blob: 8120c3c0cb4e039b698774016c3d0ae0ff44236b [file] [log] [blame]
Daniel W. S. Almeida8ab13bc2020-01-29 02:06:21 -03001.. SPDX-License-Identifier: GPL-2.0
Mauro Carvalho Chehab3b315892020-03-03 16:50:37 +01002
3====
Daniel W. S. Almeida8ab13bc2020-01-29 02:06:21 -03004FUSE
Mauro Carvalho Chehab3b315892020-03-03 16:50:37 +01005====
Daniel W. S. Almeida8ab13bc2020-01-29 02:06:21 -03006
Miklos Szeredi334f4852005-09-09 13:10:27 -07007Definitions
Daniel W. S. Almeida8ab13bc2020-01-29 02:06:21 -03008===========
Miklos Szeredi334f4852005-09-09 13:10:27 -07009
10Userspace filesystem:
Miklos Szeredi334f4852005-09-09 13:10:27 -070011 A filesystem in which data and metadata are provided by an ordinary
12 userspace process. The filesystem can be accessed normally through
13 the kernel interface.
14
15Filesystem daemon:
Miklos Szeredi334f4852005-09-09 13:10:27 -070016 The process(es) providing the data and metadata of the filesystem.
17
18Non-privileged mount (or user mount):
Miklos Szeredi334f4852005-09-09 13:10:27 -070019 A userspace filesystem mounted by a non-privileged (non-root) user.
20 The filesystem daemon is running with the privileges of the mounting
21 user. NOTE: this is not the same as mounts allowed with the "user"
22 option in /etc/fstab, which is not discussed here.
23
Miklos Szeredibafa9652006-06-25 05:48:51 -070024Filesystem connection:
Miklos Szeredibafa9652006-06-25 05:48:51 -070025 A connection between the filesystem daemon and the kernel. The
26 connection exists until either the daemon dies, or the filesystem is
27 umounted. Note that detaching (or lazy umounting) the filesystem
Daniel W. S. Almeida8ab13bc2020-01-29 02:06:21 -030028 does *not* break the connection, in this case it will exist until
Miklos Szeredibafa9652006-06-25 05:48:51 -070029 the last reference to the filesystem is released.
30
Miklos Szeredi334f4852005-09-09 13:10:27 -070031Mount owner:
Miklos Szeredi334f4852005-09-09 13:10:27 -070032 The user who does the mounting.
33
34User:
Miklos Szeredi334f4852005-09-09 13:10:27 -070035 The user who is performing filesystem operations.
36
37What is FUSE?
Daniel W. S. Almeida8ab13bc2020-01-29 02:06:21 -030038=============
Miklos Szeredi334f4852005-09-09 13:10:27 -070039
40FUSE is a userspace filesystem framework. It consists of a kernel
41module (fuse.ko), a userspace library (libfuse.*) and a mount utility
42(fusermount).
43
44One of the most important features of FUSE is allowing secure,
45non-privileged mounts. This opens up new possibilities for the use of
46filesystems. A good example is sshfs: a secure network filesystem
47using the sftp protocol.
48
Daniel W. S. Almeida8ab13bc2020-01-29 02:06:21 -030049The userspace library and utilities are available from the
André Almeidac1b0c622020-07-23 13:43:11 -030050`FUSE homepage: <https://github.com/libfuse/>`_
Miklos Szeredi334f4852005-09-09 13:10:27 -070051
Miklos Szeredid6392f82006-12-06 20:35:44 -080052Filesystem type
Daniel W. S. Almeida8ab13bc2020-01-29 02:06:21 -030053===============
Miklos Szeredid6392f82006-12-06 20:35:44 -080054
55The filesystem type given to mount(2) can be one of the following:
56
Daniel W. S. Almeida8ab13bc2020-01-29 02:06:21 -030057 fuse
58 This is the usual way to mount a FUSE filesystem. The first
59 argument of the mount system call may contain an arbitrary string,
60 which is not interpreted by the kernel.
Miklos Szeredid6392f82006-12-06 20:35:44 -080061
Daniel W. S. Almeida8ab13bc2020-01-29 02:06:21 -030062 fuseblk
63 The filesystem is block device based. The first argument of the
64 mount system call is interpreted as the name of the device.
Miklos Szeredid6392f82006-12-06 20:35:44 -080065
Miklos Szeredi334f4852005-09-09 13:10:27 -070066Mount options
Daniel W. S. Almeida8ab13bc2020-01-29 02:06:21 -030067=============
Miklos Szeredi334f4852005-09-09 13:10:27 -070068
Daniel W. S. Almeida8ab13bc2020-01-29 02:06:21 -030069fd=N
Miklos Szeredi334f4852005-09-09 13:10:27 -070070 The file descriptor to use for communication between the userspace
71 filesystem and the kernel. The file descriptor must have been
72 obtained by opening the FUSE device ('/dev/fuse').
73
Daniel W. S. Almeida8ab13bc2020-01-29 02:06:21 -030074rootmode=M
Miklos Szeredi334f4852005-09-09 13:10:27 -070075 The file mode of the filesystem's root in octal representation.
76
Daniel W. S. Almeida8ab13bc2020-01-29 02:06:21 -030077user_id=N
Miklos Szeredi334f4852005-09-09 13:10:27 -070078 The numeric user id of the mount owner.
79
Daniel W. S. Almeida8ab13bc2020-01-29 02:06:21 -030080group_id=N
Miklos Szeredi334f4852005-09-09 13:10:27 -070081 The numeric group id of the mount owner.
82
Daniel W. S. Almeida8ab13bc2020-01-29 02:06:21 -030083default_permissions
Miklos Szeredi334f4852005-09-09 13:10:27 -070084 By default FUSE doesn't check file access permissions, the
Francis Galieguea33f3222010-04-23 00:08:02 +020085 filesystem is free to implement its access policy or leave it to
Miklos Szeredi334f4852005-09-09 13:10:27 -070086 the underlying file access mechanism (e.g. in case of network
87 filesystems). This option enables permission checking, restricting
Alexey Dobriyan91f6e542006-12-29 16:50:08 -080088 access based on file mode. It is usually useful together with the
89 'allow_other' mount option.
Miklos Szeredi334f4852005-09-09 13:10:27 -070090
Daniel W. S. Almeida8ab13bc2020-01-29 02:06:21 -030091allow_other
Miklos Szeredi334f4852005-09-09 13:10:27 -070092 This option overrides the security measure restricting file access
93 to the user mounting the filesystem. This option is by default only
94 allowed to root, but this restriction can be removed with a
95 (userspace) configuration option.
96
Daniel W. S. Almeida8ab13bc2020-01-29 02:06:21 -030097max_read=N
Miklos Szeredi334f4852005-09-09 13:10:27 -070098 With this option the maximum size of read operations can be set.
99 The default is infinite. Note that the size of read requests is
100 limited anyway to 32 pages (which is 128kbyte on i386).
101
Daniel W. S. Almeida8ab13bc2020-01-29 02:06:21 -0300102blksize=N
Miklos Szeredid8091612006-12-06 20:35:48 -0800103 Set the block size for the filesystem. The default is 512. This
104 option is only valid for 'fuseblk' type mounts.
105
Miklos Szeredibafa9652006-06-25 05:48:51 -0700106Control filesystem
Daniel W. S. Almeida8ab13bc2020-01-29 02:06:21 -0300107==================
Miklos Szeredibacac382006-01-16 22:14:47 -0800108
Daniel W. S. Almeida8ab13bc2020-01-29 02:06:21 -0300109There's a control filesystem for FUSE, which can be mounted by::
Miklos Szeredibacac382006-01-16 22:14:47 -0800110
Miklos Szeredibafa9652006-06-25 05:48:51 -0700111 mount -t fusectl none /sys/fs/fuse/connections
Miklos Szeredibacac382006-01-16 22:14:47 -0800112
Miklos Szeredibafa9652006-06-25 05:48:51 -0700113Mounting it under the '/sys/fs/fuse/connections' directory makes it
114backwards compatible with earlier versions.
Miklos Szeredibacac382006-01-16 22:14:47 -0800115
Miklos Szeredibafa9652006-06-25 05:48:51 -0700116Under the fuse control filesystem each connection has a directory
117named by a unique number.
118
119For each connection the following files exist within this directory:
Miklos Szeredibacac382006-01-16 22:14:47 -0800120
Daniel W. S. Almeida8ab13bc2020-01-29 02:06:21 -0300121 waiting
122 The number of requests which are waiting to be transferred to
123 userspace or being processed by the filesystem daemon. If there is
124 no filesystem activity and 'waiting' is non-zero, then the
125 filesystem is hung or deadlocked.
Miklos Szeredibacac382006-01-16 22:14:47 -0800126
Daniel W. S. Almeida8ab13bc2020-01-29 02:06:21 -0300127 abort
128 Writing anything into this file will abort the filesystem
129 connection. This means that all waiting requests will be aborted an
130 error returned for all aborted and new requests.
Miklos Szeredibacac382006-01-16 22:14:47 -0800131
Miklos Szeredibafa9652006-06-25 05:48:51 -0700132Only the owner of the mount may read or write these files.
Miklos Szeredibacac382006-01-16 22:14:47 -0800133
Miklos Szeredia4d27e72006-06-25 05:48:54 -0700134Interrupting filesystem operations
Daniel W. S. Almeida8ab13bc2020-01-29 02:06:21 -0300135##################################
Miklos Szeredia4d27e72006-06-25 05:48:54 -0700136
137If a process issuing a FUSE filesystem request is interrupted, the
138following will happen:
139
Daniel W. S. Almeida8ab13bc2020-01-29 02:06:21 -0300140 - If the request is not yet sent to userspace AND the signal is
Miklos Szeredia4d27e72006-06-25 05:48:54 -0700141 fatal (SIGKILL or unhandled fatal signal), then the request is
142 dequeued and returns immediately.
143
Daniel W. S. Almeida8ab13bc2020-01-29 02:06:21 -0300144 - If the request is not yet sent to userspace AND the signal is not
145 fatal, then an interrupted flag is set for the request. When
Matt LaPlantefa00e7e2006-11-30 04:55:36 +0100146 the request has been successfully transferred to userspace and
Miklos Szeredia4d27e72006-06-25 05:48:54 -0700147 this flag is set, an INTERRUPT request is queued.
148
Daniel W. S. Almeida8ab13bc2020-01-29 02:06:21 -0300149 - If the request is already sent to userspace, then an INTERRUPT
Miklos Szeredia4d27e72006-06-25 05:48:54 -0700150 request is queued.
151
152INTERRUPT requests take precedence over other requests, so the
153userspace filesystem will receive queued INTERRUPTs before any others.
154
155The userspace filesystem may ignore the INTERRUPT requests entirely,
Daniel W. S. Almeida8ab13bc2020-01-29 02:06:21 -0300156or may honor them by sending a reply to the *original* request, with
Miklos Szeredia4d27e72006-06-25 05:48:54 -0700157the error set to EINTR.
158
159It is also possible that there's a race between processing the
Francis Galieguea33f3222010-04-23 00:08:02 +0200160original request and its INTERRUPT request. There are two possibilities:
Miklos Szeredia4d27e72006-06-25 05:48:54 -0700161
Daniel W. S. Almeida8ab13bc2020-01-29 02:06:21 -0300162 1. The INTERRUPT request is processed before the original request is
Miklos Szeredia4d27e72006-06-25 05:48:54 -0700163 processed
164
Daniel W. S. Almeida8ab13bc2020-01-29 02:06:21 -0300165 2. The INTERRUPT request is processed after the original request has
Miklos Szeredia4d27e72006-06-25 05:48:54 -0700166 been answered
167
168If the filesystem cannot find the original request, it should wait for
169some timeout and/or a number of new requests to arrive, after which it
170should reply to the INTERRUPT request with an EAGAIN error. In case
1711) the INTERRUPT request will be requeued. In case 2) the INTERRUPT
172reply will be ignored.
173
Miklos Szeredibacac382006-01-16 22:14:47 -0800174Aborting a filesystem connection
Daniel W. S. Almeida8ab13bc2020-01-29 02:06:21 -0300175================================
Miklos Szeredibacac382006-01-16 22:14:47 -0800176
177It is possible to get into certain situations where the filesystem is
178not responding. Reasons for this may be:
179
180 a) Broken userspace filesystem implementation
181
182 b) Network connection down
183
184 c) Accidental deadlock
185
186 d) Malicious deadlock
187
188(For more on c) and d) see later sections)
189
190In either of these cases it may be useful to abort the connection to
191the filesystem. There are several ways to do this:
192
193 - Kill the filesystem daemon. Works in case of a) and b)
194
195 - Kill the filesystem daemon and all users of the filesystem. Works
196 in all cases except some malicious deadlocks
197
198 - Use forced umount (umount -f). Works in all cases but only if
199 filesystem is still attached (it hasn't been lazy unmounted)
200
Miklos Szeredibafa9652006-06-25 05:48:51 -0700201 - Abort filesystem through the FUSE control filesystem. Most
202 powerful method, always works.
Miklos Szeredibacac382006-01-16 22:14:47 -0800203
Miklos Szeredi334f4852005-09-09 13:10:27 -0700204How do non-privileged mounts work?
Daniel W. S. Almeida8ab13bc2020-01-29 02:06:21 -0300205==================================
Miklos Szeredi334f4852005-09-09 13:10:27 -0700206
207Since the mount() system call is a privileged operation, a helper
208program (fusermount) is needed, which is installed setuid root.
209
210The implication of providing non-privileged mounts is that the mount
211owner must not be able to use this capability to compromise the
212system. Obvious requirements arising from this are:
213
214 A) mount owner should not be able to get elevated privileges with the
215 help of the mounted filesystem
216
217 B) mount owner should not get illegitimate access to information from
218 other users' and the super user's processes
219
220 C) mount owner should not be able to induce undesired behavior in
221 other users' or the super user's processes
222
223How are requirements fulfilled?
Daniel W. S. Almeida8ab13bc2020-01-29 02:06:21 -0300224===============================
Miklos Szeredi334f4852005-09-09 13:10:27 -0700225
226 A) The mount owner could gain elevated privileges by either:
227
Daniel W. S. Almeida8ab13bc2020-01-29 02:06:21 -0300228 1. creating a filesystem containing a device file, then opening this device
Miklos Szeredi334f4852005-09-09 13:10:27 -0700229
Daniel W. S. Almeida8ab13bc2020-01-29 02:06:21 -0300230 2. creating a filesystem containing a suid or sgid application, then executing this application
Miklos Szeredi334f4852005-09-09 13:10:27 -0700231
232 The solution is not to allow opening device files and ignore
233 setuid and setgid bits when executing programs. To ensure this
234 fusermount always adds "nosuid" and "nodev" to the mount options
235 for non-privileged mounts.
236
237 B) If another user is accessing files or directories in the
238 filesystem, the filesystem daemon serving requests can record the
239 exact sequence and timing of operations performed. This
240 information is otherwise inaccessible to the mount owner, so this
241 counts as an information leak.
242
243 The solution to this problem will be presented in point 2) of C).
244
245 C) There are several ways in which the mount owner can induce
246 undesired behavior in other users' processes, such as:
247
248 1) mounting a filesystem over a file or directory which the mount
249 owner could otherwise not be able to modify (or could only
250 make limited modifications).
251
252 This is solved in fusermount, by checking the access
253 permissions on the mountpoint and only allowing the mount if
254 the mount owner can do unlimited modification (has write
255 access to the mountpoint, and mountpoint is not a "sticky"
256 directory)
257
258 2) Even if 1) is solved the mount owner can change the behavior
259 of other users' processes.
260
261 i) It can slow down or indefinitely delay the execution of a
Daniel W. S. Almeida8ab13bc2020-01-29 02:06:21 -0300262 filesystem operation creating a DoS against the user or the
263 whole system. For example a suid application locking a
264 system file, and then accessing a file on the mount owner's
265 filesystem could be stopped, and thus causing the system
266 file to be locked forever.
Miklos Szeredi334f4852005-09-09 13:10:27 -0700267
268 ii) It can present files or directories of unlimited length, or
Daniel W. S. Almeida8ab13bc2020-01-29 02:06:21 -0300269 directory structures of unlimited depth, possibly causing a
270 system process to eat up diskspace, memory or other
271 resources, again causing *DoS*.
Miklos Szeredi334f4852005-09-09 13:10:27 -0700272
273 The solution to this as well as B) is not to allow processes
274 to access the filesystem, which could otherwise not be
275 monitored or manipulated by the mount owner. Since if the
276 mount owner can ptrace a process, it can do all of the above
277 without using a FUSE mount, the same criteria as used in
278 ptrace can be used to check if a process is allowed to access
279 the filesystem or not.
280
Daniel W. S. Almeida8ab13bc2020-01-29 02:06:21 -0300281 Note that the *ptrace* check is not strictly necessary to
Miklos Szeredi334f4852005-09-09 13:10:27 -0700282 prevent B/2/i, it is enough to check if mount owner has enough
283 privilege to send signal to the process accessing the
Daniel W. S. Almeida8ab13bc2020-01-29 02:06:21 -0300284 filesystem, since *SIGSTOP* can be used to get a similar effect.
Miklos Szeredi334f4852005-09-09 13:10:27 -0700285
286I think these limitations are unacceptable?
Daniel W. S. Almeida8ab13bc2020-01-29 02:06:21 -0300287===========================================
Miklos Szeredi334f4852005-09-09 13:10:27 -0700288
289If a sysadmin trusts the users enough, or can ensure through other
290measures, that system processes will never enter non-privileged
Daniel W. S. Almeida8ab13bc2020-01-29 02:06:21 -0300291mounts, it can relax the last limitation with a 'user_allow_other'
Miklos Szeredi334f4852005-09-09 13:10:27 -0700292config option. If this config option is set, the mounting user can
Daniel W. S. Almeida8ab13bc2020-01-29 02:06:21 -0300293add the 'allow_other' mount option which disables the check for other
Miklos Szeredi334f4852005-09-09 13:10:27 -0700294users' processes.
295
296Kernel - userspace interface
Daniel W. S. Almeida8ab13bc2020-01-29 02:06:21 -0300297============================
Miklos Szeredi334f4852005-09-09 13:10:27 -0700298
299The following diagram shows how a filesystem operation (in this
Daniel W. S. Almeida8ab13bc2020-01-29 02:06:21 -0300300example unlink) is performed in FUSE. ::
Miklos Szeredi334f4852005-09-09 13:10:27 -0700301
Miklos Szeredi334f4852005-09-09 13:10:27 -0700302
303 | "rm /mnt/fuse/file" | FUSE filesystem daemon
304 | |
305 | | >sys_read()
306 | | >fuse_dev_read()
307 | | >request_wait()
308 | | [sleep on fc->waitq]
309 | |
310 | >sys_unlink() |
311 | >fuse_unlink() |
312 | [get request from |
313 | fc->unused_list] |
314 | >request_send() |
315 | [queue req on fc->pending] |
316 | [wake up fc->waitq] | [woken up]
317 | >request_wait_answer() |
318 | [sleep on req->waitq] |
319 | | <request_wait()
320 | | [remove req from fc->pending]
321 | | [copy req to read buffer]
322 | | [add req to fc->processing]
323 | | <fuse_dev_read()
324 | | <sys_read()
325 | |
326 | | [perform unlink]
327 | |
328 | | >sys_write()
329 | | >fuse_dev_write()
330 | | [look up req in fc->processing]
331 | | [remove from fc->processing]
332 | | [copy write buffer to req]
333 | [woken up] | [wake up req->waitq]
334 | | <fuse_dev_write()
335 | | <sys_write()
336 | <request_wait_answer() |
337 | <request_send() |
338 | [add request to |
339 | fc->unused_list] |
340 | <fuse_unlink() |
341 | <sys_unlink() |
342
Daniel W. S. Almeida8ab13bc2020-01-29 02:06:21 -0300343.. note:: Everything in the description above is greatly simplified
344
Miklos Szeredi334f4852005-09-09 13:10:27 -0700345There are a couple of ways in which to deadlock a FUSE filesystem.
346Since we are talking about unprivileged userspace programs,
347something must be done about these.
348
Daniel W. S. Almeida8ab13bc2020-01-29 02:06:21 -0300349**Scenario 1 - Simple deadlock**::
Miklos Szeredi334f4852005-09-09 13:10:27 -0700350
351 | "rm /mnt/fuse/file" | FUSE filesystem daemon
352 | |
353 | >sys_unlink("/mnt/fuse/file") |
354 | [acquire inode semaphore |
355 | for "file"] |
356 | >fuse_unlink() |
357 | [sleep on req->waitq] |
358 | | <sys_read()
359 | | >sys_unlink("/mnt/fuse/file")
360 | | [acquire inode semaphore
361 | | for "file"]
362 | | *DEADLOCK*
363
Miklos Szeredi51eb01e2006-06-25 05:48:50 -0700364The solution for this is to allow the filesystem to be aborted.
Miklos Szeredi334f4852005-09-09 13:10:27 -0700365
Daniel W. S. Almeida8ab13bc2020-01-29 02:06:21 -0300366**Scenario 2 - Tricky deadlock**
367
Miklos Szeredi334f4852005-09-09 13:10:27 -0700368
369This one needs a carefully crafted filesystem. It's a variation on
370the above, only the call back to the filesystem is not explicit,
Daniel W. S. Almeida8ab13bc2020-01-29 02:06:21 -0300371but is caused by a pagefault. ::
Miklos Szeredi334f4852005-09-09 13:10:27 -0700372
373 | Kamikaze filesystem thread 1 | Kamikaze filesystem thread 2
374 | |
375 | [fd = open("/mnt/fuse/file")] | [request served normally]
376 | [mmap fd to 'addr'] |
377 | [close fd] | [FLUSH triggers 'magic' flag]
378 | [read a byte from addr] |
379 | >do_page_fault() |
380 | [find or create page] |
381 | [lock page] |
382 | >fuse_readpage() |
383 | [queue READ request] |
384 | [sleep on req->waitq] |
385 | | [read request to buffer]
386 | | [create reply header before addr]
387 | | >sys_write(addr - headerlength)
388 | | >fuse_dev_write()
389 | | [look up req in fc->processing]
390 | | [remove from fc->processing]
391 | | [copy write buffer to req]
392 | | >do_page_fault()
393 | | [find or create page]
394 | | [lock page]
395 | | * DEADLOCK *
396
Daniel W. S. Almeida8ab13bc2020-01-29 02:06:21 -0300397The solution is basically the same as above.
Miklos Szeredi334f4852005-09-09 13:10:27 -0700398
Miklos Szeredia4d27e72006-06-25 05:48:54 -0700399An additional problem is that while the write buffer is being copied
400to the request, the request must not be interrupted/aborted. This is
401because the destination address of the copy may not be valid after the
402request has returned.
Miklos Szeredi334f4852005-09-09 13:10:27 -0700403
Miklos Szeredi51eb01e2006-06-25 05:48:50 -0700404This is solved with doing the copy atomically, and allowing abort
405while the page(s) belonging to the write buffer are faulted with
406get_user_pages(). The 'req->locked' flag indicates when the copy is
407taking place, and abort is delayed until this flag is unset.