_clk(hw, &eecd); |
| 3617 | |
| 3618 | eecd = E1000_READ_REG(hw, EECD); |
| 3619 | |
| 3620 | eecd &= ~(E1000_EECD_DI); |
| 3621 | if(eecd & E1000_EECD_DO) |
| 3622 | data |= 1; |
| 3623 | |
| 3624 | e1000_lower_ee_clk(hw, &eecd); |
| 3625 | } |
| 3626 | |
| 3627 | return data; |
| 3628 | } |
| 3629 | |
| 3630 | /****************************************************************************** |
| 3631 | * Prepares EEPROM for access |
| 3632 | * |
| 3633 | * hw - Struct containing variables accessed by shared code |
| 3634 | * |
| 3635 | * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This |
| 3636 | * function should be called before issuing a command to the EEPROM. |
| 3637 | *****************************************************************************/ |
| 3638 | static int32_t |
| 3639 | e1000_acquire_eeprom(struct e1000_hw *hw) |
| 3640 | { |
| 3641 | struct e1000_eeprom_info *eeprom = &hw->eeprom; |
| 3642 | uint32_t eecd, i=0; |
| 3643 | |
| 3644 | DEBUGFUNC("e1000_acquire_eeprom"); |
| 3645 | |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3646 | if(e1000_get_hw_eeprom_semaphore(hw)) |
| 3647 | return -E1000_ERR_EEPROM; |
| 3648 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3649 | eecd = E1000_READ_REG(hw, EECD); |
| 3650 | |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3651 | if (hw->mac_type != e1000_82573) { |
Mallikarjuna R Chilakala | 868d530 | 2005-10-04 06:58:59 -0400 | [diff] [blame] | 3652 | /* Request EEPROM Access */ |
| 3653 | if(hw->mac_type > e1000_82544) { |
| 3654 | eecd |= E1000_EECD_REQ; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3655 | E1000_WRITE_REG(hw, EECD, eecd); |
Mallikarjuna R Chilakala | 868d530 | 2005-10-04 06:58:59 -0400 | [diff] [blame] | 3656 | eecd = E1000_READ_REG(hw, EECD); |
| 3657 | while((!(eecd & E1000_EECD_GNT)) && |
| 3658 | (i < E1000_EEPROM_GRANT_ATTEMPTS)) { |
| 3659 | i++; |
| 3660 | udelay(5); |
| 3661 | eecd = E1000_READ_REG(hw, EECD); |
| 3662 | } |
| 3663 | if(!(eecd & E1000_EECD_GNT)) { |
| 3664 | eecd &= ~E1000_EECD_REQ; |
| 3665 | E1000_WRITE_REG(hw, EECD, eecd); |
| 3666 | DEBUGOUT("Could not acquire EEPROM grant\n"); |
| 3667 | e1000_put_hw_eeprom_semaphore(hw); |
| 3668 | return -E1000_ERR_EEPROM; |
| 3669 | } |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3670 | } |
| 3671 | } |
| 3672 | |
| 3673 | /* Setup EEPROM for Read/Write */ |
| 3674 | |
| 3675 | if (eeprom->type == e1000_eeprom_microwire) { |
| 3676 | /* Clear SK and DI */ |
| 3677 | eecd &= ~(E1000_EECD_DI | E1000_EECD_SK); |
| 3678 | E1000_WRITE_REG(hw, EECD, eecd); |
| 3679 | |
| 3680 | /* Set CS */ |
| 3681 | eecd |= E1000_EECD_CS; |
| 3682 | E1000_WRITE_REG(hw, EECD, eecd); |
| 3683 | } else if (eeprom->type == e1000_eeprom_spi) { |
| 3684 | /* Clear SK and CS */ |
| 3685 | eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); |
| 3686 | E1000_WRITE_REG(hw, EECD, eecd); |
| 3687 | udelay(1); |
| 3688 | } |
| 3689 | |
| 3690 | return E1000_SUCCESS; |
| 3691 | } |
| 3692 | |
| 3693 | /****************************************************************************** |
| 3694 | * Returns EEPROM to a "standby" state |
| 3695 | * |
| 3696 | * hw - Struct containing variables accessed by shared code |
| 3697 | *****************************************************************************/ |
| 3698 | static void |
| 3699 | e1000_standby_eeprom(struct e1000_hw *hw) |
| 3700 | { |
| 3701 | struct e1000_eeprom_info *eeprom = &hw->eeprom; |
| 3702 | uint32_t eecd; |
| 3703 | |
| 3704 | eecd = E1000_READ_REG(hw, EECD); |
| 3705 | |
| 3706 | if(eeprom->type == e1000_eeprom_microwire) { |
| 3707 | eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); |
| 3708 | E1000_WRITE_REG(hw, EECD, eecd); |
| 3709 | E1000_WRITE_FLUSH(hw); |
| 3710 | udelay(eeprom->delay_usec); |
| 3711 | |
| 3712 | /* Clock high */ |
| 3713 | eecd |= E1000_EECD_SK; |
| 3714 | E1000_WRITE_REG(hw, EECD, eecd); |
| 3715 | E1000_WRITE_FLUSH(hw); |
| 3716 | udelay(eeprom->delay_usec); |
| 3717 | |
| 3718 | /* Select EEPROM */ |
| 3719 | eecd |= E1000_EECD_CS; |
| 3720 | E1000_WRITE_REG(hw, EECD, eecd); |
| 3721 | E1000_WRITE_FLUSH(hw); |
| 3722 | udelay(eeprom->delay_usec); |
| 3723 | |
| 3724 | /* Clock low */ |
| 3725 | eecd &= ~E1000_EECD_SK; |
| 3726 | E1000_WRITE_REG(hw, EECD, eecd); |
| 3727 | E1000_WRITE_FLUSH(hw); |
| 3728 | udelay(eeprom->delay_usec); |
| 3729 | } else if(eeprom->type == e1000_eeprom_spi) { |
| 3730 | /* Toggle CS to flush commands */ |
| 3731 | eecd |= E1000_EECD_CS; |
| 3732 | E1000_WRITE_REG(hw, EECD, eecd); |
| 3733 | E1000_WRITE_FLUSH(hw); |
| 3734 | udelay(eeprom->delay_usec); |
| 3735 | eecd &= ~E1000_EECD_CS; |
| 3736 | E1000_WRITE_REG(hw, EECD, eecd); |
| 3737 | E1000_WRITE_FLUSH(hw); |
| 3738 | udelay(eeprom->delay_usec); |
| 3739 | } |
| 3740 | } |
| 3741 | |
| 3742 | /****************************************************************************** |
| 3743 | * Terminates a command by inverting the EEPROM's chip select pin |
| 3744 | * |
| 3745 | * hw - Struct containing variables accessed by shared code |
| 3746 | *****************************************************************************/ |
| 3747 | static void |
| 3748 | e1000_release_eeprom(struct e1000_hw *hw) |
| 3749 | { |
| 3750 | uint32_t eecd; |
| 3751 | |
| 3752 | DEBUGFUNC("e1000_release_eeprom"); |
| 3753 | |
| 3754 | eecd = E1000_READ_REG(hw, EECD); |
| 3755 | |
| 3756 | if (hw->eeprom.type == e1000_eeprom_spi) { |
| 3757 | eecd |= E1000_EECD_CS; /* Pull CS high */ |
| 3758 | eecd &= ~E1000_EECD_SK; /* Lower SCK */ |
| 3759 | |
| 3760 | E1000_WRITE_REG(hw, EECD, eecd); |
| 3761 | |
| 3762 | udelay(hw->eeprom.delay_usec); |
| 3763 | } else if(hw->eeprom.type == e1000_eeprom_microwire) { |
| 3764 | /* cleanup eeprom */ |
| 3765 | |
| 3766 | /* CS on Microwire is active-high */ |
| 3767 | eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); |
| 3768 | |
| 3769 | E1000_WRITE_REG(hw, EECD, eecd); |
| 3770 | |
| 3771 | /* Rising edge of clock */ |
| 3772 | eecd |= E1000_EECD_SK; |
| 3773 | E1000_WRITE_REG(hw, EECD, eecd); |
| 3774 | E1000_WRITE_FLUSH(hw); |
| 3775 | udelay(hw->eeprom.delay_usec); |
| 3776 | |
| 3777 | /* Falling edge of clock */ |
| 3778 | eecd &= ~E1000_EECD_SK; |
| 3779 | E1000_WRITE_REG(hw, EECD, eecd); |
| 3780 | E1000_WRITE_FLUSH(hw); |
| 3781 | udelay(hw->eeprom.delay_usec); |
| 3782 | } |
| 3783 | |
| 3784 | /* Stop requesting EEPROM access */ |
| 3785 | if(hw->mac_type > e1000_82544) { |
| 3786 | eecd &= ~E1000_EECD_REQ; |
| 3787 | E1000_WRITE_REG(hw, EECD, eecd); |
| 3788 | } |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3789 | |
| 3790 | e1000_put_hw_eeprom_semaphore(hw); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3791 | } |
| 3792 | |
| 3793 | /****************************************************************************** |
| 3794 | * Reads a 16 bit word from the EEPROM. |
| 3795 | * |
| 3796 | * hw - Struct containing variables accessed by shared code |
| 3797 | *****************************************************************************/ |
| 3798 | int32_t |
| 3799 | e1000_spi_eeprom_ready(struct e1000_hw *hw) |
| 3800 | { |
| 3801 | uint16_t retry_count = 0; |
| 3802 | uint8_t spi_stat_reg; |
| 3803 | |
| 3804 | DEBUGFUNC("e1000_spi_eeprom_ready"); |
| 3805 | |
| 3806 | /* Read "Status Register" repeatedly until the LSB is cleared. The |
| 3807 | * EEPROM will signal that the command has been completed by clearing |
| 3808 | * bit 0 of the internal status register. If it's not cleared within |
| 3809 | * 5 milliseconds, then error out. |
| 3810 | */ |
| 3811 | retry_count = 0; |
| 3812 | do { |
| 3813 | e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI, |
| 3814 | hw->eeprom.opcode_bits); |
| 3815 | spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8); |
| 3816 | if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI)) |
| 3817 | break; |
| 3818 | |
| 3819 | udelay(5); |
| 3820 | retry_count += 5; |
| 3821 | |
| 3822 | e1000_standby_eeprom(hw); |
| 3823 | } while(retry_count < EEPROM_MAX_RETRY_SPI); |
| 3824 | |
| 3825 | /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and |
| 3826 | * only 0-5mSec on 5V devices) |
| 3827 | */ |
| 3828 | if(retry_count >= EEPROM_MAX_RETRY_SPI) { |
| 3829 | DEBUGOUT("SPI EEPROM Status error\n"); |
| 3830 | return -E1000_ERR_EEPROM; |
| 3831 | } |
| 3832 | |
| 3833 | return E1000_SUCCESS; |
| 3834 | } |
| 3835 | |
| 3836 | /****************************************************************************** |
| 3837 | * Reads a 16 bit word from the EEPROM. |
| 3838 | * |
| 3839 | * hw - Struct containing variables accessed by shared code |
| 3840 | * offset - offset of word in the EEPROM to read |
| 3841 | * data - word read from the EEPROM |
| 3842 | * words - number of words to read |
| 3843 | *****************************************************************************/ |
| 3844 | int32_t |
| 3845 | e1000_read_eeprom(struct e1000_hw *hw, |
| 3846 | uint16_t offset, |
| 3847 | uint16_t words, |
| 3848 | uint16_t *data) |
| 3849 | { |
| 3850 | struct e1000_eeprom_info *eeprom = &hw->eeprom; |
| 3851 | uint32_t i = 0; |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3852 | int32_t ret_val; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3853 | |
| 3854 | DEBUGFUNC("e1000_read_eeprom"); |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3855 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3856 | /* A check for invalid values: offset too large, too many words, and not |
| 3857 | * enough words. |
| 3858 | */ |
| 3859 | if((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) || |
| 3860 | (words == 0)) { |
| 3861 | DEBUGOUT("\"words\" parameter out of bounds\n"); |
| 3862 | return -E1000_ERR_EEPROM; |
| 3863 | } |
| 3864 | |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3865 | /* FLASH reads without acquiring the semaphore are safe in 82573-based |
| 3866 | * controllers. |
| 3867 | */ |
| 3868 | if ((e1000_is_onboard_nvm_eeprom(hw) == TRUE) || |
| 3869 | (hw->mac_type != e1000_82573)) { |
| 3870 | /* Prepare the EEPROM for reading */ |
| 3871 | if(e1000_acquire_eeprom(hw) != E1000_SUCCESS) |
| 3872 | return -E1000_ERR_EEPROM; |
| 3873 | } |
| 3874 | |
| 3875 | if(eeprom->use_eerd == TRUE) { |
| 3876 | ret_val = e1000_read_eeprom_eerd(hw, offset, words, data); |
| 3877 | if ((e1000_is_onboard_nvm_eeprom(hw) == TRUE) || |
| 3878 | (hw->mac_type != e1000_82573)) |
| 3879 | e1000_release_eeprom(hw); |
| 3880 | return ret_val; |
| 3881 | } |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3882 | |
| 3883 | if(eeprom->type == e1000_eeprom_spi) { |
| 3884 | uint16_t word_in; |
| 3885 | uint8_t read_opcode = EEPROM_READ_OPCODE_SPI; |
| 3886 | |
| 3887 | if(e1000_spi_eeprom_ready(hw)) { |
| 3888 | e1000_release_eeprom(hw); |
| 3889 | return -E1000_ERR_EEPROM; |
| 3890 | } |
| 3891 | |
| 3892 | e1000_standby_eeprom(hw); |
| 3893 | |
| 3894 | /* Some SPI eeproms use the 8th address bit embedded in the opcode */ |
| 3895 | if((eeprom->address_bits == 8) && (offset >= 128)) |
| 3896 | read_opcode |= EEPROM_A8_OPCODE_SPI; |
| 3897 | |
| 3898 | /* Send the READ command (opcode + addr) */ |
| 3899 | e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits); |
| 3900 | e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2), eeprom->address_bits); |
| 3901 | |
| 3902 | /* Read the data. The address of the eeprom internally increments with |
| 3903 | * each byte (spi) being read, saving on the overhead of eeprom setup |
| 3904 | * and tear-down. The address counter will roll over if reading beyond |
| 3905 | * the size of the eeprom, thus allowing the entire memory to be read |
| 3906 | * starting from any offset. */ |
| 3907 | for (i = 0; i < words; i++) { |
| 3908 | word_in = e1000_shift_in_ee_bits(hw, 16); |
| 3909 | data[i] = (word_in >> 8) | (word_in << 8); |
| 3910 | } |
| 3911 | } else if(eeprom->type == e1000_eeprom_microwire) { |
| 3912 | for (i = 0; i < words; i++) { |
| 3913 | /* Send the READ command (opcode + addr) */ |
| 3914 | e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE, |
| 3915 | eeprom->opcode_bits); |
| 3916 | e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i), |
| 3917 | eeprom->address_bits); |
| 3918 | |
| 3919 | /* Read the data. For microwire, each word requires the overhead |
| 3920 | * of eeprom setup and tear-down. */ |
| 3921 | data[i] = e1000_shift_in_ee_bits(hw, 16); |
| 3922 | e1000_standby_eeprom(hw); |
| 3923 | } |
| 3924 | } |
| 3925 | |
| 3926 | /* End this read operation */ |
| 3927 | e1000_release_eeprom(hw); |
| 3928 | |
| 3929 | return E1000_SUCCESS; |
| 3930 | } |
| 3931 | |
| 3932 | /****************************************************************************** |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3933 | * Reads a 16 bit word from the EEPROM using the EERD register. |
| 3934 | * |
| 3935 | * hw - Struct containing variables accessed by shared code |
| 3936 | * offset - offset of word in the EEPROM to read |
| 3937 | * data - word read from the EEPROM |
| 3938 | * words - number of words to read |
| 3939 | *****************************************************************************/ |
Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame^] | 3940 | static int32_t |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3941 | e1000_read_eeprom_eerd(struct e1000_hw *hw, |
| 3942 | uint16_t offset, |
| 3943 | uint16_t words, |
| 3944 | uint16_t *data) |
| 3945 | { |
| 3946 | uint32_t i, eerd = 0; |
| 3947 | int32_t error = 0; |
| 3948 | |
| 3949 | for (i = 0; i < words; i++) { |
| 3950 | eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) + |
| 3951 | E1000_EEPROM_RW_REG_START; |
| 3952 | |
| 3953 | E1000_WRITE_REG(hw, EERD, eerd); |
| 3954 | error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ); |
| 3955 | |
| 3956 | if(error) { |
| 3957 | break; |
| 3958 | } |
| 3959 | data[i] = (E1000_READ_REG(hw, EERD) >> E1000_EEPROM_RW_REG_DATA); |
| 3960 | |
| 3961 | } |
| 3962 | |
| 3963 | return error; |
| 3964 | } |
| 3965 | |
| 3966 | /****************************************************************************** |
| 3967 | * Writes a 16 bit word from the EEPROM using the EEWR register. |
| 3968 | * |
| 3969 | * hw - Struct containing variables accessed by shared code |
| 3970 | * offset - offset of word in the EEPROM to read |
| 3971 | * data - word read from the EEPROM |
| 3972 | * words - number of words to read |
| 3973 | *****************************************************************************/ |
Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame^] | 3974 | static int32_t |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3975 | e1000_write_eeprom_eewr(struct e1000_hw *hw, |
| 3976 | uint16_t offset, |
| 3977 | uint16_t words, |
| 3978 | uint16_t *data) |
| 3979 | { |
| 3980 | uint32_t register_value = 0; |
| 3981 | uint32_t i = 0; |
| 3982 | int32_t error = 0; |
| 3983 | |
| 3984 | for (i = 0; i < words; i++) { |
| 3985 | register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) | |
| 3986 | ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) | |
| 3987 | E1000_EEPROM_RW_REG_START; |
| 3988 | |
| 3989 | error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE); |
| 3990 | if(error) { |
| 3991 | break; |
| 3992 | } |
| 3993 | |
| 3994 | E1000_WRITE_REG(hw, EEWR, register_value); |
| 3995 | |
| 3996 | error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE); |
| 3997 | |
| 3998 | if(error) { |
| 3999 | break; |
| 4000 | } |
| 4001 | } |
| 4002 | |
| 4003 | return error; |
| 4004 | } |
| 4005 | |
| 4006 | /****************************************************************************** |
| 4007 | * Polls the status bit (bit 1) of the EERD to determine when the read is done. |
| 4008 | * |
| 4009 | * hw - Struct containing variables accessed by shared code |
| 4010 | *****************************************************************************/ |
Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame^] | 4011 | static int32_t |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 4012 | e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd) |
| 4013 | { |
| 4014 | uint32_t attempts = 100000; |
| 4015 | uint32_t i, reg = 0; |
| 4016 | int32_t done = E1000_ERR_EEPROM; |
| 4017 | |
| 4018 | for(i = 0; i < attempts; i++) { |
| 4019 | if(eerd == E1000_EEPROM_POLL_READ) |
| 4020 | reg = E1000_READ_REG(hw, EERD); |
| 4021 | else |
| 4022 | reg = E1000_READ_REG(hw, EEWR); |
| 4023 | |
| 4024 | if(reg & E1000_EEPROM_RW_REG_DONE) { |
| 4025 | done = E1000_SUCCESS; |
| 4026 | break; |
| 4027 | } |
| 4028 | udelay(5); |
| 4029 | } |
| 4030 | |
| 4031 | return done; |
| 4032 | } |
| 4033 | |
| 4034 | /*************************************************************************** |
| 4035 | * Description: Determines if the onboard NVM is FLASH or EEPROM. |
| 4036 | * |
| 4037 | * hw - Struct containing variables accessed by shared code |
| 4038 | ****************************************************************************/ |
Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame^] | 4039 | static boolean_t |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 4040 | e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw) |
| 4041 | { |
| 4042 | uint32_t eecd = 0; |
| 4043 | |
| 4044 | if(hw->mac_type == e1000_82573) { |
| 4045 | eecd = E1000_READ_REG(hw, EECD); |
| 4046 | |
| 4047 | /* Isolate bits 15 & 16 */ |
| 4048 | eecd = ((eecd >> 15) & 0x03); |
| 4049 | |
| 4050 | /* If both bits are set, device is Flash type */ |
| 4051 | if(eecd == 0x03) { |
| 4052 | return FALSE; |
| 4053 | } |
| 4054 | } |
| 4055 | return TRUE; |
| 4056 | } |
| 4057 | |
| 4058 | /****************************************************************************** |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4059 | * Verifies that the EEPROM has a valid checksum |
| 4060 | * |
| 4061 | * hw - Struct containing variables accessed by shared code |
| 4062 | * |
| 4063 | * Reads the first 64 16 bit words of the EEPROM and sums the values read. |
| 4064 | * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is |
| 4065 | * valid. |
| 4066 | *****************************************************************************/ |
| 4067 | int32_t |
| 4068 | e1000_validate_eeprom_checksum(struct e1000_hw *hw) |
| 4069 | { |
| 4070 | uint16_t checksum = 0; |
| 4071 | uint16_t i, eeprom_data; |
| 4072 | |
| 4073 | DEBUGFUNC("e1000_validate_eeprom_checksum"); |
| 4074 | |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 4075 | if ((hw->mac_type == e1000_82573) && |
| 4076 | (e1000_is_onboard_nvm_eeprom(hw) == FALSE)) { |
| 4077 | /* Check bit 4 of word 10h. If it is 0, firmware is done updating |
| 4078 | * 10h-12h. Checksum may need to be fixed. */ |
| 4079 | e1000_read_eeprom(hw, 0x10, 1, &eeprom_data); |
| 4080 | if ((eeprom_data & 0x10) == 0) { |
| 4081 | /* Read 0x23 and check bit 15. This bit is a 1 when the checksum |
| 4082 | * has already been fixed. If the checksum is still wrong and this |
| 4083 | * bit is a 1, we need to return bad checksum. Otherwise, we need |
| 4084 | * to set this bit to a 1 and update the checksum. */ |
| 4085 | e1000_read_eeprom(hw, 0x23, 1, &eeprom_data); |
| 4086 | if ((eeprom_data & 0x8000) == 0) { |
| 4087 | eeprom_data |= 0x8000; |
| 4088 | e1000_write_eeprom(hw, 0x23, 1, &eeprom_data); |
| 4089 | e1000_update_eeprom_checksum(hw); |
| 4090 | } |
| 4091 | } |
| 4092 | } |
| 4093 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4094 | for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { |
| 4095 | if(e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { |
| 4096 | DEBUGOUT("EEPROM Read Error\n"); |
| 4097 | return -E1000_ERR_EEPROM; |
| 4098 | } |
| 4099 | checksum += eeprom_data; |
| 4100 | } |
| 4101 | |
| 4102 | if(checksum == (uint16_t) EEPROM_SUM) |
| 4103 | return E1000_SUCCESS; |
| 4104 | else { |
| 4105 | DEBUGOUT("EEPROM Checksum Invalid\n"); |
| 4106 | return -E1000_ERR_EEPROM; |
| 4107 | } |
| 4108 | } |
| 4109 | |
| 4110 | /****************************************************************************** |
| 4111 | * Calculates the EEPROM checksum and writes it to the EEPROM |
| 4112 | * |
| 4113 | * hw - Struct containing variables accessed by shared code |
| 4114 | * |
| 4115 | * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA. |
| 4116 | * Writes the difference to word offset 63 of the EEPROM. |
| 4117 | *****************************************************************************/ |
| 4118 | int32_t |
| 4119 | e1000_update_eeprom_checksum(struct e1000_hw *hw) |
| 4120 | { |
| 4121 | uint16_t checksum = 0; |
| 4122 | uint16_t i, eeprom_data; |
| 4123 | |
| 4124 | DEBUGFUNC("e1000_update_eeprom_checksum"); |
| 4125 | |
| 4126 | for(i = 0; i < EEPROM_CHECKSUM_REG; i++) { |
| 4127 | if(e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { |
| 4128 | DEBUGOUT("EEPROM Read Error\n"); |
| 4129 | return -E1000_ERR_EEPROM; |
| 4130 | } |
| 4131 | checksum += eeprom_data; |
| 4132 | } |
| 4133 | checksum = (uint16_t) EEPROM_SUM - checksum; |
| 4134 | if(e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) { |
| 4135 | DEBUGOUT("EEPROM Write Error\n"); |
| 4136 | return -E1000_ERR_EEPROM; |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 4137 | } else if (hw->eeprom.type == e1000_eeprom_flash) { |
| 4138 | e1000_commit_shadow_ram(hw); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4139 | } |
| 4140 | return E1000_SUCCESS; |
| 4141 | } |
| 4142 | |
| 4143 | /****************************************************************************** |
| 4144 | * Parent function for writing words to the different EEPROM types. |
| 4145 | * |
| 4146 | * hw - Struct containing variables accessed by shared code |
| 4147 | * offset - offset within the EEPROM to be written to |
| 4148 | * words - number of words to write |
| 4149 | * data - 16 bit word to be written to the EEPROM |
| 4150 | * |
| 4151 | * If e1000_update_eeprom_checksum is not called after this function, the |
| 4152 | * EEPROM will most likely contain an invalid checksum. |
| 4153 | *****************************************************************************/ |
| 4154 | int32_t |
| 4155 | e1000_write_eeprom(struct e1000_hw *hw, |
| 4156 | uint16_t offset, |
| 4157 | uint16_t words, |
| 4158 | uint16_t *data) |
| 4159 | { |
| 4160 | struct e1000_eeprom_info *eeprom = &hw->eeprom; |
| 4161 | int32_t status = 0; |
| 4162 | |
| 4163 | DEBUGFUNC("e1000_write_eeprom"); |
| 4164 | |
| 4165 | /* A check for invalid values: offset too large, too many words, and not |
| 4166 | * enough words. |
| 4167 | */ |
| 4168 | if((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) || |
| 4169 | (words == 0)) { |
| 4170 | DEBUGOUT("\"words\" parameter out of bounds\n"); |
| 4171 | return -E1000_ERR_EEPROM; |
| 4172 | } |
| 4173 | |
Mallikarjuna R Chilakala | 868d530 | 2005-10-04 06:58:59 -0400 | [diff] [blame] | 4174 | /* 82573 writes only through eewr */ |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 4175 | if(eeprom->use_eewr == TRUE) |
| 4176 | return e1000_write_eeprom_eewr(hw, offset, words, data); |
| 4177 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4178 | /* Prepare the EEPROM for writing */ |
| 4179 | if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) |
| 4180 | return -E1000_ERR_EEPROM; |
| 4181 | |
| 4182 | if(eeprom->type == e1000_eeprom_microwire) { |
| 4183 | status = e1000_write_eeprom_microwire(hw, offset, words, data); |
| 4184 | } else { |
| 4185 | status = e1000_write_eeprom_spi(hw, offset, words, data); |
| 4186 | msec_delay(10); |
| 4187 | } |
| 4188 | |
| 4189 | /* Done with writing */ |
| 4190 | e1000_release_eeprom(hw); |
| 4191 | |
| 4192 | return status; |
| 4193 | } |
| 4194 | |
| 4195 | /****************************************************************************** |
| 4196 | * Writes a 16 bit word to a given offset in an SPI EEPROM. |
| 4197 | * |
| 4198 | * hw - Struct containing variables accessed by shared code |
| 4199 | * offset - offset within the EEPROM to be written to |
| 4200 | * words - number of words to write |
| 4201 | * data - pointer to array of 8 bit words to be written to the EEPROM |
| 4202 | * |
| 4203 | *****************************************************************************/ |
| 4204 | int32_t |
| 4205 | e1000_write_eeprom_spi(struct e1000_hw *hw, |
| 4206 | uint16_t offset, |
| 4207 | uint16_t words, |
| 4208 | uint16_t *data) |
| 4209 | { |
| 4210 | struct e1000_eeprom_info *eeprom = &hw->eeprom; |
| 4211 | uint16_t widx = 0; |
| 4212 | |
| 4213 | DEBUGFUNC("e1000_write_eeprom_spi"); |
| 4214 | |
| 4215 | while (widx < words) { |
| 4216 | uint8_t write_opcode = EEPROM_WRITE_OPCODE_SPI; |
| 4217 | |
| 4218 | if(e1000_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM; |
| 4219 | |
| 4220 | e1000_standby_eeprom(hw); |
| 4221 | |
| 4222 | /* Send the WRITE ENABLE command (8 bit opcode ) */ |
| 4223 | e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI, |
| 4224 | eeprom->opcode_bits); |
| 4225 | |
| 4226 | e1000_standby_eeprom(hw); |
| 4227 | |
| 4228 | /* Some SPI eeproms use the 8th address bit embedded in the opcode */ |
| 4229 | if((eeprom->address_bits == 8) && (offset >= 128)) |
| 4230 | write_opcode |= EEPROM_A8_OPCODE_SPI; |
| 4231 | |
| 4232 | /* Send the Write command (8-bit opcode + addr) */ |
| 4233 | e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits); |
| 4234 | |
| 4235 | e1000_shift_out_ee_bits(hw, (uint16_t)((offset + widx)*2), |
| 4236 | eeprom->address_bits); |
| 4237 | |
| 4238 | /* Send the data */ |
| 4239 | |
| 4240 | /* Loop to allow for up to whole page write (32 bytes) of eeprom */ |
| 4241 | while (widx < words) { |
| 4242 | uint16_t word_out = data[widx]; |
| 4243 | word_out = (word_out >> 8) | (word_out << 8); |
| 4244 | e1000_shift_out_ee_bits(hw, word_out, 16); |
| 4245 | widx++; |
| 4246 | |
| 4247 | /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE |
| 4248 | * operation, while the smaller eeproms are capable of an 8-byte |
| 4249 | * PAGE WRITE operation. Break the inner loop to pass new address |
| 4250 | */ |
| 4251 | if((((offset + widx)*2) % eeprom->page_size) == 0) { |
| 4252 | e1000_standby_eeprom(hw); |
| 4253 | break; |
| 4254 | } |
| 4255 | } |
| 4256 | } |
| 4257 | |
| 4258 | return E1000_SUCCESS; |
| 4259 | } |
| 4260 | |
| 4261 | /****************************************************************************** |
| 4262 | * Writes a 16 bit word to a given offset in a Microwire EEPROM. |
| 4263 | * |
| 4264 | * hw - Struct containing variables accessed by shared code |
| 4265 | * offset - offset within the EEPROM to be written to |
| 4266 | * words - number of words to write |
| 4267 | * data - pointer to array of 16 bit words to be written to the EEPROM |
| 4268 | * |
| 4269 | *****************************************************************************/ |
| 4270 | int32_t |
| 4271 | e1000_write_eeprom_microwire(struct e1000_hw *hw, |
| 4272 | uint16_t offset, |
| 4273 | uint16_t words, |
| 4274 | uint16_t *data) |
| 4275 | { |
| 4276 | struct e1000_eeprom_info *eeprom = &hw->eeprom; |
| 4277 | uint32_t eecd; |
| 4278 | uint16_t words_written = 0; |
| 4279 | uint16_t i = 0; |
| 4280 | |
| 4281 | DEBUGFUNC("e1000_write_eeprom_microwire"); |
| 4282 | |
| 4283 | /* Send the write enable command to the EEPROM (3-bit opcode plus |
| 4284 | * 6/8-bit dummy address beginning with 11). It's less work to include |
| 4285 | * the 11 of the dummy address as part of the opcode than it is to shift |
| 4286 | * it over the correct number of bits for the address. This puts the |
| 4287 | * EEPROM into write/erase mode. |
| 4288 | */ |
| 4289 | e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE, |
| 4290 | (uint16_t)(eeprom->opcode_bits + 2)); |
| 4291 | |
| 4292 | e1000_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2)); |
| 4293 | |
| 4294 | /* Prepare the EEPROM */ |
| 4295 | e1000_standby_eeprom(hw); |
| 4296 | |
| 4297 | while (words_written < words) { |
| 4298 | /* Send the Write command (3-bit opcode + addr) */ |
| 4299 | e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE, |
| 4300 | eeprom->opcode_bits); |
| 4301 | |
| 4302 | e1000_shift_out_ee_bits(hw, (uint16_t)(offset + words_written), |
| 4303 | eeprom->address_bits); |
| 4304 | |
| 4305 | /* Send the data */ |
| 4306 | e1000_shift_out_ee_bits(hw, data[words_written], 16); |
| 4307 | |
| 4308 | /* Toggle the CS line. This in effect tells the EEPROM to execute |
| 4309 | * the previous command. |
| 4310 | */ |
| 4311 | e1000_standby_eeprom(hw); |
| 4312 | |
| 4313 | /* Read DO repeatedly until it is high (equal to '1'). The EEPROM will |
| 4314 | * signal that the command has been completed by raising the DO signal. |
| 4315 | * If DO does not go high in 10 milliseconds, then error out. |
| 4316 | */ |
| 4317 | for(i = 0; i < 200; i++) { |
| 4318 | eecd = E1000_READ_REG(hw, EECD); |
| 4319 | if(eecd & E1000_EECD_DO) break; |
| 4320 | udelay(50); |
| 4321 | } |
| 4322 | if(i == 200) { |
| 4323 | DEBUGOUT("EEPROM Write did not complete\n"); |
| 4324 | return -E1000_ERR_EEPROM; |
| 4325 | } |
| 4326 | |
| 4327 | /* Recover from write */ |
| 4328 | e1000_standby_eeprom(hw); |
| 4329 | |
| 4330 | words_written++; |
| 4331 | } |
| 4332 | |
| 4333 | /* Send the write disable command to the EEPROM (3-bit opcode plus |
| 4334 | * 6/8-bit dummy address beginning with 10). It's less work to include |
| 4335 | * the 10 of the dummy address as part of the opcode than it is to shift |
| 4336 | * it over the correct number of bits for the address. This takes the |
| 4337 | * EEPROM out of write/erase mode. |
| 4338 | */ |
| 4339 | e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE, |
| 4340 | (uint16_t)(eeprom->opcode_bits + 2)); |
| 4341 | |
| 4342 | e1000_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2)); |
| 4343 | |
| 4344 | return E1000_SUCCESS; |
| 4345 | } |
| 4346 | |
| 4347 | /****************************************************************************** |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 4348 | * Flushes the cached eeprom to NVM. This is done by saving the modified values |
| 4349 | * in the eeprom cache and the non modified values in the currently active bank |
| 4350 | * to the new bank. |
| 4351 | * |
| 4352 | * hw - Struct containing variables accessed by shared code |
| 4353 | * offset - offset of word in the EEPROM to read |
| 4354 | * data - word read from the EEPROM |
| 4355 | * words - number of words to read |
| 4356 | *****************************************************************************/ |
Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame^] | 4357 | static int32_t |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 4358 | e1000_commit_shadow_ram(struct e1000_hw *hw) |
| 4359 | { |
| 4360 | uint32_t attempts = 100000; |
| 4361 | uint32_t eecd = 0; |
| 4362 | uint32_t flop = 0; |
| 4363 | uint32_t i = 0; |
| 4364 | int32_t error = E1000_SUCCESS; |
| 4365 | |
| 4366 | /* The flop register will be used to determine if flash type is STM */ |
| 4367 | flop = E1000_READ_REG(hw, FLOP); |
| 4368 | |
| 4369 | if (hw->mac_type == e1000_82573) { |
| 4370 | for (i=0; i < attempts; i++) { |
| 4371 | eecd = E1000_READ_REG(hw, EECD); |
| 4372 | if ((eecd & E1000_EECD_FLUPD) == 0) { |
| 4373 | break; |
| 4374 | } |
| 4375 | udelay(5); |
| 4376 | } |
| 4377 | |
| 4378 | if (i == attempts) { |
| 4379 | return -E1000_ERR_EEPROM; |
| 4380 | } |
| 4381 | |
| 4382 | /* If STM opcode located in bits 15:8 of flop, reset firmware */ |
| 4383 | if ((flop & 0xFF00) == E1000_STM_OPCODE) { |
| 4384 | E1000_WRITE_REG(hw, HICR, E1000_HICR_FW_RESET); |
| 4385 | } |
| 4386 | |
| 4387 | /* Perform the flash update */ |
| 4388 | E1000_WRITE_REG(hw, EECD, eecd | E1000_EECD_FLUPD); |
| 4389 | |
| 4390 | for (i=0; i < attempts; i++) { |
| 4391 | eecd = E1000_READ_REG(hw, EECD); |
| 4392 | if ((eecd & E1000_EECD_FLUPD) == 0) { |
| 4393 | break; |
| 4394 | } |
| 4395 | udelay(5); |
| 4396 | } |
| 4397 | |
| 4398 | if (i == attempts) { |
| 4399 | return -E1000_ERR_EEPROM; |
| 4400 | } |
| 4401 | } |
| 4402 | |
| 4403 | return error; |
| 4404 | } |
| 4405 | |
| 4406 | /****************************************************************************** |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4407 | * Reads the adapter's part number from the EEPROM |
| 4408 | * |
| 4409 | * hw - Struct containing variables accessed by shared code |
| 4410 | * part_num - Adapter's part number |
| 4411 | *****************************************************************************/ |
| 4412 | int32_t |
| 4413 | e1000_read_part_num(struct e1000_hw *hw, |
| 4414 | uint32_t *part_num) |
| 4415 | { |
| 4416 | uint16_t offset = EEPROM_PBA_BYTE_1; |
| 4417 | uint16_t eeprom_data; |
| 4418 | |
| 4419 | DEBUGFUNC("e1000_read_part_num"); |
| 4420 | |
| 4421 | /* Get word 0 from EEPROM */ |
| 4422 | if(e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) { |
| 4423 | DEBUGOUT("EEPROM Read Error\n"); |
| 4424 | return -E1000_ERR_EEPROM; |
| 4425 | } |
| 4426 | /* Save word 0 in upper half of part_num */ |
| 4427 | *part_num = (uint32_t) (eeprom_data << 16); |
| 4428 | |
| 4429 | /* Get word 1 from EEPROM */ |
| 4430 | if(e1000_read_eeprom(hw, ++offset, 1, &eeprom_data) < 0) { |
| 4431 | DEBUGOUT("EEPROM Read Error\n"); |
| 4432 | return -E1000_ERR_EEPROM; |
| 4433 | } |
| 4434 | /* Save word 1 in lower half of part_num */ |
| 4435 | *part_num |= eeprom_data; |
| 4436 | |
| 4437 | return E1000_SUCCESS; |
| 4438 | } |
| 4439 | |
| 4440 | /****************************************************************************** |
| 4441 | * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the |
| 4442 | * second function of dual function devices |
| 4443 | * |
| 4444 | * hw - Struct containing variables accessed by shared code |
| 4445 | *****************************************************************************/ |
| 4446 | int32_t |
| 4447 | e1000_read_mac_addr(struct e1000_hw * hw) |
| 4448 | { |
| 4449 | uint16_t offset; |
| 4450 | uint16_t eeprom_data, i; |
| 4451 | |
| 4452 | DEBUGFUNC("e1000_read_mac_addr"); |
| 4453 | |
| 4454 | for(i = 0; i < NODE_ADDRESS_SIZE; i += 2) { |
| 4455 | offset = i >> 1; |
| 4456 | if(e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) { |
| 4457 | DEBUGOUT("EEPROM Read Error\n"); |
| 4458 | return -E1000_ERR_EEPROM; |
| 4459 | } |
| 4460 | hw->perm_mac_addr[i] = (uint8_t) (eeprom_data & 0x00FF); |
| 4461 | hw->perm_mac_addr[i+1] = (uint8_t) (eeprom_data >> 8); |
| 4462 | } |
Mallikarjuna R Chilakala | 868d530 | 2005-10-04 06:58:59 -0400 | [diff] [blame] | 4463 | switch (hw->mac_type) { |
| 4464 | default: |
| 4465 | break; |
| 4466 | case e1000_82546: |
| 4467 | case e1000_82546_rev_3: |
| 4468 | case e1000_82571: |
| 4469 | if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4470 | hw->perm_mac_addr[5] ^= 0x01; |
Mallikarjuna R Chilakala | 868d530 | 2005-10-04 06:58:59 -0400 | [diff] [blame] | 4471 | break; |
| 4472 | } |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4473 | |
| 4474 | for(i = 0; i < NODE_ADDRESS_SIZE; i++) |
| 4475 | hw->mac_addr[i] = hw->perm_mac_addr[i]; |
| 4476 | return E1000_SUCCESS; |
| 4477 | } |
| 4478 | |
| 4479 | /****************************************************************************** |
| 4480 | * Initializes receive address filters. |
| 4481 | * |
| 4482 | * hw - Struct containing variables accessed by shared code |
| 4483 | * |
| 4484 | * Places the MAC address in receive address register 0 and clears the rest |
| 4485 | * of the receive addresss registers. Clears the multicast table. Assumes |
| 4486 | * the receiver is in reset when the routine is called. |
| 4487 | *****************************************************************************/ |
Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame^] | 4488 | static void |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4489 | e1000_init_rx_addrs(struct e1000_hw *hw) |
| 4490 | { |
| 4491 | uint32_t i; |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 4492 | uint32_t rar_num; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4493 | |
| 4494 | DEBUGFUNC("e1000_init_rx_addrs"); |
| 4495 | |
| 4496 | /* Setup the receive address. */ |
| 4497 | DEBUGOUT("Programming MAC Address into RAR[0]\n"); |
| 4498 | |
| 4499 | e1000_rar_set(hw, hw->mac_addr, 0); |
| 4500 | |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 4501 | rar_num = E1000_RAR_ENTRIES; |
Mallikarjuna R Chilakala | 868d530 | 2005-10-04 06:58:59 -0400 | [diff] [blame] | 4502 | |
| 4503 | /* Reserve a spot for the Locally Administered Address to work around |
| 4504 | * an 82571 issue in which a reset on one port will reload the MAC on |
| 4505 | * the other port. */ |
| 4506 | if ((hw->mac_type == e1000_82571) && (hw->laa_is_present == TRUE)) |
| 4507 | rar_num -= 1; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4508 | /* Zero out the other 15 receive addresses. */ |
| 4509 | DEBUGOUT("Clearing RAR[1-15]\n"); |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 4510 | for(i = 1; i < rar_num; i++) { |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4511 | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); |
| 4512 | E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); |
| 4513 | } |
| 4514 | } |
| 4515 | |
Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame^] | 4516 | #if 0 |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4517 | /****************************************************************************** |
| 4518 | * Updates the MAC's list of multicast addresses. |
| 4519 | * |
| 4520 | * hw - Struct containing variables accessed by shared code |
| 4521 | * mc_addr_list - the list of new multicast addresses |
| 4522 | * mc_addr_count - number of addresses |
| 4523 | * pad - number of bytes between addresses in the list |
| 4524 | * rar_used_count - offset where to start adding mc addresses into the RAR's |
| 4525 | * |
| 4526 | * The given list replaces any existing list. Clears the last 15 receive |
| 4527 | * address registers and the multicast table. Uses receive address registers |
| 4528 | * for the first 15 multicast addresses, and hashes the rest into the |
| 4529 | * multicast table. |
| 4530 | *****************************************************************************/ |
| 4531 | void |
| 4532 | e1000_mc_addr_list_update(struct e1000_hw *hw, |
| 4533 | uint8_t *mc_addr_list, |
| 4534 | uint32_t mc_addr_count, |
| 4535 | uint32_t pad, |
| 4536 | uint32_t rar_used_count) |
| 4537 | { |
| 4538 | uint32_t hash_value; |
| 4539 | uint32_t i; |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 4540 | uint32_t num_rar_entry; |
| 4541 | uint32_t num_mta_entry; |
| 4542 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4543 | DEBUGFUNC("e1000_mc_addr_list_update"); |
| 4544 | |
| 4545 | /* Set the new number of MC addresses that we are being requested to use. */ |
| 4546 | hw->num_mc_addrs = mc_addr_count; |
| 4547 | |
| 4548 | /* Clear RAR[1-15] */ |
| 4549 | DEBUGOUT(" Clearing RAR[1-15]\n"); |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 4550 | num_rar_entry = E1000_RAR_ENTRIES; |
Mallikarjuna R Chilakala | 868d530 | 2005-10-04 06:58:59 -0400 | [diff] [blame] | 4551 | /* Reserve a spot for the Locally Administered Address to work around |
| 4552 | * an 82571 issue in which a reset on one port will reload the MAC on |
| 4553 | * the other port. */ |
| 4554 | if ((hw->mac_type == e1000_82571) && (hw->laa_is_present == TRUE)) |
| 4555 | num_rar_entry -= 1; |
| 4556 | |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 4557 | for(i = rar_used_count; i < num_rar_entry; i++) { |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4558 | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); |
| 4559 | E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); |
| 4560 | } |
| 4561 | |
| 4562 | /* Clear the MTA */ |
| 4563 | DEBUGOUT(" Clearing MTA\n"); |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 4564 | num_mta_entry = E1000_NUM_MTA_REGISTERS; |
| 4565 | for(i = 0; i < num_mta_entry; i++) { |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4566 | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); |
| 4567 | } |
| 4568 | |
| 4569 | /* Add the new addresses */ |
| 4570 | for(i = 0; i < mc_addr_count; i++) { |
| 4571 | DEBUGOUT(" Adding the multicast addresses:\n"); |
| 4572 | DEBUGOUT7(" MC Addr #%d =%.2X %.2X %.2X %.2X %.2X %.2X\n", i, |
| 4573 | mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad)], |
| 4574 | mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 1], |
| 4575 | mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 2], |
| 4576 | mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 3], |
| 4577 | mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 4], |
| 4578 | mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 5]); |
| 4579 | |
| 4580 | hash_value = e1000_hash_mc_addr(hw, |
| 4581 | mc_addr_list + |
| 4582 | (i * (ETH_LENGTH_OF_ADDRESS + pad))); |
| 4583 | |
| 4584 | DEBUGOUT1(" Hash value = 0x%03X\n", hash_value); |
| 4585 | |
| 4586 | /* Place this multicast address in the RAR if there is room, * |
| 4587 | * else put it in the MTA |
| 4588 | */ |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 4589 | if (rar_used_count < num_rar_entry) { |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4590 | e1000_rar_set(hw, |
| 4591 | mc_addr_list + (i * (ETH_LENGTH_OF_ADDRESS + pad)), |
| 4592 | rar_used_count); |
| 4593 | rar_used_count++; |
| 4594 | } else { |
| 4595 | e1000_mta_set(hw, hash_value); |
| 4596 | } |
| 4597 | } |
| 4598 | DEBUGOUT("MC Update Complete\n"); |
| 4599 | } |
Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame^] | 4600 | #endif /* 0 */ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4601 | |
| 4602 | /****************************************************************************** |
| 4603 | * Hashes an address to determine its location in the multicast table |
| 4604 | * |
| 4605 | * hw - Struct containing variables accessed by shared code |
| 4606 | * mc_addr - the multicast address to hash |
| 4607 | *****************************************************************************/ |
| 4608 | uint32_t |
| 4609 | e1000_hash_mc_addr(struct e1000_hw *hw, |
| 4610 | uint8_t *mc_addr) |
| 4611 | { |
| 4612 | uint32_t hash_value = 0; |
| 4613 | |
| 4614 | /* The portion of the address that is used for the hash table is |
| 4615 | * determined by the mc_filter_type setting. |
| 4616 | */ |
| 4617 | switch (hw->mc_filter_type) { |
| 4618 | /* [0] [1] [2] [3] [4] [5] |
| 4619 | * 01 AA 00 12 34 56 |
| 4620 | * LSB MSB |
| 4621 | */ |
| 4622 | case 0: |
| 4623 | /* [47:36] i.e. 0x563 for above example address */ |
| 4624 | hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4)); |
| 4625 | break; |
| 4626 | case 1: |
| 4627 | /* [46:35] i.e. 0xAC6 for above example address */ |
| 4628 | hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5)); |
| 4629 | break; |
| 4630 | case 2: |
| 4631 | /* [45:34] i.e. 0x5D8 for above example address */ |
| 4632 | hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6)); |
| 4633 | break; |
| 4634 | case 3: |
| 4635 | /* [43:32] i.e. 0x634 for above example address */ |
| 4636 | hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8)); |
| 4637 | break; |
| 4638 | } |
| 4639 | |
| 4640 | hash_value &= 0xFFF; |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 4641 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4642 | return hash_value; |
| 4643 | } |
| 4644 | |
| 4645 | /****************************************************************************** |
| 4646 | * Sets the bit in the multicast table corresponding to the hash value. |
| 4647 | * |
| 4648 | * hw - Struct containing variables accessed by shared code |
| 4649 | * hash_value - Multicast address hash value |
| 4650 | *****************************************************************************/ |
| 4651 | void |
| 4652 | e1000_mta_set(struct e1000_hw *hw, |
| 4653 | uint32_t hash_value) |
| 4654 | { |
| 4655 | uint32_t hash_bit, hash_reg; |
| 4656 | uint32_t mta; |
| 4657 | uint32_t temp; |
| 4658 | |
| 4659 | /* The MTA is a register array of 128 32-bit registers. |
| 4660 | * It is treated like an array of 4096 bits. We want to set |
| 4661 | * bit BitArray[hash_value]. So we figure out what register |
| 4662 | * the bit is in, read it, OR in the new bit, then write |
| 4663 | * back the new value. The register is determined by the |
| 4664 | * upper 7 bits of the hash value and the bit within that |
| 4665 | * register are determined by the lower 5 bits of the value. |
| 4666 | */ |
| 4667 | hash_reg = (hash_value >> 5) & 0x7F; |
| 4668 | hash_bit = hash_value & 0x1F; |
| 4669 | |
| 4670 | mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg); |
| 4671 | |
| 4672 | mta |= (1 << hash_bit); |
| 4673 | |
| 4674 | /* If we are on an 82544 and we are trying to write an odd offset |
| 4675 | * in the MTA, save off the previous entry before writing and |
| 4676 | * restore the old value after writing. |
| 4677 | */ |
| 4678 | if((hw->mac_type == e1000_82544) && ((hash_reg & 0x1) == 1)) { |
| 4679 | temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1)); |
| 4680 | E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta); |
| 4681 | E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp); |
| 4682 | } else { |
| 4683 | E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta); |
| 4684 | } |
| 4685 | } |
| 4686 | |
| 4687 | /****************************************************************************** |
| 4688 | * Puts an ethernet address into a receive address register. |
| 4689 | * |
| 4690 | * hw - Struct containing variables accessed by shared code |
| 4691 | * addr - Address to put into receive address register |
| 4692 | * index - Receive address register to write |
| 4693 | *****************************************************************************/ |
| 4694 | void |
| 4695 | e1000_rar_set(struct e1000_hw *hw, |
| 4696 | uint8_t *addr, |
| 4697 | uint32_t index) |
| 4698 | { |
| 4699 | uint32_t rar_low, rar_high; |
| 4700 | |
| 4701 | /* HW expects these in little endian so we reverse the byte order |
| 4702 | * from network order (big endian) to little endian |
| 4703 | */ |
| 4704 | rar_low = ((uint32_t) addr[0] | |
| 4705 | ((uint32_t) addr[1] << 8) | |
| 4706 | ((uint32_t) addr[2] << 16) | ((uint32_t) addr[3] << 24)); |
| 4707 | |
| 4708 | rar_high = ((uint32_t) addr[4] | ((uint32_t) addr[5] << 8) | E1000_RAH_AV); |
| 4709 | |
| 4710 | E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low); |
| 4711 | E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high); |
| 4712 | } |
| 4713 | |
| 4714 | /****************************************************************************** |
| 4715 | * Writes a value to the specified offset in the VLAN filter table. |
| 4716 | * |
| 4717 | * hw - Struct containing variables accessed by shared code |
| 4718 | * offset - Offset in VLAN filer table to write |
| 4719 | * value - Value to write into VLAN filter table |
| 4720 | *****************************************************************************/ |
| 4721 | void |
| 4722 | e1000_write_vfta(struct e1000_hw *hw, |
| 4723 | uint32_t offset, |
| 4724 | uint32_t value) |
| 4725 | { |
| 4726 | uint32_t temp; |
| 4727 | |
| 4728 | if((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) { |
| 4729 | temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1)); |
| 4730 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); |
| 4731 | E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp); |
| 4732 | } else { |
| 4733 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); |
| 4734 | } |
| 4735 | } |
| 4736 | |
| 4737 | /****************************************************************************** |
| 4738 | * Clears the VLAN filer table |
| 4739 | * |
| 4740 | * hw - Struct containing variables accessed by shared code |
| 4741 | *****************************************************************************/ |
Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame^] | 4742 | static void |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4743 | e1000_clear_vfta(struct e1000_hw *hw) |
| 4744 | { |
| 4745 | uint32_t offset; |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 4746 | uint32_t vfta_value = 0; |
| 4747 | uint32_t vfta_offset = 0; |
| 4748 | uint32_t vfta_bit_in_reg = 0; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4749 | |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 4750 | if (hw->mac_type == e1000_82573) { |
| 4751 | if (hw->mng_cookie.vlan_id != 0) { |
| 4752 | /* The VFTA is a 4096b bit-field, each identifying a single VLAN |
| 4753 | * ID. The following operations determine which 32b entry |
| 4754 | * (i.e. offset) into the array we want to set the VLAN ID |
| 4755 | * (i.e. bit) of the manageability unit. */ |
| 4756 | vfta_offset = (hw->mng_cookie.vlan_id >> |
| 4757 | E1000_VFTA_ENTRY_SHIFT) & |
| 4758 | E1000_VFTA_ENTRY_MASK; |
| 4759 | vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id & |
| 4760 | E1000_VFTA_ENTRY_BIT_SHIFT_MASK); |
| 4761 | } |
| 4762 | } |
| 4763 | for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { |
| 4764 | /* If the offset we want to clear is the same offset of the |
| 4765 | * manageability VLAN ID, then clear all bits except that of the |
| 4766 | * manageability unit */ |
| 4767 | vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; |
| 4768 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value); |
| 4769 | } |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4770 | } |
| 4771 | |
Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame^] | 4772 | static int32_t |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4773 | e1000_id_led_init(struct e1000_hw * hw) |
| 4774 | { |
| 4775 | uint32_t ledctl; |
| 4776 | const uint32_t ledctl_mask = 0x000000FF; |
| 4777 | const uint32_t ledctl_on = E1000_LEDCTL_MODE_LED_ON; |
| 4778 | const uint32_t ledctl_off = E1000_LEDCTL_MODE_LED_OFF; |
| 4779 | uint16_t eeprom_data, i, temp; |
| 4780 | const uint16_t led_mask = 0x0F; |
| 4781 | |
| 4782 | DEBUGFUNC("e1000_id_led_init"); |
| 4783 | |
| 4784 | if(hw->mac_type < e1000_82540) { |
| 4785 | /* Nothing to do */ |
| 4786 | return E1000_SUCCESS; |
| 4787 | } |
| 4788 | |
| 4789 | ledctl = E1000_READ_REG(hw, LEDCTL); |
| 4790 | hw->ledctl_default = ledctl; |
| 4791 | hw->ledctl_mode1 = hw->ledctl_default; |
| 4792 | hw->ledctl_mode2 = hw->ledctl_default; |
| 4793 | |
| 4794 | if(e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) { |
| 4795 | DEBUGOUT("EEPROM Read Error\n"); |
| 4796 | return -E1000_ERR_EEPROM; |
| 4797 | } |
| 4798 | if((eeprom_data== ID_LED_RESERVED_0000) || |
| 4799 | (eeprom_data == ID_LED_RESERVED_FFFF)) eeprom_data = ID_LED_DEFAULT; |
| 4800 | for(i = 0; i < 4; i++) { |
| 4801 | temp = (eeprom_data >> (i << 2)) & led_mask; |
| 4802 | switch(temp) { |
| 4803 | case ID_LED_ON1_DEF2: |
| 4804 | case ID_LED_ON1_ON2: |
| 4805 | case ID_LED_ON1_OFF2: |
| 4806 | hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); |
| 4807 | hw->ledctl_mode1 |= ledctl_on << (i << 3); |
| 4808 | break; |
| 4809 | case ID_LED_OFF1_DEF2: |
| 4810 | case ID_LED_OFF1_ON2: |
| 4811 | case ID_LED_OFF1_OFF2: |
| 4812 | hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); |
| 4813 | hw->ledctl_mode1 |= ledctl_off << (i << 3); |
| 4814 | break; |
| 4815 | default: |
| 4816 | /* Do nothing */ |
| 4817 | break; |
| 4818 | } |
| 4819 | switch(temp) { |
| 4820 | case ID_LED_DEF1_ON2: |
| 4821 | case ID_LED_ON1_ON2: |
| 4822 | case ID_LED_OFF1_ON2: |
| 4823 | hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); |
| 4824 | hw->ledctl_mode2 |= ledctl_on << (i << 3); |
| 4825 | break; |
| 4826 | case ID_LED_DEF1_OFF2: |
| 4827 | case ID_LED_ON1_OFF2: |
| 4828 | case ID_LED_OFF1_OFF2: |
| 4829 | hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); |
| 4830 | hw->ledctl_mode2 |= ledctl_off << (i << 3); |
| 4831 | break; |
| 4832 | default: |
| 4833 | /* Do nothing */ |
| 4834 | break; |
| 4835 | } |
| 4836 | } |
| 4837 | return E1000_SUCCESS; |
| 4838 | } |
| 4839 | |
| 4840 | /****************************************************************************** |
| 4841 | * Prepares SW controlable LED for use and saves the current state of the LED. |
| 4842 | * |
| 4843 | * hw - Struct containing variables accessed by shared code |
| 4844 | *****************************************************************************/ |
| 4845 | int32_t |
| 4846 | e1000_setup_led(struct e1000_hw *hw) |
| 4847 | { |
| 4848 | uint32_t ledctl; |
| 4849 | int32_t ret_val = E1000_SUCCESS; |
| 4850 | |
| 4851 | DEBUGFUNC("e1000_setup_led"); |
| 4852 | |
| 4853 | switch(hw->mac_type) { |
| 4854 | case e1000_82542_rev2_0: |
| 4855 | case e1000_82542_rev2_1: |
| 4856 | case e1000_82543: |
| 4857 | case e1000_82544: |
| 4858 | /* No setup necessary */ |
| 4859 | break; |
| 4860 | case e1000_82541: |
| 4861 | case e1000_82547: |
| 4862 | case e1000_82541_rev_2: |
| 4863 | case e1000_82547_rev_2: |
| 4864 | /* Turn off PHY Smart Power Down (if enabled) */ |
| 4865 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, |
| 4866 | &hw->phy_spd_default); |
| 4867 | if(ret_val) |
| 4868 | return ret_val; |
| 4869 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, |
| 4870 | (uint16_t)(hw->phy_spd_default & |
| 4871 | ~IGP01E1000_GMII_SPD)); |
| 4872 | if(ret_val) |
| 4873 | return ret_val; |
| 4874 | /* Fall Through */ |
| 4875 | default: |
| 4876 | if(hw->media_type == e1000_media_type_fiber) { |
| 4877 | ledctl = E1000_READ_REG(hw, LEDCTL); |
| 4878 | /* Save current LEDCTL settings */ |
| 4879 | hw->ledctl_default = ledctl; |
| 4880 | /* Turn off LED0 */ |
| 4881 | ledctl &= ~(E1000_LEDCTL_LED0_IVRT | |
| 4882 | E1000_LEDCTL_LED0_BLINK | |
| 4883 | E1000_LEDCTL_LED0_MODE_MASK); |
| 4884 | ledctl |= (E1000_LEDCTL_MODE_LED_OFF << |
| 4885 | E1000_LEDCTL_LED0_MODE_SHIFT); |
| 4886 | E1000_WRITE_REG(hw, LEDCTL, ledctl); |
| 4887 | } else if(hw->media_type == e1000_media_type_copper) |
| 4888 | E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1); |
| 4889 | break; |
| 4890 | } |
| 4891 | |
| 4892 | return E1000_SUCCESS; |
| 4893 | } |
| 4894 | |
| 4895 | /****************************************************************************** |
| 4896 | * Restores the saved state of the SW controlable LED. |
| 4897 | * |
| 4898 | * hw - Struct containing variables accessed by shared code |
| 4899 | *****************************************************************************/ |
| 4900 | int32_t |
| 4901 | e1000_cleanup_led(struct e1000_hw *hw) |
| 4902 | { |
| 4903 | int32_t ret_val = E1000_SUCCESS; |
| 4904 | |
| 4905 | DEBUGFUNC("e1000_cleanup_led"); |
| 4906 | |
| 4907 | switch(hw->mac_type) { |
| 4908 | case e1000_82542_rev2_0: |
| 4909 | case e1000_82542_rev2_1: |
| 4910 | case e1000_82543: |
| 4911 | case e1000_82544: |
| 4912 | /* No cleanup necessary */ |
| 4913 | break; |
| 4914 | case e1000_82541: |
| 4915 | case e1000_82547: |
| 4916 | case e1000_82541_rev_2: |
| 4917 | case e1000_82547_rev_2: |
| 4918 | /* Turn on PHY Smart Power Down (if previously enabled) */ |
| 4919 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, |
| 4920 | hw->phy_spd_default); |
| 4921 | if(ret_val) |
| 4922 | return ret_val; |
| 4923 | /* Fall Through */ |
| 4924 | default: |
| 4925 | /* Restore LEDCTL settings */ |
| 4926 | E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_default); |
| 4927 | break; |
| 4928 | } |
| 4929 | |
| 4930 | return E1000_SUCCESS; |
| 4931 | } |
| 4932 | |
| 4933 | /****************************************************************************** |
| 4934 | * Turns on the software controllable LED |
| 4935 | * |
| 4936 | * hw - Struct containing variables accessed by shared code |
| 4937 | *****************************************************************************/ |
| 4938 | int32_t |
| 4939 | e1000_led_on(struct e1000_hw *hw) |
| 4940 | { |
| 4941 | uint32_t ctrl = E1000_READ_REG(hw, CTRL); |
| 4942 | |
| 4943 | DEBUGFUNC("e1000_led_on"); |
| 4944 | |
| 4945 | switch(hw->mac_type) { |
| 4946 | case e1000_82542_rev2_0: |
| 4947 | case e1000_82542_rev2_1: |
| 4948 | case e1000_82543: |
| 4949 | /* Set SW Defineable Pin 0 to turn on the LED */ |
| 4950 | ctrl |= E1000_CTRL_SWDPIN0; |
| 4951 | ctrl |= E1000_CTRL_SWDPIO0; |
| 4952 | break; |
| 4953 | case e1000_82544: |
| 4954 | if(hw->media_type == e1000_media_type_fiber) { |
| 4955 | /* Set SW Defineable Pin 0 to turn on the LED */ |
| 4956 | ctrl |= E1000_CTRL_SWDPIN0; |
| 4957 | ctrl |= E1000_CTRL_SWDPIO0; |
| 4958 | } else { |
| 4959 | /* Clear SW Defineable Pin 0 to turn on the LED */ |
| 4960 | ctrl &= ~E1000_CTRL_SWDPIN0; |
| 4961 | ctrl |= E1000_CTRL_SWDPIO0; |
| 4962 | } |
| 4963 | break; |
| 4964 | default: |
| 4965 | if(hw->media_type == e1000_media_type_fiber) { |
| 4966 | /* Clear SW Defineable Pin 0 to turn on the LED */ |
| 4967 | ctrl &= ~E1000_CTRL_SWDPIN0; |
| 4968 | ctrl |= E1000_CTRL_SWDPIO0; |
| 4969 | } else if(hw->media_type == e1000_media_type_copper) { |
| 4970 | E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode2); |
| 4971 | return E1000_SUCCESS; |
| 4972 | } |
| 4973 | break; |
| 4974 | } |
| 4975 | |
| 4976 | E1000_WRITE_REG(hw, CTRL, ctrl); |
| 4977 | |
| 4978 | return E1000_SUCCESS; |
| 4979 | } |
| 4980 | |
| 4981 | /****************************************************************************** |
| 4982 | * Turns off the software controllable LED |
| 4983 | * |
| 4984 | * hw - Struct containing variables accessed by shared code |
| 4985 | *****************************************************************************/ |
| 4986 | int32_t |
| 4987 | e1000_led_off(struct e1000_hw *hw) |
| 4988 | { |
| 4989 | uint32_t ctrl = E1000_READ_REG(hw, CTRL); |
| 4990 | |
| 4991 | DEBUGFUNC("e1000_led_off"); |
| 4992 | |
| 4993 | switch(hw->mac_type) { |
| 4994 | case e1000_82542_rev2_0: |
| 4995 | case e1000_82542_rev2_1: |
| 4996 | case e1000_82543: |
| 4997 | /* Clear SW Defineable Pin 0 to turn off the LED */ |
| 4998 | ctrl &= ~E1000_CTRL_SWDPIN0; |
| 4999 | ctrl |= E1000_CTRL_SWDPIO0; |
| 5000 | break; |
| 5001 | case e1000_82544: |
| 5002 | if(hw->media_type == e1000_media_type_fiber) { |
| 5003 | /* Clear SW Defineable Pin 0 to turn off the LED */ |
| 5004 | ctrl &= ~E1000_CTRL_SWDPIN0; |
| 5005 | ctrl |= E1000_CTRL_SWDPIO0; |
| 5006 | } else { |
| 5007 | /* Set SW Defineable Pin 0 to turn off the LED */ |
| 5008 | ctrl |= E1000_CTRL_SWDPIN0; |
| 5009 | ctrl |= E1000_CTRL_SWDPIO0; |
| 5010 | } |
| 5011 | break; |
| 5012 | default: |
| 5013 | if(hw->media_type == e1000_media_type_fiber) { |
| 5014 | /* Set SW Defineable Pin 0 to turn off the LED */ |
| 5015 | ctrl |= E1000_CTRL_SWDPIN0; |
| 5016 | ctrl |= E1000_CTRL_SWDPIO0; |
| 5017 | } else if(hw->media_type == e1000_media_type_copper) { |
| 5018 | E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1); |
| 5019 | return E1000_SUCCESS; |
| 5020 | } |
| 5021 | break; |
| 5022 | } |
| 5023 | |
| 5024 | E1000_WRITE_REG(hw, CTRL, ctrl); |
| 5025 | |
| 5026 | return E1000_SUCCESS; |
| 5027 | } |
| 5028 | |
| 5029 | /****************************************************************************** |
| 5030 | * Clears all hardware statistics counters. |
| 5031 | * |
| 5032 | * hw - Struct containing variables accessed by shared code |
| 5033 | *****************************************************************************/ |
Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame^] | 5034 | static void |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5035 | e1000_clear_hw_cntrs(struct e1000_hw *hw) |
| 5036 | { |
| 5037 | volatile uint32_t temp; |
| 5038 | |
| 5039 | temp = E1000_READ_REG(hw, CRCERRS); |
| 5040 | temp = E1000_READ_REG(hw, SYMERRS); |
| 5041 | temp = E1000_READ_REG(hw, MPC); |
| 5042 | temp = E1000_READ_REG(hw, SCC); |
| 5043 | temp = E1000_READ_REG(hw, ECOL); |
| 5044 | temp = E1000_READ_REG(hw, MCC); |
| 5045 | temp = E1000_READ_REG(hw, LATECOL); |
| 5046 | temp = E1000_READ_REG(hw, COLC); |
| 5047 | temp = E1000_READ_REG(hw, DC); |
| 5048 | temp = E1000_READ_REG(hw, SEC); |
| 5049 | temp = E1000_READ_REG(hw, RLEC); |
| 5050 | temp = E1000_READ_REG(hw, XONRXC); |
| 5051 | temp = E1000_READ_REG(hw, XONTXC); |
| 5052 | temp = E1000_READ_REG(hw, XOFFRXC); |
| 5053 | temp = E1000_READ_REG(hw, XOFFTXC); |
| 5054 | temp = E1000_READ_REG(hw, FCRUC); |
| 5055 | temp = E1000_READ_REG(hw, PRC64); |
| 5056 | temp = E1000_READ_REG(hw, PRC127); |
| 5057 | temp = E1000_READ_REG(hw, PRC255); |
| 5058 | temp = E1000_READ_REG(hw, PRC511); |
| 5059 | temp = E1000_READ_REG(hw, PRC1023); |
| 5060 | temp = E1000_READ_REG(hw, PRC1522); |
| 5061 | temp = E1000_READ_REG(hw, GPRC); |
| 5062 | temp = E1000_READ_REG(hw, BPRC); |
| 5063 | temp = E1000_READ_REG(hw, MPRC); |
| 5064 | temp = E1000_READ_REG(hw, GPTC); |
| 5065 | temp = E1000_READ_REG(hw, GORCL); |
| 5066 | temp = E1000_READ_REG(hw, GORCH); |
| 5067 | temp = E1000_READ_REG(hw, GOTCL); |
| 5068 | temp = E1000_READ_REG(hw, GOTCH); |
| 5069 | temp = E1000_READ_REG(hw, RNBC); |
| 5070 | temp = E1000_READ_REG(hw, RUC); |
| 5071 | temp = E1000_READ_REG(hw, RFC); |
| 5072 | temp = E1000_READ_REG(hw, ROC); |
| 5073 | temp = E1000_READ_REG(hw, RJC); |
| 5074 | temp = E1000_READ_REG(hw, TORL); |
| 5075 | temp = E1000_READ_REG(hw, TORH); |
| 5076 | temp = E1000_READ_REG(hw, TOTL); |
| 5077 | temp = E1000_READ_REG(hw, TOTH); |
| 5078 | temp = E1000_READ_REG(hw, TPR); |
| 5079 | temp = E1000_READ_REG(hw, TPT); |
| 5080 | temp = E1000_READ_REG(hw, PTC64); |
| 5081 | temp = E1000_READ_REG(hw, PTC127); |
| 5082 | temp = E1000_READ_REG(hw, PTC255); |
| 5083 | temp = E1000_READ_REG(hw, PTC511); |
| 5084 | temp = E1000_READ_REG(hw, PTC1023); |
| 5085 | temp = E1000_READ_REG(hw, PTC1522); |
| 5086 | temp = E1000_READ_REG(hw, MPTC); |
| 5087 | temp = E1000_READ_REG(hw, BPTC); |
| 5088 | |
| 5089 | if(hw->mac_type < e1000_82543) return; |
| 5090 | |
| 5091 | temp = E1000_READ_REG(hw, ALGNERRC); |
| 5092 | temp = E1000_READ_REG(hw, RXERRC); |
| 5093 | temp = E1000_READ_REG(hw, TNCRS); |
| 5094 | temp = E1000_READ_REG(hw, CEXTERR); |
| 5095 | temp = E1000_READ_REG(hw, TSCTC); |
| 5096 | temp = E1000_READ_REG(hw, TSCTFC); |
| 5097 | |
| 5098 | if(hw->mac_type <= e1000_82544) return; |
| 5099 | |
| 5100 | temp = E1000_READ_REG(hw, MGTPRC); |
| 5101 | temp = E1000_READ_REG(hw, MGTPDC); |
| 5102 | temp = E1000_READ_REG(hw, MGTPTC); |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 5103 | |
| 5104 | if(hw->mac_type <= e1000_82547_rev_2) return; |
| 5105 | |
| 5106 | temp = E1000_READ_REG(hw, IAC); |
| 5107 | temp = E1000_READ_REG(hw, ICRXOC); |
| 5108 | temp = E1000_READ_REG(hw, ICRXPTC); |
| 5109 | temp = E1000_READ_REG(hw, ICRXATC); |
| 5110 | temp = E1000_READ_REG(hw, ICTXPTC); |
| 5111 | temp = E1000_READ_REG(hw, ICTXATC); |
| 5112 | temp = E1000_READ_REG(hw, ICTXQEC); |
| 5113 | temp = E1000_READ_REG(hw, ICTXQMTC); |
| 5114 | temp = E1000_READ_REG(hw, ICRXDMTC); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5115 | } |
| 5116 | |
| 5117 | /****************************************************************************** |
| 5118 | * Resets Adaptive IFS to its default state. |
| 5119 | * |
| 5120 | * hw - Struct containing variables accessed by shared code |
| 5121 | * |
| 5122 | * Call this after e1000_init_hw. You may override the IFS defaults by setting |
| 5123 | * hw->ifs_params_forced to TRUE. However, you must initialize hw-> |
| 5124 | * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio |
| 5125 | * before calling this function. |
| 5126 | *****************************************************************************/ |
| 5127 | void |
| 5128 | e1000_reset_adaptive(struct e1000_hw *hw) |
| 5129 | { |
| 5130 | DEBUGFUNC("e1000_reset_adaptive"); |
| 5131 | |
| 5132 | if(hw->adaptive_ifs) { |
| 5133 | if(!hw->ifs_params_forced) { |
| 5134 | hw->current_ifs_val = 0; |
| 5135 | hw->ifs_min_val = IFS_MIN; |
| 5136 | hw->ifs_max_val = IFS_MAX; |
| 5137 | hw->ifs_step_size = IFS_STEP; |
| 5138 | hw->ifs_ratio = IFS_RATIO; |
| 5139 | } |
| 5140 | hw->in_ifs_mode = FALSE; |
| 5141 | E1000_WRITE_REG(hw, AIT, 0); |
| 5142 | } else { |
| 5143 | DEBUGOUT("Not in Adaptive IFS mode!\n"); |
| 5144 | } |
| 5145 | } |
| 5146 | |
| 5147 | /****************************************************************************** |
| 5148 | * Called during the callback/watchdog routine to update IFS value based on |
| 5149 | * the ratio of transmits to collisions. |
| 5150 | * |
| 5151 | * hw - Struct containing variables accessed by shared code |
| 5152 | * tx_packets - Number of transmits since last callback |
| 5153 | * total_collisions - Number of collisions since last callback |
| 5154 | *****************************************************************************/ |
| 5155 | void |
| 5156 | e1000_update_adaptive(struct e1000_hw *hw) |
| 5157 | { |
| 5158 | DEBUGFUNC("e1000_update_adaptive"); |
| 5159 | |
| 5160 | if(hw->adaptive_ifs) { |
| 5161 | if((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) { |
| 5162 | if(hw->tx_packet_delta > MIN_NUM_XMITS) { |
| 5163 | hw->in_ifs_mode = TRUE; |
| 5164 | if(hw->current_ifs_val < hw->ifs_max_val) { |
| 5165 | if(hw->current_ifs_val == 0) |
| 5166 | hw->current_ifs_val = hw->ifs_min_val; |
| 5167 | else |
| 5168 | hw->current_ifs_val += hw->ifs_step_size; |
| 5169 | E1000_WRITE_REG(hw, AIT, hw->current_ifs_val); |
| 5170 | } |
| 5171 | } |
| 5172 | } else { |
| 5173 | if(hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) { |
| 5174 | hw->current_ifs_val = 0; |
| 5175 | hw->in_ifs_mode = FALSE; |
| 5176 | E1000_WRITE_REG(hw, AIT, 0); |
| 5177 | } |
| 5178 | } |
| 5179 | } else { |
| 5180 | DEBUGOUT("Not in Adaptive IFS mode!\n"); |
| 5181 | } |
| 5182 | } |
| 5183 | |
| 5184 | /****************************************************************************** |
| 5185 | * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT |
| 5186 | * |
| 5187 | * hw - Struct containing variables accessed by shared code |
| 5188 | * frame_len - The length of the frame in question |
| 5189 | * mac_addr - The Ethernet destination address of the frame in question |
| 5190 | *****************************************************************************/ |
| 5191 | void |
| 5192 | e1000_tbi_adjust_stats(struct e1000_hw *hw, |
| 5193 | struct e1000_hw_stats *stats, |
| 5194 | uint32_t frame_len, |
| 5195 | uint8_t *mac_addr) |
| 5196 | { |
| 5197 | uint64_t carry_bit; |
| 5198 | |
| 5199 | /* First adjust the frame length. */ |
| 5200 | frame_len--; |
| 5201 | /* We need to adjust the statistics counters, since the hardware |
| 5202 | * counters overcount this packet as a CRC error and undercount |
| 5203 | * the packet as a good packet |
| 5204 | */ |
| 5205 | /* This packet should not be counted as a CRC error. */ |
| 5206 | stats->crcerrs--; |
| 5207 | /* This packet does count as a Good Packet Received. */ |
| 5208 | stats->gprc++; |
| 5209 | |
| 5210 | /* Adjust the Good Octets received counters */ |
| 5211 | carry_bit = 0x80000000 & stats->gorcl; |
| 5212 | stats->gorcl += frame_len; |
| 5213 | /* If the high bit of Gorcl (the low 32 bits of the Good Octets |
| 5214 | * Received Count) was one before the addition, |
| 5215 | * AND it is zero after, then we lost the carry out, |
| 5216 | * need to add one to Gorch (Good Octets Received Count High). |
| 5217 | * This could be simplified if all environments supported |
| 5218 | * 64-bit integers. |
| 5219 | */ |
| 5220 | if(carry_bit && ((stats->gorcl & 0x80000000) == 0)) |
| 5221 | stats->gorch++; |
| 5222 | /* Is this a broadcast or multicast? Check broadcast first, |
| 5223 | * since the test for a multicast frame will test positive on |
| 5224 | * a broadcast frame. |
| 5225 | */ |
| 5226 | if((mac_addr[0] == (uint8_t) 0xff) && (mac_addr[1] == (uint8_t) 0xff)) |
| 5227 | /* Broadcast packet */ |
| 5228 | stats->bprc++; |
| 5229 | else if(*mac_addr & 0x01) |
| 5230 | /* Multicast packet */ |
| 5231 | stats->mprc++; |
| 5232 | |
| 5233 | if(frame_len == hw->max_frame_size) { |
| 5234 | /* In this case, the hardware has overcounted the number of |
| 5235 | * oversize frames. |
| 5236 | */ |
| 5237 | if(stats->roc > 0) |
| 5238 | stats->roc--; |
| 5239 | } |
| 5240 | |
| 5241 | /* Adjust the bin counters when the extra byte put the frame in the |
| 5242 | * wrong bin. Remember that the frame_len was adjusted above. |
| 5243 | */ |
| 5244 | if(frame_len == 64) { |
| 5245 | stats->prc64++; |
| 5246 | stats->prc127--; |
| 5247 | } else if(frame_len == 127) { |
| 5248 | stats->prc127++; |
| 5249 | stats->prc255--; |
| 5250 | } else if(frame_len == 255) { |
| 5251 | stats->prc255++; |
| 5252 | stats->prc511--; |
| 5253 | } else if(frame_len == 511) { |
| 5254 | stats->prc511++; |
| 5255 | stats->prc1023--; |
| 5256 | } else if(frame_len == 1023) { |
| 5257 | stats->prc1023++; |
| 5258 | stats->prc1522--; |
| 5259 | } else if(frame_len == 1522) { |
| 5260 | stats->prc1522++; |
| 5261 | } |
| 5262 | } |
| 5263 | |
| 5264 | /****************************************************************************** |
| 5265 | * Gets the current PCI bus type, speed, and width of the hardware |
| 5266 | * |
| 5267 | * hw - Struct containing variables accessed by shared code |
| 5268 | *****************************************************************************/ |
| 5269 | void |
| 5270 | e1000_get_bus_info(struct e1000_hw *hw) |
| 5271 | { |
| 5272 | uint32_t status; |
| 5273 | |
| 5274 | switch (hw->mac_type) { |
| 5275 | case e1000_82542_rev2_0: |
| 5276 | case e1000_82542_rev2_1: |
| 5277 | hw->bus_type = e1000_bus_type_unknown; |
| 5278 | hw->bus_speed = e1000_bus_speed_unknown; |
| 5279 | hw->bus_width = e1000_bus_width_unknown; |
| 5280 | break; |
Mallikarjuna R Chilakala | 868d530 | 2005-10-04 06:58:59 -0400 | [diff] [blame] | 5281 | case e1000_82571: |
| 5282 | case e1000_82572: |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 5283 | case e1000_82573: |
| 5284 | hw->bus_type = e1000_bus_type_pci_express; |
| 5285 | hw->bus_speed = e1000_bus_speed_2500; |
| 5286 | hw->bus_width = e1000_bus_width_pciex_4; |
| 5287 | break; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5288 | default: |
| 5289 | status = E1000_READ_REG(hw, STATUS); |
| 5290 | hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ? |
| 5291 | e1000_bus_type_pcix : e1000_bus_type_pci; |
| 5292 | |
| 5293 | if(hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) { |
| 5294 | hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ? |
| 5295 | e1000_bus_speed_66 : e1000_bus_speed_120; |
| 5296 | } else if(hw->bus_type == e1000_bus_type_pci) { |
| 5297 | hw->bus_speed = (status & E1000_STATUS_PCI66) ? |
| 5298 | e1000_bus_speed_66 : e1000_bus_speed_33; |
| 5299 | } else { |
| 5300 | switch (status & E1000_STATUS_PCIX_SPEED) { |
| 5301 | case E1000_STATUS_PCIX_SPEED_66: |
| 5302 | hw->bus_speed = e1000_bus_speed_66; |
| 5303 | break; |
| 5304 | case E1000_STATUS_PCIX_SPEED_100: |
| 5305 | hw->bus_speed = e1000_bus_speed_100; |
| 5306 | break; |
| 5307 | case E1000_STATUS_PCIX_SPEED_133: |
| 5308 | hw->bus_speed = e1000_bus_speed_133; |
| 5309 | break; |
| 5310 | default: |
| 5311 | hw->bus_speed = e1000_bus_speed_reserved; |
| 5312 | break; |
| 5313 | } |
| 5314 | } |
| 5315 | hw->bus_width = (status & E1000_STATUS_BUS64) ? |
| 5316 | e1000_bus_width_64 : e1000_bus_width_32; |
| 5317 | break; |
| 5318 | } |
| 5319 | } |
Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame^] | 5320 | |
| 5321 | #if 0 |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5322 | /****************************************************************************** |
| 5323 | * Reads a value from one of the devices registers using port I/O (as opposed |
| 5324 | * memory mapped I/O). Only 82544 and newer devices support port I/O. |
| 5325 | * |
| 5326 | * hw - Struct containing variables accessed by shared code |
| 5327 | * offset - offset to read from |
| 5328 | *****************************************************************************/ |
| 5329 | uint32_t |
| 5330 | e1000_read_reg_io(struct e1000_hw *hw, |
| 5331 | uint32_t offset) |
| 5332 | { |
| 5333 | unsigned long io_addr = hw->io_base; |
| 5334 | unsigned long io_data = hw->io_base + 4; |
| 5335 | |
| 5336 | e1000_io_write(hw, io_addr, offset); |
| 5337 | return e1000_io_read(hw, io_data); |
| 5338 | } |
Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame^] | 5339 | #endif /* 0 */ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5340 | |
| 5341 | /****************************************************************************** |
| 5342 | * Writes a value to one of the devices registers using port I/O (as opposed to |
| 5343 | * memory mapped I/O). Only 82544 and newer devices support port I/O. |
| 5344 | * |
| 5345 | * hw - Struct containing variables accessed by shared code |
| 5346 | * offset - offset to write to |
| 5347 | * value - value to write |
| 5348 | *****************************************************************************/ |
Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame^] | 5349 | static void |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5350 | e1000_write_reg_io(struct e1000_hw *hw, |
| 5351 | uint32_t offset, |
| 5352 | uint32_t value) |
| 5353 | { |
| 5354 | unsigned long io_addr = hw->io_base; |
| 5355 | unsigned long io_data = hw->io_base + 4; |
| 5356 | |
| 5357 | e1000_io_write(hw, io_addr, offset); |
| 5358 | e1000_io_write(hw, io_data, value); |
| 5359 | } |
| 5360 | |
| 5361 | |
| 5362 | /****************************************************************************** |
| 5363 | * Estimates the cable length. |
| 5364 | * |
| 5365 | * hw - Struct containing variables accessed by shared code |
| 5366 | * min_length - The estimated minimum length |
| 5367 | * max_length - The estimated maximum length |
| 5368 | * |
| 5369 | * returns: - E1000_ERR_XXX |
| 5370 | * E1000_SUCCESS |
| 5371 | * |
| 5372 | * This function always returns a ranged length (minimum & maximum). |
| 5373 | * So for M88 phy's, this function interprets the one value returned from the |
| 5374 | * register to the minimum and maximum range. |
| 5375 | * For IGP phy's, the function calculates the range by the AGC registers. |
| 5376 | *****************************************************************************/ |
Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame^] | 5377 | static int32_t |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5378 | e1000_get_cable_length(struct e1000_hw *hw, |
| 5379 | uint16_t *min_length, |
| 5380 | uint16_t *max_length) |
| 5381 | { |
| 5382 | int32_t ret_val; |
| 5383 | uint16_t agc_value = 0; |
| 5384 | uint16_t cur_agc, min_agc = IGP01E1000_AGC_LENGTH_TABLE_SIZE; |
Mallikarjuna R Chilakala | 868d530 | 2005-10-04 06:58:59 -0400 | [diff] [blame] | 5385 | uint16_t max_agc = 0; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5386 | uint16_t i, phy_data; |
| 5387 | uint16_t cable_length; |
| 5388 | |
| 5389 | DEBUGFUNC("e1000_get_cable_length"); |
| 5390 | |
| 5391 | *min_length = *max_length = 0; |
| 5392 | |
| 5393 | /* Use old method for Phy older than IGP */ |
| 5394 | if(hw->phy_type == e1000_phy_m88) { |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 5395 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5396 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, |
| 5397 | &phy_data); |
| 5398 | if(ret_val) |
| 5399 | return ret_val; |
| 5400 | cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> |
| 5401 | M88E1000_PSSR_CABLE_LENGTH_SHIFT; |
| 5402 | |
| 5403 | /* Convert the enum value to ranged values */ |
| 5404 | switch (cable_length) { |
| 5405 | case e1000_cable_length_50: |
| 5406 | *min_length = 0; |
| 5407 | *max_length = e1000_igp_cable_length_50; |
| 5408 | break; |
| 5409 | case e1000_cable_length_50_80: |
| 5410 | *min_length = e1000_igp_cable_length_50; |
| 5411 | *max_length = e1000_igp_cable_length_80; |
| 5412 | break; |
| 5413 | case e1000_cable_length_80_110: |
| 5414 | *min_length = e1000_igp_cable_length_80; |
| 5415 | *max_length = e1000_igp_cable_length_110; |
| 5416 | break; |
| 5417 | case e1000_cable_length_110_140: |
| 5418 | *min_length = e1000_igp_cable_length_110; |
| 5419 | *max_length = e1000_igp_cable_length_140; |
| 5420 | break; |
| 5421 | case e1000_cable_length_140: |
| 5422 | *min_length = e1000_igp_cable_length_140; |
| 5423 | *max_length = e1000_igp_cable_length_170; |
| 5424 | break; |
| 5425 | default: |
| 5426 | return -E1000_ERR_PHY; |
| 5427 | break; |
| 5428 | } |
| 5429 | } else if(hw->phy_type == e1000_phy_igp) { /* For IGP PHY */ |
| 5430 | uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = |
| 5431 | {IGP01E1000_PHY_AGC_A, |
| 5432 | IGP01E1000_PHY_AGC_B, |
| 5433 | IGP01E1000_PHY_AGC_C, |
| 5434 | IGP01E1000_PHY_AGC_D}; |
| 5435 | /* Read the AGC registers for all channels */ |
| 5436 | for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { |
| 5437 | |
| 5438 | ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data); |
| 5439 | if(ret_val) |
| 5440 | return ret_val; |
| 5441 | |
| 5442 | cur_agc = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT; |
| 5443 | |
| 5444 | /* Array bound check. */ |
| 5445 | if((cur_agc >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) || |
| 5446 | (cur_agc == 0)) |
| 5447 | return -E1000_ERR_PHY; |
| 5448 | |
| 5449 | agc_value += cur_agc; |
| 5450 | |
| 5451 | /* Update minimal AGC value. */ |
| 5452 | if(min_agc > cur_agc) |
| 5453 | min_agc = cur_agc; |
| 5454 | } |
| 5455 | |
| 5456 | /* Remove the minimal AGC result for length < 50m */ |
| 5457 | if(agc_value < IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) { |
| 5458 | agc_value -= min_agc; |
| 5459 | |
| 5460 | /* Get the average length of the remaining 3 channels */ |
| 5461 | agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1); |
| 5462 | } else { |
| 5463 | /* Get the average length of all the 4 channels. */ |
| 5464 | agc_value /= IGP01E1000_PHY_CHANNEL_NUM; |
| 5465 | } |
| 5466 | |
| 5467 | /* Set the range of the calculated length. */ |
| 5468 | *min_length = ((e1000_igp_cable_length_table[agc_value] - |
| 5469 | IGP01E1000_AGC_RANGE) > 0) ? |
| 5470 | (e1000_igp_cable_length_table[agc_value] - |
| 5471 | IGP01E1000_AGC_RANGE) : 0; |
| 5472 | *max_length = e1000_igp_cable_length_table[agc_value] + |
| 5473 | IGP01E1000_AGC_RANGE; |
Mallikarjuna R Chilakala | 868d530 | 2005-10-04 06:58:59 -0400 | [diff] [blame] | 5474 | } else if (hw->phy_type == e1000_phy_igp_2) { |
| 5475 | uint16_t agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = |
| 5476 | {IGP02E1000_PHY_AGC_A, |
| 5477 | IGP02E1000_PHY_AGC_B, |
| 5478 | IGP02E1000_PHY_AGC_C, |
| 5479 | IGP02E1000_PHY_AGC_D}; |
| 5480 | /* Read the AGC registers for all channels */ |
| 5481 | for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) { |
| 5482 | ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data); |
| 5483 | if (ret_val) |
| 5484 | return ret_val; |
| 5485 | |
| 5486 | /* Getting bits 15:9, which represent the combination of course and |
| 5487 | * fine gain values. The result is a number that can be put into |
| 5488 | * the lookup table to obtain the approximate cable length. */ |
| 5489 | cur_agc = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & |
| 5490 | IGP02E1000_AGC_LENGTH_MASK; |
| 5491 | |
| 5492 | /* Remove min & max AGC values from calculation. */ |
| 5493 | if (e1000_igp_2_cable_length_table[min_agc] > e1000_igp_2_cable_length_table[cur_agc]) |
| 5494 | min_agc = cur_agc; |
| 5495 | if (e1000_igp_2_cable_length_table[max_agc] < e1000_igp_2_cable_length_table[cur_agc]) |
| 5496 | max_agc = cur_agc; |
| 5497 | |
| 5498 | agc_value += e1000_igp_2_cable_length_table[cur_agc]; |
| 5499 | } |
| 5500 | |
| 5501 | agc_value -= (e1000_igp_2_cable_length_table[min_agc] + e1000_igp_2_cable_length_table[max_agc]); |
| 5502 | agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); |
| 5503 | |
| 5504 | /* Calculate cable length with the error range of +/- 10 meters. */ |
| 5505 | *min_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ? |
| 5506 | (agc_value - IGP02E1000_AGC_RANGE) : 0; |
| 5507 | *max_length = agc_value + IGP02E1000_AGC_RANGE; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5508 | } |
| 5509 | |
| 5510 | return E1000_SUCCESS; |
| 5511 | } |
| 5512 | |
| 5513 | /****************************************************************************** |
| 5514 | * Check the cable polarity |
| 5515 | * |
| 5516 | * hw - Struct containing variables accessed by shared code |
| 5517 | * polarity - output parameter : 0 - Polarity is not reversed |
| 5518 | * 1 - Polarity is reversed. |
| 5519 | * |
| 5520 | * returns: - E1000_ERR_XXX |
| 5521 | * E1000_SUCCESS |
| 5522 | * |
| 5523 | * For phy's older then IGP, this function simply reads the polarity bit in the |
| 5524 | * Phy Status register. For IGP phy's, this bit is valid only if link speed is |
| 5525 | * 10 Mbps. If the link speed is 100 Mbps there is no polarity so this bit will |
| 5526 | * return 0. If the link speed is 1000 Mbps the polarity status is in the |
| 5527 | * IGP01E1000_PHY_PCS_INIT_REG. |
| 5528 | *****************************************************************************/ |
Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame^] | 5529 | static int32_t |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5530 | e1000_check_polarity(struct e1000_hw *hw, |
| 5531 | uint16_t *polarity) |
| 5532 | { |
| 5533 | int32_t ret_val; |
| 5534 | uint16_t phy_data; |
| 5535 | |
| 5536 | DEBUGFUNC("e1000_check_polarity"); |
| 5537 | |
| 5538 | if(hw->phy_type == e1000_phy_m88) { |
| 5539 | /* return the Polarity bit in the Status register. */ |
| 5540 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, |
| 5541 | &phy_data); |
| 5542 | if(ret_val) |
| 5543 | return ret_val; |
| 5544 | *polarity = (phy_data & M88E1000_PSSR_REV_POLARITY) >> |
| 5545 | M88E1000_PSSR_REV_POLARITY_SHIFT; |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 5546 | } else if(hw->phy_type == e1000_phy_igp || |
| 5547 | hw->phy_type == e1000_phy_igp_2) { |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5548 | /* Read the Status register to check the speed */ |
| 5549 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, |
| 5550 | &phy_data); |
| 5551 | if(ret_val) |
| 5552 | return ret_val; |
| 5553 | |
| 5554 | /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to |
| 5555 | * find the polarity status */ |
| 5556 | if((phy_data & IGP01E1000_PSSR_SPEED_MASK) == |
| 5557 | IGP01E1000_PSSR_SPEED_1000MBPS) { |
| 5558 | |
| 5559 | /* Read the GIG initialization PCS register (0x00B4) */ |
| 5560 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG, |
| 5561 | &phy_data); |
| 5562 | if(ret_val) |
| 5563 | return ret_val; |
| 5564 | |
| 5565 | /* Check the polarity bits */ |
| 5566 | *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ? 1 : 0; |
| 5567 | } else { |
| 5568 | /* For 10 Mbps, read the polarity bit in the status register. (for |
| 5569 | * 100 Mbps this bit is always 0) */ |
| 5570 | *polarity = phy_data & IGP01E1000_PSSR_POLARITY_REVERSED; |
| 5571 | } |
| 5572 | } |
| 5573 | return E1000_SUCCESS; |
| 5574 | } |
| 5575 | |
| 5576 | /****************************************************************************** |
| 5577 | * Check if Downshift occured |
| 5578 | * |
| 5579 | * hw - Struct containing variables accessed by shared code |
| 5580 | * downshift - output parameter : 0 - No Downshift ocured. |
| 5581 | * 1 - Downshift ocured. |
| 5582 | * |
| 5583 | * returns: - E1000_ERR_XXX |
| 5584 | * E1000_SUCCESS |
| 5585 | * |
| 5586 | * For phy's older then IGP, this function reads the Downshift bit in the Phy |
| 5587 | * Specific Status register. For IGP phy's, it reads the Downgrade bit in the |
| 5588 | * Link Health register. In IGP this bit is latched high, so the driver must |
| 5589 | * read it immediately after link is established. |
| 5590 | *****************************************************************************/ |
Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame^] | 5591 | static int32_t |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5592 | e1000_check_downshift(struct e1000_hw *hw) |
| 5593 | { |
| 5594 | int32_t ret_val; |
| 5595 | uint16_t phy_data; |
| 5596 | |
| 5597 | DEBUGFUNC("e1000_check_downshift"); |
| 5598 | |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 5599 | if(hw->phy_type == e1000_phy_igp || |
| 5600 | hw->phy_type == e1000_phy_igp_2) { |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5601 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH, |
| 5602 | &phy_data); |
| 5603 | if(ret_val) |
| 5604 | return ret_val; |
| 5605 | |
| 5606 | hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0; |
| 5607 | } else if(hw->phy_type == e1000_phy_m88) { |
| 5608 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, |
| 5609 | &phy_data); |
| 5610 | if(ret_val) |
| 5611 | return ret_val; |
| 5612 | |
| 5613 | hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >> |
| 5614 | M88E1000_PSSR_DOWNSHIFT_SHIFT; |
| 5615 | } |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 5616 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5617 | return E1000_SUCCESS; |
| 5618 | } |
| 5619 | |
| 5620 | /***************************************************************************** |
| 5621 | * |
| 5622 | * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a |
| 5623 | * gigabit link is achieved to improve link quality. |
| 5624 | * |
| 5625 | * hw: Struct containing variables accessed by shared code |
| 5626 | * |
| 5627 | * returns: - E1000_ERR_PHY if fail to read/write the PHY |
| 5628 | * E1000_SUCCESS at any other case. |
| 5629 | * |
| 5630 | ****************************************************************************/ |
| 5631 | |
Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame^] | 5632 | static int32_t |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5633 | e1000_config_dsp_after_link_change(struct e1000_hw *hw, |
| 5634 | boolean_t link_up) |
| 5635 | { |
| 5636 | int32_t ret_val; |
| 5637 | uint16_t phy_data, phy_saved_data, speed, duplex, i; |
| 5638 | uint16_t dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = |
| 5639 | {IGP01E1000_PHY_AGC_PARAM_A, |
| 5640 | IGP01E1000_PHY_AGC_PARAM_B, |
| 5641 | IGP01E1000_PHY_AGC_PARAM_C, |
| 5642 | IGP01E1000_PHY_AGC_PARAM_D}; |
| 5643 | uint16_t min_length, max_length; |
| 5644 | |
| 5645 | DEBUGFUNC("e1000_config_dsp_after_link_change"); |
| 5646 | |
| 5647 | if(hw->phy_type != e1000_phy_igp) |
| 5648 | return E1000_SUCCESS; |
| 5649 | |
| 5650 | if(link_up) { |
| 5651 | ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex); |
| 5652 | if(ret_val) { |
| 5653 | DEBUGOUT("Error getting link speed and duplex\n"); |
| 5654 | return ret_val; |
| 5655 | } |
| 5656 | |
| 5657 | if(speed == SPEED_1000) { |
| 5658 | |
| 5659 | e1000_get_cable_length(hw, &min_length, &max_length); |
| 5660 | |
| 5661 | if((hw->dsp_config_state == e1000_dsp_config_enabled) && |
| 5662 | min_length >= e1000_igp_cable_length_50) { |
| 5663 | |
| 5664 | for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { |
| 5665 | ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], |
| 5666 | &phy_data); |
| 5667 | if(ret_val) |
| 5668 | return ret_val; |
| 5669 | |
| 5670 | phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; |
| 5671 | |
| 5672 | ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i], |
| 5673 | phy_data); |
| 5674 | if(ret_val) |
| 5675 | return ret_val; |
| 5676 | } |
| 5677 | hw->dsp_config_state = e1000_dsp_config_activated; |
| 5678 | } |
| 5679 | |
| 5680 | if((hw->ffe_config_state == e1000_ffe_config_enabled) && |
| 5681 | (min_length < e1000_igp_cable_length_50)) { |
| 5682 | |
| 5683 | uint16_t ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20; |
| 5684 | uint32_t idle_errs = 0; |
| 5685 | |
| 5686 | /* clear previous idle error counts */ |
| 5687 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, |
| 5688 | &phy_data); |
| 5689 | if(ret_val) |
| 5690 | return ret_val; |
| 5691 | |
| 5692 | for(i = 0; i < ffe_idle_err_timeout; i++) { |
| 5693 | udelay(1000); |
| 5694 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, |
| 5695 | &phy_data); |
| 5696 | if(ret_val) |
| 5697 | return ret_val; |
| 5698 | |
| 5699 | idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT); |
| 5700 | if(idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) { |
| 5701 | hw->ffe_config_state = e1000_ffe_config_active; |
| 5702 | |
| 5703 | ret_val = e1000_write_phy_reg(hw, |
| 5704 | IGP01E1000_PHY_DSP_FFE, |
| 5705 | IGP01E1000_PHY_DSP_FFE_CM_CP); |
| 5706 | if(ret_val) |
| 5707 | return ret_val; |
| 5708 | break; |
| 5709 | } |
| 5710 | |
| 5711 | if(idle_errs) |
| 5712 | ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_100; |
| 5713 | } |
| 5714 | } |
| 5715 | } |
| 5716 | } else { |
| 5717 | if(hw->dsp_config_state == e1000_dsp_config_activated) { |
| 5718 | /* Save off the current value of register 0x2F5B to be restored at |
| 5719 | * the end of the routines. */ |
| 5720 | ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); |
| 5721 | |
| 5722 | if(ret_val) |
| 5723 | return ret_val; |
| 5724 | |
| 5725 | /* Disable the PHY transmitter */ |
| 5726 | ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003); |
| 5727 | |
| 5728 | if(ret_val) |
| 5729 | return ret_val; |
| 5730 | |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 5731 | msec_delay_irq(20); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5732 | |
| 5733 | ret_val = e1000_write_phy_reg(hw, 0x0000, |
| 5734 | IGP01E1000_IEEE_FORCE_GIGA); |
| 5735 | if(ret_val) |
| 5736 | return ret_val; |
| 5737 | for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { |
| 5738 | ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], &phy_data); |
| 5739 | if(ret_val) |
| 5740 | return ret_val; |
| 5741 | |
| 5742 | phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; |
| 5743 | phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS; |
| 5744 | |
| 5745 | ret_val = e1000_write_phy_reg(hw,dsp_reg_array[i], phy_data); |
| 5746 | if(ret_val) |
| 5747 | return ret_val; |
| 5748 | } |
| 5749 | |
| 5750 | ret_val = e1000_write_phy_reg(hw, 0x0000, |
| 5751 | IGP01E1000_IEEE_RESTART_AUTONEG); |
| 5752 | if(ret_val) |
| 5753 | return ret_val; |
| 5754 | |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 5755 | msec_delay_irq(20); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5756 | |
| 5757 | /* Now enable the transmitter */ |
| 5758 | ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); |
| 5759 | |
| 5760 | if(ret_val) |
| 5761 | return ret_val; |
| 5762 | |
| 5763 | hw->dsp_config_state = e1000_dsp_config_enabled; |
| 5764 | } |
| 5765 | |
| 5766 | if(hw->ffe_config_state == e1000_ffe_config_active) { |
| 5767 | /* Save off the current value of register 0x2F5B to be restored at |
| 5768 | * the end of the routines. */ |
| 5769 | ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); |
| 5770 | |
| 5771 | if(ret_val) |
| 5772 | return ret_val; |
| 5773 | |
| 5774 | /* Disable the PHY transmitter */ |
| 5775 | ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003); |
| 5776 | |
| 5777 | if(ret_val) |
| 5778 | return ret_val; |
| 5779 | |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 5780 | msec_delay_irq(20); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5781 | |
| 5782 | ret_val = e1000_write_phy_reg(hw, 0x0000, |
| 5783 | IGP01E1000_IEEE_FORCE_GIGA); |
| 5784 | if(ret_val) |
| 5785 | return ret_val; |
| 5786 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE, |
| 5787 | IGP01E1000_PHY_DSP_FFE_DEFAULT); |
| 5788 | if(ret_val) |
| 5789 | return ret_val; |
| 5790 | |
| 5791 | ret_val = e1000_write_phy_reg(hw, 0x0000, |
| 5792 | IGP01E1000_IEEE_RESTART_AUTONEG); |
| 5793 | if(ret_val) |
| 5794 | return ret_val; |
| 5795 | |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 5796 | msec_delay_irq(20); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5797 | |
| 5798 | /* Now enable the transmitter */ |
| 5799 | ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); |
| 5800 | |
| 5801 | if(ret_val) |
| 5802 | return ret_val; |
| 5803 | |
| 5804 | hw->ffe_config_state = e1000_ffe_config_enabled; |
| 5805 | } |
| 5806 | } |
| 5807 | return E1000_SUCCESS; |
| 5808 | } |
| 5809 | |
| 5810 | /***************************************************************************** |
| 5811 | * Set PHY to class A mode |
| 5812 | * Assumes the following operations will follow to enable the new class mode. |
| 5813 | * 1. Do a PHY soft reset |
| 5814 | * 2. Restart auto-negotiation or force link. |
| 5815 | * |
| 5816 | * hw - Struct containing variables accessed by shared code |
| 5817 | ****************************************************************************/ |
| 5818 | static int32_t |
| 5819 | e1000_set_phy_mode(struct e1000_hw *hw) |
| 5820 | { |
| 5821 | int32_t ret_val; |
| 5822 | uint16_t eeprom_data; |
| 5823 | |
| 5824 | DEBUGFUNC("e1000_set_phy_mode"); |
| 5825 | |
| 5826 | if((hw->mac_type == e1000_82545_rev_3) && |
| 5827 | (hw->media_type == e1000_media_type_copper)) { |
| 5828 | ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, &eeprom_data); |
| 5829 | if(ret_val) { |
| 5830 | return ret_val; |
| 5831 | } |
| 5832 | |
| 5833 | if((eeprom_data != EEPROM_RESERVED_WORD) && |
| 5834 | (eeprom_data & EEPROM_PHY_CLASS_A)) { |
| 5835 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x000B); |
| 5836 | if(ret_val) |
| 5837 | return ret_val; |
| 5838 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x8104); |
| 5839 | if(ret_val) |
| 5840 | return ret_val; |
| 5841 | |
| 5842 | hw->phy_reset_disable = FALSE; |
| 5843 | } |
| 5844 | } |
| 5845 | |
| 5846 | return E1000_SUCCESS; |
| 5847 | } |
| 5848 | |
| 5849 | /***************************************************************************** |
| 5850 | * |
| 5851 | * This function sets the lplu state according to the active flag. When |
| 5852 | * activating lplu this function also disables smart speed and vise versa. |
| 5853 | * lplu will not be activated unless the device autonegotiation advertisment |
| 5854 | * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes. |
| 5855 | * hw: Struct containing variables accessed by shared code |
| 5856 | * active - true to enable lplu false to disable lplu. |
| 5857 | * |
| 5858 | * returns: - E1000_ERR_PHY if fail to read/write the PHY |
| 5859 | * E1000_SUCCESS at any other case. |
| 5860 | * |
| 5861 | ****************************************************************************/ |
| 5862 | |
Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame^] | 5863 | static int32_t |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5864 | e1000_set_d3_lplu_state(struct e1000_hw *hw, |
| 5865 | boolean_t active) |
| 5866 | { |
| 5867 | int32_t ret_val; |
| 5868 | uint16_t phy_data; |
| 5869 | DEBUGFUNC("e1000_set_d3_lplu_state"); |
| 5870 | |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 5871 | if(hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5872 | return E1000_SUCCESS; |
| 5873 | |
| 5874 | /* During driver activity LPLU should not be used or it will attain link |
| 5875 | * from the lowest speeds starting from 10Mbps. The capability is used for |
| 5876 | * Dx transitions and states */ |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 5877 | if(hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) { |
| 5878 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5879 | if(ret_val) |
| 5880 | return ret_val; |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 5881 | } else { |
| 5882 | ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); |
| 5883 | if(ret_val) |
| 5884 | return ret_val; |
| 5885 | } |
| 5886 | |
| 5887 | if(!active) { |
| 5888 | if(hw->mac_type == e1000_82541_rev_2 || |
| 5889 | hw->mac_type == e1000_82547_rev_2) { |
| 5890 | phy_data &= ~IGP01E1000_GMII_FLEX_SPD; |
| 5891 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); |
| 5892 | if(ret_val) |
| 5893 | return ret_val; |
| 5894 | } else { |
| 5895 | phy_data &= ~IGP02E1000_PM_D3_LPLU; |
| 5896 | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, |
| 5897 | phy_data); |
| 5898 | if (ret_val) |
| 5899 | return ret_val; |
| 5900 | } |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5901 | |
| 5902 | /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during |
| 5903 | * Dx states where the power conservation is most important. During |
| 5904 | * driver activity we should enable SmartSpeed, so performance is |
| 5905 | * maintained. */ |
| 5906 | if (hw->smart_speed == e1000_smart_speed_on) { |
| 5907 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
| 5908 | &phy_data); |
| 5909 | if(ret_val) |
| 5910 | return ret_val; |
| 5911 | |
| 5912 | phy_data |= IGP01E1000_PSCFR_SMART_SPEED; |
| 5913 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
| 5914 | phy_data); |
| 5915 | if(ret_val) |
| 5916 | return ret_val; |
| 5917 | } else if (hw->smart_speed == e1000_smart_speed_off) { |
| 5918 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
| 5919 | &phy_data); |
| 5920 | if (ret_val) |
| 5921 | return ret_val; |
| 5922 | |
| 5923 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
| 5924 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
| 5925 | phy_data); |
| 5926 | if(ret_val) |
| 5927 | return ret_val; |
| 5928 | } |
| 5929 | |
| 5930 | } else if((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) || |
| 5931 | (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) || |
| 5932 | (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) { |
| 5933 | |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 5934 | if(hw->mac_type == e1000_82541_rev_2 || |
| 5935 | hw->mac_type == e1000_82547_rev_2) { |
| 5936 | phy_data |= IGP01E1000_GMII_FLEX_SPD; |
| 5937 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); |
| 5938 | if(ret_val) |
| 5939 | return ret_val; |
| 5940 | } else { |
| 5941 | phy_data |= IGP02E1000_PM_D3_LPLU; |
| 5942 | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, |
| 5943 | phy_data); |
| 5944 | if (ret_val) |
| 5945 | return ret_val; |
| 5946 | } |
| 5947 | |
| 5948 | /* When LPLU is enabled we should disable SmartSpeed */ |
| 5949 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5950 | if(ret_val) |
| 5951 | return ret_val; |
| 5952 | |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 5953 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
| 5954 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data); |
| 5955 | if(ret_val) |
| 5956 | return ret_val; |
| 5957 | |
| 5958 | } |
| 5959 | return E1000_SUCCESS; |
| 5960 | } |
| 5961 | |
| 5962 | /***************************************************************************** |
| 5963 | * |
| 5964 | * This function sets the lplu d0 state according to the active flag. When |
| 5965 | * activating lplu this function also disables smart speed and vise versa. |
| 5966 | * lplu will not be activated unless the device autonegotiation advertisment |
| 5967 | * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes. |
| 5968 | * hw: Struct containing variables accessed by shared code |
| 5969 | * active - true to enable lplu false to disable lplu. |
| 5970 | * |
| 5971 | * returns: - E1000_ERR_PHY if fail to read/write the PHY |
| 5972 | * E1000_SUCCESS at any other case. |
| 5973 | * |
| 5974 | ****************************************************************************/ |
| 5975 | |
Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame^] | 5976 | static int32_t |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 5977 | e1000_set_d0_lplu_state(struct e1000_hw *hw, |
| 5978 | boolean_t active) |
| 5979 | { |
| 5980 | int32_t ret_val; |
| 5981 | uint16_t phy_data; |
| 5982 | DEBUGFUNC("e1000_set_d0_lplu_state"); |
| 5983 | |
| 5984 | if(hw->mac_type <= e1000_82547_rev_2) |
| 5985 | return E1000_SUCCESS; |
| 5986 | |
| 5987 | ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); |
| 5988 | if(ret_val) |
| 5989 | return ret_val; |
| 5990 | |
| 5991 | if (!active) { |
| 5992 | phy_data &= ~IGP02E1000_PM_D0_LPLU; |
| 5993 | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); |
| 5994 | if (ret_val) |
| 5995 | return ret_val; |
| 5996 | |
| 5997 | /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during |
| 5998 | * Dx states where the power conservation is most important. During |
| 5999 | * driver activity we should enable SmartSpeed, so performance is |
| 6000 | * maintained. */ |
| 6001 | if (hw->smart_speed == e1000_smart_speed_on) { |
| 6002 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
| 6003 | &phy_data); |
| 6004 | if(ret_val) |
| 6005 | return ret_val; |
| 6006 | |
| 6007 | phy_data |= IGP01E1000_PSCFR_SMART_SPEED; |
| 6008 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
| 6009 | phy_data); |
| 6010 | if(ret_val) |
| 6011 | return ret_val; |
| 6012 | } else if (hw->smart_speed == e1000_smart_speed_off) { |
| 6013 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
| 6014 | &phy_data); |
| 6015 | if (ret_val) |
| 6016 | return ret_val; |
| 6017 | |
| 6018 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
| 6019 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
| 6020 | phy_data); |
| 6021 | if(ret_val) |
| 6022 | return ret_val; |
| 6023 | } |
| 6024 | |
| 6025 | |
| 6026 | } else { |
| 6027 | |
| 6028 | phy_data |= IGP02E1000_PM_D0_LPLU; |
| 6029 | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); |
| 6030 | if (ret_val) |
| 6031 | return ret_val; |
| 6032 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 6033 | /* When LPLU is enabled we should disable SmartSpeed */ |
| 6034 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); |
| 6035 | if(ret_val) |
| 6036 | return ret_val; |
| 6037 | |
| 6038 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
| 6039 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data); |
| 6040 | if(ret_val) |
| 6041 | return ret_val; |
| 6042 | |
| 6043 | } |
| 6044 | return E1000_SUCCESS; |
| 6045 | } |
| 6046 | |
| 6047 | /****************************************************************************** |
| 6048 | * Change VCO speed register to improve Bit Error Rate performance of SERDES. |
| 6049 | * |
| 6050 | * hw - Struct containing variables accessed by shared code |
| 6051 | *****************************************************************************/ |
| 6052 | static int32_t |
| 6053 | e1000_set_vco_speed(struct e1000_hw *hw) |
| 6054 | { |
| 6055 | int32_t ret_val; |
| 6056 | uint16_t default_page = 0; |
| 6057 | uint16_t phy_data; |
| 6058 | |
| 6059 | DEBUGFUNC("e1000_set_vco_speed"); |
| 6060 | |
| 6061 | switch(hw->mac_type) { |
| 6062 | case e1000_82545_rev_3: |
| 6063 | case e1000_82546_rev_3: |
| 6064 | break; |
| 6065 | default: |
| 6066 | return E1000_SUCCESS; |
| 6067 | } |
| 6068 | |
| 6069 | /* Set PHY register 30, page 5, bit 8 to 0 */ |
| 6070 | |
| 6071 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page); |
| 6072 | if(ret_val) |
| 6073 | return ret_val; |
| 6074 | |
| 6075 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005); |
| 6076 | if(ret_val) |
| 6077 | return ret_val; |
| 6078 | |
| 6079 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); |
| 6080 | if(ret_val) |
| 6081 | return ret_val; |
| 6082 | |
| 6083 | phy_data &= ~M88E1000_PHY_VCO_REG_BIT8; |
| 6084 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); |
| 6085 | if(ret_val) |
| 6086 | return ret_val; |
| 6087 | |
| 6088 | /* Set PHY register 30, page 4, bit 11 to 1 */ |
| 6089 | |
| 6090 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004); |
| 6091 | if(ret_val) |
| 6092 | return ret_val; |
| 6093 | |
| 6094 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); |
| 6095 | if(ret_val) |
| 6096 | return ret_val; |
| 6097 | |
| 6098 | phy_data |= M88E1000_PHY_VCO_REG_BIT11; |
| 6099 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); |
| 6100 | if(ret_val) |
| 6101 | return ret_val; |
| 6102 | |
| 6103 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page); |
| 6104 | if(ret_val) |
| 6105 | return ret_val; |
| 6106 | |
| 6107 | return E1000_SUCCESS; |
| 6108 | } |
| 6109 | |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 6110 | |
| 6111 | /***************************************************************************** |
| 6112 | * This function reads the cookie from ARC ram. |
| 6113 | * |
| 6114 | * returns: - E1000_SUCCESS . |
| 6115 | ****************************************************************************/ |
| 6116 | int32_t |
| 6117 | e1000_host_if_read_cookie(struct e1000_hw * hw, uint8_t *buffer) |
| 6118 | { |
| 6119 | uint8_t i; |
| 6120 | uint32_t offset = E1000_MNG_DHCP_COOKIE_OFFSET; |
| 6121 | uint8_t length = E1000_MNG_DHCP_COOKIE_LENGTH; |
| 6122 | |
| 6123 | length = (length >> 2); |
| 6124 | offset = (offset >> 2); |
| 6125 | |
| 6126 | for (i = 0; i < length; i++) { |
| 6127 | *((uint32_t *) buffer + i) = |
| 6128 | E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset + i); |
| 6129 | } |
| 6130 | return E1000_SUCCESS; |
| 6131 | } |
| 6132 | |
| 6133 | |
| 6134 | /***************************************************************************** |
| 6135 | * This function checks whether the HOST IF is enabled for command operaton |
| 6136 | * and also checks whether the previous command is completed. |
| 6137 | * It busy waits in case of previous command is not completed. |
| 6138 | * |
| 6139 | * returns: - E1000_ERR_HOST_INTERFACE_COMMAND in case if is not ready or |
| 6140 | * timeout |
| 6141 | * - E1000_SUCCESS for success. |
| 6142 | ****************************************************************************/ |
Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame^] | 6143 | static int32_t |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 6144 | e1000_mng_enable_host_if(struct e1000_hw * hw) |
| 6145 | { |
| 6146 | uint32_t hicr; |
| 6147 | uint8_t i; |
| 6148 | |
| 6149 | /* Check that the host interface is enabled. */ |
| 6150 | hicr = E1000_READ_REG(hw, HICR); |
| 6151 | if ((hicr & E1000_HICR_EN) == 0) { |
| 6152 | DEBUGOUT("E1000_HOST_EN bit disabled.\n"); |
| 6153 | return -E1000_ERR_HOST_INTERFACE_COMMAND; |
| 6154 | } |
| 6155 | /* check the previous command is completed */ |
| 6156 | for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) { |
| 6157 | hicr = E1000_READ_REG(hw, HICR); |
| 6158 | if (!(hicr & E1000_HICR_C)) |
| 6159 | break; |
| 6160 | msec_delay_irq(1); |
| 6161 | } |
| 6162 | |
| 6163 | if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) { |
| 6164 | DEBUGOUT("Previous command timeout failed .\n"); |
| 6165 | return -E1000_ERR_HOST_INTERFACE_COMMAND; |
| 6166 | } |
| 6167 | return E1000_SUCCESS; |
| 6168 | } |
| 6169 | |
| 6170 | /***************************************************************************** |
| 6171 | * This function writes the buffer content at the offset given on the host if. |
| 6172 | * It also does alignment considerations to do the writes in most efficient way. |
| 6173 | * Also fills up the sum of the buffer in *buffer parameter. |
| 6174 | * |
| 6175 | * returns - E1000_SUCCESS for success. |
| 6176 | ****************************************************************************/ |
Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame^] | 6177 | static int32_t |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 6178 | e1000_mng_host_if_write(struct e1000_hw * hw, uint8_t *buffer, |
| 6179 | uint16_t length, uint16_t offset, uint8_t *sum) |
| 6180 | { |
| 6181 | uint8_t *tmp; |
| 6182 | uint8_t *bufptr = buffer; |
| 6183 | uint32_t data; |
| 6184 | uint16_t remaining, i, j, prev_bytes; |
| 6185 | |
| 6186 | /* sum = only sum of the data and it is not checksum */ |
| 6187 | |
| 6188 | if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) { |
| 6189 | return -E1000_ERR_PARAM; |
| 6190 | } |
| 6191 | |
| 6192 | tmp = (uint8_t *)&data; |
| 6193 | prev_bytes = offset & 0x3; |
| 6194 | offset &= 0xFFFC; |
| 6195 | offset >>= 2; |
| 6196 | |
| 6197 | if (prev_bytes) { |
| 6198 | data = E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset); |
| 6199 | for (j = prev_bytes; j < sizeof(uint32_t); j++) { |
| 6200 | *(tmp + j) = *bufptr++; |
| 6201 | *sum += *(tmp + j); |
| 6202 | } |
| 6203 | E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset, data); |
| 6204 | length -= j - prev_bytes; |
| 6205 | offset++; |
| 6206 | } |
| 6207 | |
| 6208 | remaining = length & 0x3; |
| 6209 | length -= remaining; |
| 6210 | |
| 6211 | /* Calculate length in DWORDs */ |
| 6212 | length >>= 2; |
| 6213 | |
| 6214 | /* The device driver writes the relevant command block into the |
| 6215 | * ram area. */ |
| 6216 | for (i = 0; i < length; i++) { |
| 6217 | for (j = 0; j < sizeof(uint32_t); j++) { |
| 6218 | *(tmp + j) = *bufptr++; |
| 6219 | *sum += *(tmp + j); |
| 6220 | } |
| 6221 | |
| 6222 | E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data); |
| 6223 | } |
| 6224 | if (remaining) { |
| 6225 | for (j = 0; j < sizeof(uint32_t); j++) { |
| 6226 | if (j < remaining) |
| 6227 | *(tmp + j) = *bufptr++; |
| 6228 | else |
| 6229 | *(tmp + j) = 0; |
| 6230 | |
| 6231 | *sum += *(tmp + j); |
| 6232 | } |
| 6233 | E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data); |
| 6234 | } |
| 6235 | |
| 6236 | return E1000_SUCCESS; |
| 6237 | } |
| 6238 | |
| 6239 | |
| 6240 | /***************************************************************************** |
| 6241 | * This function writes the command header after does the checksum calculation. |
| 6242 | * |
| 6243 | * returns - E1000_SUCCESS for success. |
| 6244 | ****************************************************************************/ |
Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame^] | 6245 | static int32_t |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 6246 | e1000_mng_write_cmd_header(struct e1000_hw * hw, |
| 6247 | struct e1000_host_mng_command_header * hdr) |
| 6248 | { |
| 6249 | uint16_t i; |
| 6250 | uint8_t sum; |
| 6251 | uint8_t *buffer; |
| 6252 | |
| 6253 | /* Write the whole command header structure which includes sum of |
| 6254 | * the buffer */ |
| 6255 | |
| 6256 | uint16_t length = sizeof(struct e1000_host_mng_command_header); |
| 6257 | |
| 6258 | sum = hdr->checksum; |
| 6259 | hdr->checksum = 0; |
| 6260 | |
| 6261 | buffer = (uint8_t *) hdr; |
| 6262 | i = length; |
| 6263 | while(i--) |
| 6264 | sum += buffer[i]; |
| 6265 | |
| 6266 | hdr->checksum = 0 - sum; |
| 6267 | |
| 6268 | length >>= 2; |
| 6269 | /* The device driver writes the relevant command block into the ram area. */ |
| 6270 | for (i = 0; i < length; i++) |
| 6271 | E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((uint32_t *) hdr + i)); |
| 6272 | |
| 6273 | return E1000_SUCCESS; |
| 6274 | } |
| 6275 | |
| 6276 | |
| 6277 | /***************************************************************************** |
| 6278 | * This function indicates to ARC that a new command is pending which completes |
| 6279 | * one write operation by the driver. |
| 6280 | * |
| 6281 | * returns - E1000_SUCCESS for success. |
| 6282 | ****************************************************************************/ |
Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame^] | 6283 | static int32_t |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 6284 | e1000_mng_write_commit( |
| 6285 | struct e1000_hw * hw) |
| 6286 | { |
| 6287 | uint32_t hicr; |
| 6288 | |
| 6289 | hicr = E1000_READ_REG(hw, HICR); |
| 6290 | /* Setting this bit tells the ARC that a new command is pending. */ |
| 6291 | E1000_WRITE_REG(hw, HICR, hicr | E1000_HICR_C); |
| 6292 | |
| 6293 | return E1000_SUCCESS; |
| 6294 | } |
| 6295 | |
| 6296 | |
| 6297 | /***************************************************************************** |
| 6298 | * This function checks the mode of the firmware. |
| 6299 | * |
| 6300 | * returns - TRUE when the mode is IAMT or FALSE. |
| 6301 | ****************************************************************************/ |
| 6302 | boolean_t |
| 6303 | e1000_check_mng_mode( |
| 6304 | struct e1000_hw *hw) |
| 6305 | { |
| 6306 | uint32_t fwsm; |
| 6307 | |
| 6308 | fwsm = E1000_READ_REG(hw, FWSM); |
| 6309 | |
| 6310 | if((fwsm & E1000_FWSM_MODE_MASK) == |
| 6311 | (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)) |
| 6312 | return TRUE; |
| 6313 | |
| 6314 | return FALSE; |
| 6315 | } |
| 6316 | |
| 6317 | |
| 6318 | /***************************************************************************** |
| 6319 | * This function writes the dhcp info . |
| 6320 | ****************************************************************************/ |
| 6321 | int32_t |
| 6322 | e1000_mng_write_dhcp_info(struct e1000_hw * hw, uint8_t *buffer, |
| 6323 | uint16_t length) |
| 6324 | { |
| 6325 | int32_t ret_val; |
| 6326 | struct e1000_host_mng_command_header hdr; |
| 6327 | |
| 6328 | hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD; |
| 6329 | hdr.command_length = length; |
| 6330 | hdr.reserved1 = 0; |
| 6331 | hdr.reserved2 = 0; |
| 6332 | hdr.checksum = 0; |
| 6333 | |
| 6334 | ret_val = e1000_mng_enable_host_if(hw); |
| 6335 | if (ret_val == E1000_SUCCESS) { |
| 6336 | ret_val = e1000_mng_host_if_write(hw, buffer, length, sizeof(hdr), |
| 6337 | &(hdr.checksum)); |
| 6338 | if (ret_val == E1000_SUCCESS) { |
| 6339 | ret_val = e1000_mng_write_cmd_header(hw, &hdr); |
| 6340 | if (ret_val == E1000_SUCCESS) |
| 6341 | ret_val = e1000_mng_write_commit(hw); |
| 6342 | } |
| 6343 | } |
| 6344 | return ret_val; |
| 6345 | } |
| 6346 | |
| 6347 | |
| 6348 | /***************************************************************************** |
| 6349 | * This function calculates the checksum. |
| 6350 | * |
| 6351 | * returns - checksum of buffer contents. |
| 6352 | ****************************************************************************/ |
| 6353 | uint8_t |
| 6354 | e1000_calculate_mng_checksum(char *buffer, uint32_t length) |
| 6355 | { |
| 6356 | uint8_t sum = 0; |
| 6357 | uint32_t i; |
| 6358 | |
| 6359 | if (!buffer) |
| 6360 | return 0; |
| 6361 | |
| 6362 | for (i=0; i < length; i++) |
| 6363 | sum += buffer[i]; |
| 6364 | |
| 6365 | return (uint8_t) (0 - sum); |
| 6366 | } |
| 6367 | |
| 6368 | /***************************************************************************** |
| 6369 | * This function checks whether tx pkt filtering needs to be enabled or not. |
| 6370 | * |
| 6371 | * returns - TRUE for packet filtering or FALSE. |
| 6372 | ****************************************************************************/ |
| 6373 | boolean_t |
| 6374 | e1000_enable_tx_pkt_filtering(struct e1000_hw *hw) |
| 6375 | { |
| 6376 | /* called in init as well as watchdog timer functions */ |
| 6377 | |
| 6378 | int32_t ret_val, checksum; |
| 6379 | boolean_t tx_filter = FALSE; |
| 6380 | struct e1000_host_mng_dhcp_cookie *hdr = &(hw->mng_cookie); |
| 6381 | uint8_t *buffer = (uint8_t *) &(hw->mng_cookie); |
| 6382 | |
| 6383 | if (e1000_check_mng_mode(hw)) { |
| 6384 | ret_val = e1000_mng_enable_host_if(hw); |
| 6385 | if (ret_val == E1000_SUCCESS) { |
| 6386 | ret_val = e1000_host_if_read_cookie(hw, buffer); |
| 6387 | if (ret_val == E1000_SUCCESS) { |
| 6388 | checksum = hdr->checksum; |
| 6389 | hdr->checksum = 0; |
| 6390 | if ((hdr->signature == E1000_IAMT_SIGNATURE) && |
| 6391 | checksum == e1000_calculate_mng_checksum((char *)buffer, |
| 6392 | E1000_MNG_DHCP_COOKIE_LENGTH)) { |
| 6393 | if (hdr->status & |
| 6394 | E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT) |
| 6395 | tx_filter = TRUE; |
| 6396 | } else |
| 6397 | tx_filter = TRUE; |
| 6398 | } else |
| 6399 | tx_filter = TRUE; |
| 6400 | } |
| 6401 | } |
| 6402 | |
| 6403 | hw->tx_pkt_filtering = tx_filter; |
| 6404 | return tx_filter; |
| 6405 | } |
| 6406 | |
| 6407 | /****************************************************************************** |
| 6408 | * Verifies the hardware needs to allow ARPs to be processed by the host |
| 6409 | * |
| 6410 | * hw - Struct containing variables accessed by shared code |
| 6411 | * |
| 6412 | * returns: - TRUE/FALSE |
| 6413 | * |
| 6414 | *****************************************************************************/ |
| 6415 | uint32_t |
| 6416 | e1000_enable_mng_pass_thru(struct e1000_hw *hw) |
| 6417 | { |
| 6418 | uint32_t manc; |
| 6419 | uint32_t fwsm, factps; |
| 6420 | |
| 6421 | if (hw->asf_firmware_present) { |
| 6422 | manc = E1000_READ_REG(hw, MANC); |
| 6423 | |
| 6424 | if (!(manc & E1000_MANC_RCV_TCO_EN) || |
| 6425 | !(manc & E1000_MANC_EN_MAC_ADDR_FILTER)) |
| 6426 | return FALSE; |
| 6427 | if (e1000_arc_subsystem_valid(hw) == TRUE) { |
| 6428 | fwsm = E1000_READ_REG(hw, FWSM); |
| 6429 | factps = E1000_READ_REG(hw, FACTPS); |
| 6430 | |
| 6431 | if (((fwsm & E1000_FWSM_MODE_MASK) == |
| 6432 | (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT)) && |
| 6433 | (factps & E1000_FACTPS_MNGCG)) |
| 6434 | return TRUE; |
| 6435 | } else |
| 6436 | if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN)) |
| 6437 | return TRUE; |
| 6438 | } |
| 6439 | return FALSE; |
| 6440 | } |
| 6441 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 6442 | static int32_t |
| 6443 | e1000_polarity_reversal_workaround(struct e1000_hw *hw) |
| 6444 | { |
| 6445 | int32_t ret_val; |
| 6446 | uint16_t mii_status_reg; |
| 6447 | uint16_t i; |
| 6448 | |
| 6449 | /* Polarity reversal workaround for forced 10F/10H links. */ |
| 6450 | |
| 6451 | /* Disable the transmitter on the PHY */ |
| 6452 | |
| 6453 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); |
| 6454 | if(ret_val) |
| 6455 | return ret_val; |
| 6456 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF); |
| 6457 | if(ret_val) |
| 6458 | return ret_val; |
| 6459 | |
| 6460 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); |
| 6461 | if(ret_val) |
| 6462 | return ret_val; |
| 6463 | |
| 6464 | /* This loop will early-out if the NO link condition has been met. */ |
| 6465 | for(i = PHY_FORCE_TIME; i > 0; i--) { |
| 6466 | /* Read the MII Status Register and wait for Link Status bit |
| 6467 | * to be clear. |
| 6468 | */ |
| 6469 | |
| 6470 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
| 6471 | if(ret_val) |
| 6472 | return ret_val; |
| 6473 | |
| 6474 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
| 6475 | if(ret_val) |
| 6476 | return ret_val; |
| 6477 | |
| 6478 | if((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break; |
| 6479 | msec_delay_irq(100); |
| 6480 | } |
| 6481 | |
| 6482 | /* Recommended delay time after link has been lost */ |
| 6483 | msec_delay_irq(1000); |
| 6484 | |
| 6485 | /* Now we will re-enable th transmitter on the PHY */ |
| 6486 | |
| 6487 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); |
| 6488 | if(ret_val) |
| 6489 | return ret_val; |
| 6490 | msec_delay_irq(50); |
| 6491 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0); |
| 6492 | if(ret_val) |
| 6493 | return ret_val; |
| 6494 | msec_delay_irq(50); |
| 6495 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00); |
| 6496 | if(ret_val) |
| 6497 | return ret_val; |
| 6498 | msec_delay_irq(50); |
| 6499 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000); |
| 6500 | if(ret_val) |
| 6501 | return ret_val; |
| 6502 | |
| 6503 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); |
| 6504 | if(ret_val) |
| 6505 | return ret_val; |
| 6506 | |
| 6507 | /* This loop will early-out if the link condition has been met. */ |
| 6508 | for(i = PHY_FORCE_TIME; i > 0; i--) { |
| 6509 | /* Read the MII Status Register and wait for Link Status bit |
| 6510 | * to be set. |
| 6511 | */ |
| 6512 | |
| 6513 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
| 6514 | if(ret_val) |
| 6515 | return ret_val; |
| 6516 | |
| 6517 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
| 6518 | if(ret_val) |
| 6519 | return ret_val; |
| 6520 | |
| 6521 | if(mii_status_reg & MII_SR_LINK_STATUS) break; |
| 6522 | msec_delay_irq(100); |
| 6523 | } |
| 6524 | return E1000_SUCCESS; |
| 6525 | } |
| 6526 | |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 6527 | /*************************************************************************** |
| 6528 | * |
| 6529 | * Disables PCI-Express master access. |
| 6530 | * |
| 6531 | * hw: Struct containing variables accessed by shared code |
| 6532 | * |
| 6533 | * returns: - none. |
| 6534 | * |
| 6535 | ***************************************************************************/ |
Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame^] | 6536 | static void |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 6537 | e1000_set_pci_express_master_disable(struct e1000_hw *hw) |
| 6538 | { |
| 6539 | uint32_t ctrl; |
| 6540 | |
| 6541 | DEBUGFUNC("e1000_set_pci_express_master_disable"); |
| 6542 | |
| 6543 | if (hw->bus_type != e1000_bus_type_pci_express) |
| 6544 | return; |
| 6545 | |
| 6546 | ctrl = E1000_READ_REG(hw, CTRL); |
| 6547 | ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; |
| 6548 | E1000_WRITE_REG(hw, CTRL, ctrl); |
| 6549 | } |
| 6550 | |
Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame^] | 6551 | #if 0 |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 6552 | /*************************************************************************** |
| 6553 | * |
| 6554 | * Enables PCI-Express master access. |
| 6555 | * |
| 6556 | * hw: Struct containing variables accessed by shared code |
| 6557 | * |
| 6558 | * returns: - none. |
| 6559 | * |
| 6560 | ***************************************************************************/ |
| 6561 | void |
| 6562 | e1000_enable_pciex_master(struct e1000_hw *hw) |
| 6563 | { |
| 6564 | uint32_t ctrl; |
| 6565 | |
| 6566 | DEBUGFUNC("e1000_enable_pciex_master"); |
| 6567 | |
| 6568 | if (hw->bus_type != e1000_bus_type_pci_express) |
| 6569 | return; |
| 6570 | |
| 6571 | ctrl = E1000_READ_REG(hw, CTRL); |
| 6572 | ctrl &= ~E1000_CTRL_GIO_MASTER_DISABLE; |
| 6573 | E1000_WRITE_REG(hw, CTRL, ctrl); |
| 6574 | } |
Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame^] | 6575 | #endif /* 0 */ |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 6576 | |
| 6577 | /******************************************************************************* |
| 6578 | * |
| 6579 | * Disables PCI-Express master access and verifies there are no pending requests |
| 6580 | * |
| 6581 | * hw: Struct containing variables accessed by shared code |
| 6582 | * |
| 6583 | * returns: - E1000_ERR_MASTER_REQUESTS_PENDING if master disable bit hasn't |
| 6584 | * caused the master requests to be disabled. |
| 6585 | * E1000_SUCCESS master requests disabled. |
| 6586 | * |
| 6587 | ******************************************************************************/ |
| 6588 | int32_t |
| 6589 | e1000_disable_pciex_master(struct e1000_hw *hw) |
| 6590 | { |
| 6591 | int32_t timeout = MASTER_DISABLE_TIMEOUT; /* 80ms */ |
| 6592 | |
| 6593 | DEBUGFUNC("e1000_disable_pciex_master"); |
| 6594 | |
| 6595 | if (hw->bus_type != e1000_bus_type_pci_express) |
| 6596 | return E1000_SUCCESS; |
| 6597 | |
| 6598 | e1000_set_pci_express_master_disable(hw); |
| 6599 | |
| 6600 | while(timeout) { |
| 6601 | if(!(E1000_READ_REG(hw, STATUS) & E1000_STATUS_GIO_MASTER_ENABLE)) |
| 6602 | break; |
| 6603 | else |
| 6604 | udelay(100); |
| 6605 | timeout--; |
| 6606 | } |
| 6607 | |
| 6608 | if(!timeout) { |
| 6609 | DEBUGOUT("Master requests are pending.\n"); |
| 6610 | return -E1000_ERR_MASTER_REQUESTS_PENDING; |
| 6611 | } |
| 6612 | |
| 6613 | return E1000_SUCCESS; |
| 6614 | } |
| 6615 | |
| 6616 | /******************************************************************************* |
| 6617 | * |
| 6618 | * Check for EEPROM Auto Read bit done. |
| 6619 | * |
| 6620 | * hw: Struct containing variables accessed by shared code |
| 6621 | * |
| 6622 | * returns: - E1000_ERR_RESET if fail to reset MAC |
| 6623 | * E1000_SUCCESS at any other case. |
| 6624 | * |
| 6625 | ******************************************************************************/ |
Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame^] | 6626 | static int32_t |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 6627 | e1000_get_auto_rd_done(struct e1000_hw *hw) |
| 6628 | { |
| 6629 | int32_t timeout = AUTO_READ_DONE_TIMEOUT; |
| 6630 | |
| 6631 | DEBUGFUNC("e1000_get_auto_rd_done"); |
| 6632 | |
| 6633 | switch (hw->mac_type) { |
| 6634 | default: |
| 6635 | msec_delay(5); |
| 6636 | break; |
Mallikarjuna R Chilakala | 868d530 | 2005-10-04 06:58:59 -0400 | [diff] [blame] | 6637 | case e1000_82571: |
| 6638 | case e1000_82572: |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 6639 | case e1000_82573: |
| 6640 | while(timeout) { |
| 6641 | if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD) break; |
| 6642 | else msec_delay(1); |
| 6643 | timeout--; |
| 6644 | } |
| 6645 | |
| 6646 | if(!timeout) { |
| 6647 | DEBUGOUT("Auto read by HW from EEPROM has not completed.\n"); |
| 6648 | return -E1000_ERR_RESET; |
| 6649 | } |
| 6650 | break; |
| 6651 | } |
| 6652 | |
| 6653 | return E1000_SUCCESS; |
| 6654 | } |
| 6655 | |
| 6656 | /*************************************************************************** |
| 6657 | * Checks if the PHY configuration is done |
| 6658 | * |
| 6659 | * hw: Struct containing variables accessed by shared code |
| 6660 | * |
| 6661 | * returns: - E1000_ERR_RESET if fail to reset MAC |
| 6662 | * E1000_SUCCESS at any other case. |
| 6663 | * |
| 6664 | ***************************************************************************/ |
Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame^] | 6665 | static int32_t |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 6666 | e1000_get_phy_cfg_done(struct e1000_hw *hw) |
| 6667 | { |
Mallikarjuna R Chilakala | 868d530 | 2005-10-04 06:58:59 -0400 | [diff] [blame] | 6668 | int32_t timeout = PHY_CFG_TIMEOUT; |
| 6669 | uint32_t cfg_mask = E1000_EEPROM_CFG_DONE; |
| 6670 | |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 6671 | DEBUGFUNC("e1000_get_phy_cfg_done"); |
| 6672 | |
Mallikarjuna R Chilakala | 868d530 | 2005-10-04 06:58:59 -0400 | [diff] [blame] | 6673 | switch (hw->mac_type) { |
| 6674 | default: |
| 6675 | msec_delay(10); |
| 6676 | break; |
| 6677 | case e1000_82571: |
| 6678 | case e1000_82572: |
| 6679 | while (timeout) { |
| 6680 | if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask) |
| 6681 | break; |
| 6682 | else |
| 6683 | msec_delay(1); |
| 6684 | timeout--; |
| 6685 | } |
| 6686 | |
| 6687 | if (!timeout) { |
| 6688 | DEBUGOUT("MNG configuration cycle has not completed.\n"); |
| 6689 | return -E1000_ERR_RESET; |
| 6690 | } |
| 6691 | break; |
| 6692 | } |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 6693 | |
| 6694 | return E1000_SUCCESS; |
| 6695 | } |
| 6696 | |
| 6697 | /*************************************************************************** |
| 6698 | * |
| 6699 | * Using the combination of SMBI and SWESMBI semaphore bits when resetting |
| 6700 | * adapter or Eeprom access. |
| 6701 | * |
| 6702 | * hw: Struct containing variables accessed by shared code |
| 6703 | * |
| 6704 | * returns: - E1000_ERR_EEPROM if fail to access EEPROM. |
| 6705 | * E1000_SUCCESS at any other case. |
| 6706 | * |
| 6707 | ***************************************************************************/ |
Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame^] | 6708 | static int32_t |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 6709 | e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw) |
| 6710 | { |
| 6711 | int32_t timeout; |
| 6712 | uint32_t swsm; |
| 6713 | |
| 6714 | DEBUGFUNC("e1000_get_hw_eeprom_semaphore"); |
| 6715 | |
| 6716 | if(!hw->eeprom_semaphore_present) |
| 6717 | return E1000_SUCCESS; |
| 6718 | |
| 6719 | |
| 6720 | /* Get the FW semaphore. */ |
| 6721 | timeout = hw->eeprom.word_size + 1; |
| 6722 | while(timeout) { |
| 6723 | swsm = E1000_READ_REG(hw, SWSM); |
| 6724 | swsm |= E1000_SWSM_SWESMBI; |
| 6725 | E1000_WRITE_REG(hw, SWSM, swsm); |
| 6726 | /* if we managed to set the bit we got the semaphore. */ |
| 6727 | swsm = E1000_READ_REG(hw, SWSM); |
| 6728 | if(swsm & E1000_SWSM_SWESMBI) |
| 6729 | break; |
| 6730 | |
| 6731 | udelay(50); |
| 6732 | timeout--; |
| 6733 | } |
| 6734 | |
| 6735 | if(!timeout) { |
| 6736 | /* Release semaphores */ |
| 6737 | e1000_put_hw_eeprom_semaphore(hw); |
| 6738 | DEBUGOUT("Driver can't access the Eeprom - SWESMBI bit is set.\n"); |
| 6739 | return -E1000_ERR_EEPROM; |
| 6740 | } |
| 6741 | |
| 6742 | return E1000_SUCCESS; |
| 6743 | } |
| 6744 | |
| 6745 | /*************************************************************************** |
| 6746 | * This function clears HW semaphore bits. |
| 6747 | * |
| 6748 | * hw: Struct containing variables accessed by shared code |
| 6749 | * |
| 6750 | * returns: - None. |
| 6751 | * |
| 6752 | ***************************************************************************/ |
Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame^] | 6753 | static void |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 6754 | e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw) |
| 6755 | { |
| 6756 | uint32_t swsm; |
| 6757 | |
| 6758 | DEBUGFUNC("e1000_put_hw_eeprom_semaphore"); |
| 6759 | |
| 6760 | if(!hw->eeprom_semaphore_present) |
| 6761 | return; |
| 6762 | |
| 6763 | swsm = E1000_READ_REG(hw, SWSM); |
Mallikarjuna R Chilakala | 868d530 | 2005-10-04 06:58:59 -0400 | [diff] [blame] | 6764 | swsm &= ~(E1000_SWSM_SWESMBI); |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 6765 | E1000_WRITE_REG(hw, SWSM, swsm); |
| 6766 | } |
| 6767 | |
| 6768 | /****************************************************************************** |
| 6769 | * Checks if PHY reset is blocked due to SOL/IDER session, for example. |
| 6770 | * Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to |
| 6771 | * the caller to figure out how to deal with it. |
| 6772 | * |
| 6773 | * hw - Struct containing variables accessed by shared code |
| 6774 | * |
| 6775 | * returns: - E1000_BLK_PHY_RESET |
| 6776 | * E1000_SUCCESS |
| 6777 | * |
| 6778 | *****************************************************************************/ |
| 6779 | int32_t |
| 6780 | e1000_check_phy_reset_block(struct e1000_hw *hw) |
| 6781 | { |
| 6782 | uint32_t manc = 0; |
| 6783 | if(hw->mac_type > e1000_82547_rev_2) |
| 6784 | manc = E1000_READ_REG(hw, MANC); |
| 6785 | return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? |
| 6786 | E1000_BLK_PHY_RESET : E1000_SUCCESS; |
| 6787 | } |
| 6788 | |
Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame^] | 6789 | static uint8_t |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 6790 | e1000_arc_subsystem_valid(struct e1000_hw *hw) |
| 6791 | { |
| 6792 | uint32_t fwsm; |
| 6793 | |
| 6794 | /* On 8257x silicon, registers in the range of 0x8800 - 0x8FFC |
| 6795 | * may not be provided a DMA clock when no manageability features are |
| 6796 | * enabled. We do not want to perform any reads/writes to these registers |
| 6797 | * if this is the case. We read FWSM to determine the manageability mode. |
| 6798 | */ |
| 6799 | switch (hw->mac_type) { |
Mallikarjuna R Chilakala | 868d530 | 2005-10-04 06:58:59 -0400 | [diff] [blame] | 6800 | case e1000_82571: |
| 6801 | case e1000_82572: |
Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 6802 | case e1000_82573: |
| 6803 | fwsm = E1000_READ_REG(hw, FWSM); |
| 6804 | if((fwsm & E1000_FWSM_MODE_MASK) != 0) |
| 6805 | return TRUE; |
| 6806 | break; |
| 6807 | default: |
| 6808 | break; |
| 6809 | } |
| 6810 | return FALSE; |
| 6811 | } |
| 6812 | |
| 6813 | |
| 6814 | |