Jason A. Donenfeld | 0ed42a6f | 2019-11-08 13:22:32 +0100 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 OR MIT |
| 2 | /* |
| 3 | * Copyright (C) 2015-2016 The fiat-crypto Authors. |
| 4 | * Copyright (C) 2018-2019 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. |
| 5 | * |
| 6 | * This is a machine-generated formally verified implementation of Curve25519 |
| 7 | * ECDH from: <https://github.com/mit-plv/fiat-crypto>. Though originally |
| 8 | * machine generated, it has been tweaked to be suitable for use in the kernel. |
| 9 | * It is optimized for 32-bit machines and machines that cannot work efficiently |
| 10 | * with 128-bit integer types. |
| 11 | */ |
| 12 | |
| 13 | #include <asm/unaligned.h> |
| 14 | #include <crypto/curve25519.h> |
| 15 | #include <linux/string.h> |
| 16 | |
| 17 | /* fe means field element. Here the field is \Z/(2^255-19). An element t, |
| 18 | * entries t[0]...t[9], represents the integer t[0]+2^26 t[1]+2^51 t[2]+2^77 |
| 19 | * t[3]+2^102 t[4]+...+2^230 t[9]. |
| 20 | * fe limbs are bounded by 1.125*2^26,1.125*2^25,1.125*2^26,1.125*2^25,etc. |
| 21 | * Multiplication and carrying produce fe from fe_loose. |
| 22 | */ |
| 23 | typedef struct fe { u32 v[10]; } fe; |
| 24 | |
| 25 | /* fe_loose limbs are bounded by 3.375*2^26,3.375*2^25,3.375*2^26,3.375*2^25,etc |
| 26 | * Addition and subtraction produce fe_loose from (fe, fe). |
| 27 | */ |
| 28 | typedef struct fe_loose { u32 v[10]; } fe_loose; |
| 29 | |
| 30 | static __always_inline void fe_frombytes_impl(u32 h[10], const u8 *s) |
| 31 | { |
| 32 | /* Ignores top bit of s. */ |
| 33 | u32 a0 = get_unaligned_le32(s); |
| 34 | u32 a1 = get_unaligned_le32(s+4); |
| 35 | u32 a2 = get_unaligned_le32(s+8); |
| 36 | u32 a3 = get_unaligned_le32(s+12); |
| 37 | u32 a4 = get_unaligned_le32(s+16); |
| 38 | u32 a5 = get_unaligned_le32(s+20); |
| 39 | u32 a6 = get_unaligned_le32(s+24); |
| 40 | u32 a7 = get_unaligned_le32(s+28); |
| 41 | h[0] = a0&((1<<26)-1); /* 26 used, 32-26 left. 26 */ |
| 42 | h[1] = (a0>>26) | ((a1&((1<<19)-1))<< 6); /* (32-26) + 19 = 6+19 = 25 */ |
| 43 | h[2] = (a1>>19) | ((a2&((1<<13)-1))<<13); /* (32-19) + 13 = 13+13 = 26 */ |
| 44 | h[3] = (a2>>13) | ((a3&((1<< 6)-1))<<19); /* (32-13) + 6 = 19+ 6 = 25 */ |
| 45 | h[4] = (a3>> 6); /* (32- 6) = 26 */ |
| 46 | h[5] = a4&((1<<25)-1); /* 25 */ |
| 47 | h[6] = (a4>>25) | ((a5&((1<<19)-1))<< 7); /* (32-25) + 19 = 7+19 = 26 */ |
| 48 | h[7] = (a5>>19) | ((a6&((1<<12)-1))<<13); /* (32-19) + 12 = 13+12 = 25 */ |
| 49 | h[8] = (a6>>12) | ((a7&((1<< 6)-1))<<20); /* (32-12) + 6 = 20+ 6 = 26 */ |
| 50 | h[9] = (a7>> 6)&((1<<25)-1); /* 25 */ |
| 51 | } |
| 52 | |
| 53 | static __always_inline void fe_frombytes(fe *h, const u8 *s) |
| 54 | { |
| 55 | fe_frombytes_impl(h->v, s); |
| 56 | } |
| 57 | |
| 58 | static __always_inline u8 /*bool*/ |
| 59 | addcarryx_u25(u8 /*bool*/ c, u32 a, u32 b, u32 *low) |
| 60 | { |
| 61 | /* This function extracts 25 bits of result and 1 bit of carry |
| 62 | * (26 total), so a 32-bit intermediate is sufficient. |
| 63 | */ |
| 64 | u32 x = a + b + c; |
| 65 | *low = x & ((1 << 25) - 1); |
| 66 | return (x >> 25) & 1; |
| 67 | } |
| 68 | |
| 69 | static __always_inline u8 /*bool*/ |
| 70 | addcarryx_u26(u8 /*bool*/ c, u32 a, u32 b, u32 *low) |
| 71 | { |
| 72 | /* This function extracts 26 bits of result and 1 bit of carry |
| 73 | * (27 total), so a 32-bit intermediate is sufficient. |
| 74 | */ |
| 75 | u32 x = a + b + c; |
| 76 | *low = x & ((1 << 26) - 1); |
| 77 | return (x >> 26) & 1; |
| 78 | } |
| 79 | |
| 80 | static __always_inline u8 /*bool*/ |
| 81 | subborrow_u25(u8 /*bool*/ c, u32 a, u32 b, u32 *low) |
| 82 | { |
| 83 | /* This function extracts 25 bits of result and 1 bit of borrow |
| 84 | * (26 total), so a 32-bit intermediate is sufficient. |
| 85 | */ |
| 86 | u32 x = a - b - c; |
| 87 | *low = x & ((1 << 25) - 1); |
| 88 | return x >> 31; |
| 89 | } |
| 90 | |
| 91 | static __always_inline u8 /*bool*/ |
| 92 | subborrow_u26(u8 /*bool*/ c, u32 a, u32 b, u32 *low) |
| 93 | { |
| 94 | /* This function extracts 26 bits of result and 1 bit of borrow |
| 95 | *(27 total), so a 32-bit intermediate is sufficient. |
| 96 | */ |
| 97 | u32 x = a - b - c; |
| 98 | *low = x & ((1 << 26) - 1); |
| 99 | return x >> 31; |
| 100 | } |
| 101 | |
| 102 | static __always_inline u32 cmovznz32(u32 t, u32 z, u32 nz) |
| 103 | { |
| 104 | t = -!!t; /* all set if nonzero, 0 if 0 */ |
| 105 | return (t&nz) | ((~t)&z); |
| 106 | } |
| 107 | |
| 108 | static __always_inline void fe_freeze(u32 out[10], const u32 in1[10]) |
| 109 | { |
| 110 | { const u32 x17 = in1[9]; |
| 111 | { const u32 x18 = in1[8]; |
| 112 | { const u32 x16 = in1[7]; |
| 113 | { const u32 x14 = in1[6]; |
| 114 | { const u32 x12 = in1[5]; |
| 115 | { const u32 x10 = in1[4]; |
| 116 | { const u32 x8 = in1[3]; |
| 117 | { const u32 x6 = in1[2]; |
| 118 | { const u32 x4 = in1[1]; |
| 119 | { const u32 x2 = in1[0]; |
| 120 | { u32 x20; u8/*bool*/ x21 = subborrow_u26(0x0, x2, 0x3ffffed, &x20); |
| 121 | { u32 x23; u8/*bool*/ x24 = subborrow_u25(x21, x4, 0x1ffffff, &x23); |
| 122 | { u32 x26; u8/*bool*/ x27 = subborrow_u26(x24, x6, 0x3ffffff, &x26); |
| 123 | { u32 x29; u8/*bool*/ x30 = subborrow_u25(x27, x8, 0x1ffffff, &x29); |
| 124 | { u32 x32; u8/*bool*/ x33 = subborrow_u26(x30, x10, 0x3ffffff, &x32); |
| 125 | { u32 x35; u8/*bool*/ x36 = subborrow_u25(x33, x12, 0x1ffffff, &x35); |
| 126 | { u32 x38; u8/*bool*/ x39 = subborrow_u26(x36, x14, 0x3ffffff, &x38); |
| 127 | { u32 x41; u8/*bool*/ x42 = subborrow_u25(x39, x16, 0x1ffffff, &x41); |
| 128 | { u32 x44; u8/*bool*/ x45 = subborrow_u26(x42, x18, 0x3ffffff, &x44); |
| 129 | { u32 x47; u8/*bool*/ x48 = subborrow_u25(x45, x17, 0x1ffffff, &x47); |
| 130 | { u32 x49 = cmovznz32(x48, 0x0, 0xffffffff); |
| 131 | { u32 x50 = (x49 & 0x3ffffed); |
| 132 | { u32 x52; u8/*bool*/ x53 = addcarryx_u26(0x0, x20, x50, &x52); |
| 133 | { u32 x54 = (x49 & 0x1ffffff); |
| 134 | { u32 x56; u8/*bool*/ x57 = addcarryx_u25(x53, x23, x54, &x56); |
| 135 | { u32 x58 = (x49 & 0x3ffffff); |
| 136 | { u32 x60; u8/*bool*/ x61 = addcarryx_u26(x57, x26, x58, &x60); |
| 137 | { u32 x62 = (x49 & 0x1ffffff); |
| 138 | { u32 x64; u8/*bool*/ x65 = addcarryx_u25(x61, x29, x62, &x64); |
| 139 | { u32 x66 = (x49 & 0x3ffffff); |
| 140 | { u32 x68; u8/*bool*/ x69 = addcarryx_u26(x65, x32, x66, &x68); |
| 141 | { u32 x70 = (x49 & 0x1ffffff); |
| 142 | { u32 x72; u8/*bool*/ x73 = addcarryx_u25(x69, x35, x70, &x72); |
| 143 | { u32 x74 = (x49 & 0x3ffffff); |
| 144 | { u32 x76; u8/*bool*/ x77 = addcarryx_u26(x73, x38, x74, &x76); |
| 145 | { u32 x78 = (x49 & 0x1ffffff); |
| 146 | { u32 x80; u8/*bool*/ x81 = addcarryx_u25(x77, x41, x78, &x80); |
| 147 | { u32 x82 = (x49 & 0x3ffffff); |
| 148 | { u32 x84; u8/*bool*/ x85 = addcarryx_u26(x81, x44, x82, &x84); |
| 149 | { u32 x86 = (x49 & 0x1ffffff); |
| 150 | { u32 x88; addcarryx_u25(x85, x47, x86, &x88); |
| 151 | out[0] = x52; |
| 152 | out[1] = x56; |
| 153 | out[2] = x60; |
| 154 | out[3] = x64; |
| 155 | out[4] = x68; |
| 156 | out[5] = x72; |
| 157 | out[6] = x76; |
| 158 | out[7] = x80; |
| 159 | out[8] = x84; |
| 160 | out[9] = x88; |
| 161 | }}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} |
| 162 | } |
| 163 | |
| 164 | static __always_inline void fe_tobytes(u8 s[32], const fe *f) |
| 165 | { |
| 166 | u32 h[10]; |
| 167 | fe_freeze(h, f->v); |
| 168 | s[0] = h[0] >> 0; |
| 169 | s[1] = h[0] >> 8; |
| 170 | s[2] = h[0] >> 16; |
| 171 | s[3] = (h[0] >> 24) | (h[1] << 2); |
| 172 | s[4] = h[1] >> 6; |
| 173 | s[5] = h[1] >> 14; |
| 174 | s[6] = (h[1] >> 22) | (h[2] << 3); |
| 175 | s[7] = h[2] >> 5; |
| 176 | s[8] = h[2] >> 13; |
| 177 | s[9] = (h[2] >> 21) | (h[3] << 5); |
| 178 | s[10] = h[3] >> 3; |
| 179 | s[11] = h[3] >> 11; |
| 180 | s[12] = (h[3] >> 19) | (h[4] << 6); |
| 181 | s[13] = h[4] >> 2; |
| 182 | s[14] = h[4] >> 10; |
| 183 | s[15] = h[4] >> 18; |
| 184 | s[16] = h[5] >> 0; |
| 185 | s[17] = h[5] >> 8; |
| 186 | s[18] = h[5] >> 16; |
| 187 | s[19] = (h[5] >> 24) | (h[6] << 1); |
| 188 | s[20] = h[6] >> 7; |
| 189 | s[21] = h[6] >> 15; |
| 190 | s[22] = (h[6] >> 23) | (h[7] << 3); |
| 191 | s[23] = h[7] >> 5; |
| 192 | s[24] = h[7] >> 13; |
| 193 | s[25] = (h[7] >> 21) | (h[8] << 4); |
| 194 | s[26] = h[8] >> 4; |
| 195 | s[27] = h[8] >> 12; |
| 196 | s[28] = (h[8] >> 20) | (h[9] << 6); |
| 197 | s[29] = h[9] >> 2; |
| 198 | s[30] = h[9] >> 10; |
| 199 | s[31] = h[9] >> 18; |
| 200 | } |
| 201 | |
| 202 | /* h = f */ |
| 203 | static __always_inline void fe_copy(fe *h, const fe *f) |
| 204 | { |
| 205 | memmove(h, f, sizeof(u32) * 10); |
| 206 | } |
| 207 | |
| 208 | static __always_inline void fe_copy_lt(fe_loose *h, const fe *f) |
| 209 | { |
| 210 | memmove(h, f, sizeof(u32) * 10); |
| 211 | } |
| 212 | |
| 213 | /* h = 0 */ |
| 214 | static __always_inline void fe_0(fe *h) |
| 215 | { |
| 216 | memset(h, 0, sizeof(u32) * 10); |
| 217 | } |
| 218 | |
| 219 | /* h = 1 */ |
| 220 | static __always_inline void fe_1(fe *h) |
| 221 | { |
| 222 | memset(h, 0, sizeof(u32) * 10); |
| 223 | h->v[0] = 1; |
| 224 | } |
| 225 | |
Ard Biesheuvel | 660bb8e | 2019-11-08 13:22:35 +0100 | [diff] [blame] | 226 | static noinline void fe_add_impl(u32 out[10], const u32 in1[10], const u32 in2[10]) |
Jason A. Donenfeld | 0ed42a6f | 2019-11-08 13:22:32 +0100 | [diff] [blame] | 227 | { |
| 228 | { const u32 x20 = in1[9]; |
| 229 | { const u32 x21 = in1[8]; |
| 230 | { const u32 x19 = in1[7]; |
| 231 | { const u32 x17 = in1[6]; |
| 232 | { const u32 x15 = in1[5]; |
| 233 | { const u32 x13 = in1[4]; |
| 234 | { const u32 x11 = in1[3]; |
| 235 | { const u32 x9 = in1[2]; |
| 236 | { const u32 x7 = in1[1]; |
| 237 | { const u32 x5 = in1[0]; |
| 238 | { const u32 x38 = in2[9]; |
| 239 | { const u32 x39 = in2[8]; |
| 240 | { const u32 x37 = in2[7]; |
| 241 | { const u32 x35 = in2[6]; |
| 242 | { const u32 x33 = in2[5]; |
| 243 | { const u32 x31 = in2[4]; |
| 244 | { const u32 x29 = in2[3]; |
| 245 | { const u32 x27 = in2[2]; |
| 246 | { const u32 x25 = in2[1]; |
| 247 | { const u32 x23 = in2[0]; |
| 248 | out[0] = (x5 + x23); |
| 249 | out[1] = (x7 + x25); |
| 250 | out[2] = (x9 + x27); |
| 251 | out[3] = (x11 + x29); |
| 252 | out[4] = (x13 + x31); |
| 253 | out[5] = (x15 + x33); |
| 254 | out[6] = (x17 + x35); |
| 255 | out[7] = (x19 + x37); |
| 256 | out[8] = (x21 + x39); |
| 257 | out[9] = (x20 + x38); |
| 258 | }}}}}}}}}}}}}}}}}}}} |
| 259 | } |
| 260 | |
| 261 | /* h = f + g |
| 262 | * Can overlap h with f or g. |
| 263 | */ |
| 264 | static __always_inline void fe_add(fe_loose *h, const fe *f, const fe *g) |
| 265 | { |
| 266 | fe_add_impl(h->v, f->v, g->v); |
| 267 | } |
| 268 | |
Ard Biesheuvel | 660bb8e | 2019-11-08 13:22:35 +0100 | [diff] [blame] | 269 | static noinline void fe_sub_impl(u32 out[10], const u32 in1[10], const u32 in2[10]) |
Jason A. Donenfeld | 0ed42a6f | 2019-11-08 13:22:32 +0100 | [diff] [blame] | 270 | { |
| 271 | { const u32 x20 = in1[9]; |
| 272 | { const u32 x21 = in1[8]; |
| 273 | { const u32 x19 = in1[7]; |
| 274 | { const u32 x17 = in1[6]; |
| 275 | { const u32 x15 = in1[5]; |
| 276 | { const u32 x13 = in1[4]; |
| 277 | { const u32 x11 = in1[3]; |
| 278 | { const u32 x9 = in1[2]; |
| 279 | { const u32 x7 = in1[1]; |
| 280 | { const u32 x5 = in1[0]; |
| 281 | { const u32 x38 = in2[9]; |
| 282 | { const u32 x39 = in2[8]; |
| 283 | { const u32 x37 = in2[7]; |
| 284 | { const u32 x35 = in2[6]; |
| 285 | { const u32 x33 = in2[5]; |
| 286 | { const u32 x31 = in2[4]; |
| 287 | { const u32 x29 = in2[3]; |
| 288 | { const u32 x27 = in2[2]; |
| 289 | { const u32 x25 = in2[1]; |
| 290 | { const u32 x23 = in2[0]; |
| 291 | out[0] = ((0x7ffffda + x5) - x23); |
| 292 | out[1] = ((0x3fffffe + x7) - x25); |
| 293 | out[2] = ((0x7fffffe + x9) - x27); |
| 294 | out[3] = ((0x3fffffe + x11) - x29); |
| 295 | out[4] = ((0x7fffffe + x13) - x31); |
| 296 | out[5] = ((0x3fffffe + x15) - x33); |
| 297 | out[6] = ((0x7fffffe + x17) - x35); |
| 298 | out[7] = ((0x3fffffe + x19) - x37); |
| 299 | out[8] = ((0x7fffffe + x21) - x39); |
| 300 | out[9] = ((0x3fffffe + x20) - x38); |
| 301 | }}}}}}}}}}}}}}}}}}}} |
| 302 | } |
| 303 | |
| 304 | /* h = f - g |
| 305 | * Can overlap h with f or g. |
| 306 | */ |
| 307 | static __always_inline void fe_sub(fe_loose *h, const fe *f, const fe *g) |
| 308 | { |
| 309 | fe_sub_impl(h->v, f->v, g->v); |
| 310 | } |
| 311 | |
Ard Biesheuvel | 660bb8e | 2019-11-08 13:22:35 +0100 | [diff] [blame] | 312 | static noinline void fe_mul_impl(u32 out[10], const u32 in1[10], const u32 in2[10]) |
Jason A. Donenfeld | 0ed42a6f | 2019-11-08 13:22:32 +0100 | [diff] [blame] | 313 | { |
| 314 | { const u32 x20 = in1[9]; |
| 315 | { const u32 x21 = in1[8]; |
| 316 | { const u32 x19 = in1[7]; |
| 317 | { const u32 x17 = in1[6]; |
| 318 | { const u32 x15 = in1[5]; |
| 319 | { const u32 x13 = in1[4]; |
| 320 | { const u32 x11 = in1[3]; |
| 321 | { const u32 x9 = in1[2]; |
| 322 | { const u32 x7 = in1[1]; |
| 323 | { const u32 x5 = in1[0]; |
| 324 | { const u32 x38 = in2[9]; |
| 325 | { const u32 x39 = in2[8]; |
| 326 | { const u32 x37 = in2[7]; |
| 327 | { const u32 x35 = in2[6]; |
| 328 | { const u32 x33 = in2[5]; |
| 329 | { const u32 x31 = in2[4]; |
| 330 | { const u32 x29 = in2[3]; |
| 331 | { const u32 x27 = in2[2]; |
| 332 | { const u32 x25 = in2[1]; |
| 333 | { const u32 x23 = in2[0]; |
| 334 | { u64 x40 = ((u64)x23 * x5); |
| 335 | { u64 x41 = (((u64)x23 * x7) + ((u64)x25 * x5)); |
| 336 | { u64 x42 = ((((u64)(0x2 * x25) * x7) + ((u64)x23 * x9)) + ((u64)x27 * x5)); |
| 337 | { u64 x43 = (((((u64)x25 * x9) + ((u64)x27 * x7)) + ((u64)x23 * x11)) + ((u64)x29 * x5)); |
| 338 | { u64 x44 = (((((u64)x27 * x9) + (0x2 * (((u64)x25 * x11) + ((u64)x29 * x7)))) + ((u64)x23 * x13)) + ((u64)x31 * x5)); |
| 339 | { u64 x45 = (((((((u64)x27 * x11) + ((u64)x29 * x9)) + ((u64)x25 * x13)) + ((u64)x31 * x7)) + ((u64)x23 * x15)) + ((u64)x33 * x5)); |
| 340 | { u64 x46 = (((((0x2 * ((((u64)x29 * x11) + ((u64)x25 * x15)) + ((u64)x33 * x7))) + ((u64)x27 * x13)) + ((u64)x31 * x9)) + ((u64)x23 * x17)) + ((u64)x35 * x5)); |
| 341 | { u64 x47 = (((((((((u64)x29 * x13) + ((u64)x31 * x11)) + ((u64)x27 * x15)) + ((u64)x33 * x9)) + ((u64)x25 * x17)) + ((u64)x35 * x7)) + ((u64)x23 * x19)) + ((u64)x37 * x5)); |
| 342 | { u64 x48 = (((((((u64)x31 * x13) + (0x2 * (((((u64)x29 * x15) + ((u64)x33 * x11)) + ((u64)x25 * x19)) + ((u64)x37 * x7)))) + ((u64)x27 * x17)) + ((u64)x35 * x9)) + ((u64)x23 * x21)) + ((u64)x39 * x5)); |
| 343 | { u64 x49 = (((((((((((u64)x31 * x15) + ((u64)x33 * x13)) + ((u64)x29 * x17)) + ((u64)x35 * x11)) + ((u64)x27 * x19)) + ((u64)x37 * x9)) + ((u64)x25 * x21)) + ((u64)x39 * x7)) + ((u64)x23 * x20)) + ((u64)x38 * x5)); |
| 344 | { u64 x50 = (((((0x2 * ((((((u64)x33 * x15) + ((u64)x29 * x19)) + ((u64)x37 * x11)) + ((u64)x25 * x20)) + ((u64)x38 * x7))) + ((u64)x31 * x17)) + ((u64)x35 * x13)) + ((u64)x27 * x21)) + ((u64)x39 * x9)); |
| 345 | { u64 x51 = (((((((((u64)x33 * x17) + ((u64)x35 * x15)) + ((u64)x31 * x19)) + ((u64)x37 * x13)) + ((u64)x29 * x21)) + ((u64)x39 * x11)) + ((u64)x27 * x20)) + ((u64)x38 * x9)); |
| 346 | { u64 x52 = (((((u64)x35 * x17) + (0x2 * (((((u64)x33 * x19) + ((u64)x37 * x15)) + ((u64)x29 * x20)) + ((u64)x38 * x11)))) + ((u64)x31 * x21)) + ((u64)x39 * x13)); |
| 347 | { u64 x53 = (((((((u64)x35 * x19) + ((u64)x37 * x17)) + ((u64)x33 * x21)) + ((u64)x39 * x15)) + ((u64)x31 * x20)) + ((u64)x38 * x13)); |
| 348 | { u64 x54 = (((0x2 * ((((u64)x37 * x19) + ((u64)x33 * x20)) + ((u64)x38 * x15))) + ((u64)x35 * x21)) + ((u64)x39 * x17)); |
| 349 | { u64 x55 = (((((u64)x37 * x21) + ((u64)x39 * x19)) + ((u64)x35 * x20)) + ((u64)x38 * x17)); |
| 350 | { u64 x56 = (((u64)x39 * x21) + (0x2 * (((u64)x37 * x20) + ((u64)x38 * x19)))); |
| 351 | { u64 x57 = (((u64)x39 * x20) + ((u64)x38 * x21)); |
| 352 | { u64 x58 = ((u64)(0x2 * x38) * x20); |
| 353 | { u64 x59 = (x48 + (x58 << 0x4)); |
| 354 | { u64 x60 = (x59 + (x58 << 0x1)); |
| 355 | { u64 x61 = (x60 + x58); |
| 356 | { u64 x62 = (x47 + (x57 << 0x4)); |
| 357 | { u64 x63 = (x62 + (x57 << 0x1)); |
| 358 | { u64 x64 = (x63 + x57); |
| 359 | { u64 x65 = (x46 + (x56 << 0x4)); |
| 360 | { u64 x66 = (x65 + (x56 << 0x1)); |
| 361 | { u64 x67 = (x66 + x56); |
| 362 | { u64 x68 = (x45 + (x55 << 0x4)); |
| 363 | { u64 x69 = (x68 + (x55 << 0x1)); |
| 364 | { u64 x70 = (x69 + x55); |
| 365 | { u64 x71 = (x44 + (x54 << 0x4)); |
| 366 | { u64 x72 = (x71 + (x54 << 0x1)); |
| 367 | { u64 x73 = (x72 + x54); |
| 368 | { u64 x74 = (x43 + (x53 << 0x4)); |
| 369 | { u64 x75 = (x74 + (x53 << 0x1)); |
| 370 | { u64 x76 = (x75 + x53); |
| 371 | { u64 x77 = (x42 + (x52 << 0x4)); |
| 372 | { u64 x78 = (x77 + (x52 << 0x1)); |
| 373 | { u64 x79 = (x78 + x52); |
| 374 | { u64 x80 = (x41 + (x51 << 0x4)); |
| 375 | { u64 x81 = (x80 + (x51 << 0x1)); |
| 376 | { u64 x82 = (x81 + x51); |
| 377 | { u64 x83 = (x40 + (x50 << 0x4)); |
| 378 | { u64 x84 = (x83 + (x50 << 0x1)); |
| 379 | { u64 x85 = (x84 + x50); |
| 380 | { u64 x86 = (x85 >> 0x1a); |
| 381 | { u32 x87 = ((u32)x85 & 0x3ffffff); |
| 382 | { u64 x88 = (x86 + x82); |
| 383 | { u64 x89 = (x88 >> 0x19); |
| 384 | { u32 x90 = ((u32)x88 & 0x1ffffff); |
| 385 | { u64 x91 = (x89 + x79); |
| 386 | { u64 x92 = (x91 >> 0x1a); |
| 387 | { u32 x93 = ((u32)x91 & 0x3ffffff); |
| 388 | { u64 x94 = (x92 + x76); |
| 389 | { u64 x95 = (x94 >> 0x19); |
| 390 | { u32 x96 = ((u32)x94 & 0x1ffffff); |
| 391 | { u64 x97 = (x95 + x73); |
| 392 | { u64 x98 = (x97 >> 0x1a); |
| 393 | { u32 x99 = ((u32)x97 & 0x3ffffff); |
| 394 | { u64 x100 = (x98 + x70); |
| 395 | { u64 x101 = (x100 >> 0x19); |
| 396 | { u32 x102 = ((u32)x100 & 0x1ffffff); |
| 397 | { u64 x103 = (x101 + x67); |
| 398 | { u64 x104 = (x103 >> 0x1a); |
| 399 | { u32 x105 = ((u32)x103 & 0x3ffffff); |
| 400 | { u64 x106 = (x104 + x64); |
| 401 | { u64 x107 = (x106 >> 0x19); |
| 402 | { u32 x108 = ((u32)x106 & 0x1ffffff); |
| 403 | { u64 x109 = (x107 + x61); |
| 404 | { u64 x110 = (x109 >> 0x1a); |
| 405 | { u32 x111 = ((u32)x109 & 0x3ffffff); |
| 406 | { u64 x112 = (x110 + x49); |
| 407 | { u64 x113 = (x112 >> 0x19); |
| 408 | { u32 x114 = ((u32)x112 & 0x1ffffff); |
| 409 | { u64 x115 = (x87 + (0x13 * x113)); |
| 410 | { u32 x116 = (u32) (x115 >> 0x1a); |
| 411 | { u32 x117 = ((u32)x115 & 0x3ffffff); |
| 412 | { u32 x118 = (x116 + x90); |
| 413 | { u32 x119 = (x118 >> 0x19); |
| 414 | { u32 x120 = (x118 & 0x1ffffff); |
| 415 | out[0] = x117; |
| 416 | out[1] = x120; |
| 417 | out[2] = (x119 + x93); |
| 418 | out[3] = x96; |
| 419 | out[4] = x99; |
| 420 | out[5] = x102; |
| 421 | out[6] = x105; |
| 422 | out[7] = x108; |
| 423 | out[8] = x111; |
| 424 | out[9] = x114; |
| 425 | }}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} |
| 426 | } |
| 427 | |
| 428 | static __always_inline void fe_mul_ttt(fe *h, const fe *f, const fe *g) |
| 429 | { |
| 430 | fe_mul_impl(h->v, f->v, g->v); |
| 431 | } |
| 432 | |
| 433 | static __always_inline void fe_mul_tlt(fe *h, const fe_loose *f, const fe *g) |
| 434 | { |
| 435 | fe_mul_impl(h->v, f->v, g->v); |
| 436 | } |
| 437 | |
| 438 | static __always_inline void |
| 439 | fe_mul_tll(fe *h, const fe_loose *f, const fe_loose *g) |
| 440 | { |
| 441 | fe_mul_impl(h->v, f->v, g->v); |
| 442 | } |
| 443 | |
Ard Biesheuvel | 660bb8e | 2019-11-08 13:22:35 +0100 | [diff] [blame] | 444 | static noinline void fe_sqr_impl(u32 out[10], const u32 in1[10]) |
Jason A. Donenfeld | 0ed42a6f | 2019-11-08 13:22:32 +0100 | [diff] [blame] | 445 | { |
| 446 | { const u32 x17 = in1[9]; |
| 447 | { const u32 x18 = in1[8]; |
| 448 | { const u32 x16 = in1[7]; |
| 449 | { const u32 x14 = in1[6]; |
| 450 | { const u32 x12 = in1[5]; |
| 451 | { const u32 x10 = in1[4]; |
| 452 | { const u32 x8 = in1[3]; |
| 453 | { const u32 x6 = in1[2]; |
| 454 | { const u32 x4 = in1[1]; |
| 455 | { const u32 x2 = in1[0]; |
| 456 | { u64 x19 = ((u64)x2 * x2); |
| 457 | { u64 x20 = ((u64)(0x2 * x2) * x4); |
| 458 | { u64 x21 = (0x2 * (((u64)x4 * x4) + ((u64)x2 * x6))); |
| 459 | { u64 x22 = (0x2 * (((u64)x4 * x6) + ((u64)x2 * x8))); |
| 460 | { u64 x23 = ((((u64)x6 * x6) + ((u64)(0x4 * x4) * x8)) + ((u64)(0x2 * x2) * x10)); |
| 461 | { u64 x24 = (0x2 * ((((u64)x6 * x8) + ((u64)x4 * x10)) + ((u64)x2 * x12))); |
| 462 | { u64 x25 = (0x2 * (((((u64)x8 * x8) + ((u64)x6 * x10)) + ((u64)x2 * x14)) + ((u64)(0x2 * x4) * x12))); |
| 463 | { u64 x26 = (0x2 * (((((u64)x8 * x10) + ((u64)x6 * x12)) + ((u64)x4 * x14)) + ((u64)x2 * x16))); |
| 464 | { u64 x27 = (((u64)x10 * x10) + (0x2 * ((((u64)x6 * x14) + ((u64)x2 * x18)) + (0x2 * (((u64)x4 * x16) + ((u64)x8 * x12)))))); |
| 465 | { u64 x28 = (0x2 * ((((((u64)x10 * x12) + ((u64)x8 * x14)) + ((u64)x6 * x16)) + ((u64)x4 * x18)) + ((u64)x2 * x17))); |
| 466 | { u64 x29 = (0x2 * (((((u64)x12 * x12) + ((u64)x10 * x14)) + ((u64)x6 * x18)) + (0x2 * (((u64)x8 * x16) + ((u64)x4 * x17))))); |
| 467 | { u64 x30 = (0x2 * (((((u64)x12 * x14) + ((u64)x10 * x16)) + ((u64)x8 * x18)) + ((u64)x6 * x17))); |
| 468 | { u64 x31 = (((u64)x14 * x14) + (0x2 * (((u64)x10 * x18) + (0x2 * (((u64)x12 * x16) + ((u64)x8 * x17)))))); |
| 469 | { u64 x32 = (0x2 * ((((u64)x14 * x16) + ((u64)x12 * x18)) + ((u64)x10 * x17))); |
| 470 | { u64 x33 = (0x2 * ((((u64)x16 * x16) + ((u64)x14 * x18)) + ((u64)(0x2 * x12) * x17))); |
| 471 | { u64 x34 = (0x2 * (((u64)x16 * x18) + ((u64)x14 * x17))); |
| 472 | { u64 x35 = (((u64)x18 * x18) + ((u64)(0x4 * x16) * x17)); |
| 473 | { u64 x36 = ((u64)(0x2 * x18) * x17); |
| 474 | { u64 x37 = ((u64)(0x2 * x17) * x17); |
| 475 | { u64 x38 = (x27 + (x37 << 0x4)); |
| 476 | { u64 x39 = (x38 + (x37 << 0x1)); |
| 477 | { u64 x40 = (x39 + x37); |
| 478 | { u64 x41 = (x26 + (x36 << 0x4)); |
| 479 | { u64 x42 = (x41 + (x36 << 0x1)); |
| 480 | { u64 x43 = (x42 + x36); |
| 481 | { u64 x44 = (x25 + (x35 << 0x4)); |
| 482 | { u64 x45 = (x44 + (x35 << 0x1)); |
| 483 | { u64 x46 = (x45 + x35); |
| 484 | { u64 x47 = (x24 + (x34 << 0x4)); |
| 485 | { u64 x48 = (x47 + (x34 << 0x1)); |
| 486 | { u64 x49 = (x48 + x34); |
| 487 | { u64 x50 = (x23 + (x33 << 0x4)); |
| 488 | { u64 x51 = (x50 + (x33 << 0x1)); |
| 489 | { u64 x52 = (x51 + x33); |
| 490 | { u64 x53 = (x22 + (x32 << 0x4)); |
| 491 | { u64 x54 = (x53 + (x32 << 0x1)); |
| 492 | { u64 x55 = (x54 + x32); |
| 493 | { u64 x56 = (x21 + (x31 << 0x4)); |
| 494 | { u64 x57 = (x56 + (x31 << 0x1)); |
| 495 | { u64 x58 = (x57 + x31); |
| 496 | { u64 x59 = (x20 + (x30 << 0x4)); |
| 497 | { u64 x60 = (x59 + (x30 << 0x1)); |
| 498 | { u64 x61 = (x60 + x30); |
| 499 | { u64 x62 = (x19 + (x29 << 0x4)); |
| 500 | { u64 x63 = (x62 + (x29 << 0x1)); |
| 501 | { u64 x64 = (x63 + x29); |
| 502 | { u64 x65 = (x64 >> 0x1a); |
| 503 | { u32 x66 = ((u32)x64 & 0x3ffffff); |
| 504 | { u64 x67 = (x65 + x61); |
| 505 | { u64 x68 = (x67 >> 0x19); |
| 506 | { u32 x69 = ((u32)x67 & 0x1ffffff); |
| 507 | { u64 x70 = (x68 + x58); |
| 508 | { u64 x71 = (x70 >> 0x1a); |
| 509 | { u32 x72 = ((u32)x70 & 0x3ffffff); |
| 510 | { u64 x73 = (x71 + x55); |
| 511 | { u64 x74 = (x73 >> 0x19); |
| 512 | { u32 x75 = ((u32)x73 & 0x1ffffff); |
| 513 | { u64 x76 = (x74 + x52); |
| 514 | { u64 x77 = (x76 >> 0x1a); |
| 515 | { u32 x78 = ((u32)x76 & 0x3ffffff); |
| 516 | { u64 x79 = (x77 + x49); |
| 517 | { u64 x80 = (x79 >> 0x19); |
| 518 | { u32 x81 = ((u32)x79 & 0x1ffffff); |
| 519 | { u64 x82 = (x80 + x46); |
| 520 | { u64 x83 = (x82 >> 0x1a); |
| 521 | { u32 x84 = ((u32)x82 & 0x3ffffff); |
| 522 | { u64 x85 = (x83 + x43); |
| 523 | { u64 x86 = (x85 >> 0x19); |
| 524 | { u32 x87 = ((u32)x85 & 0x1ffffff); |
| 525 | { u64 x88 = (x86 + x40); |
| 526 | { u64 x89 = (x88 >> 0x1a); |
| 527 | { u32 x90 = ((u32)x88 & 0x3ffffff); |
| 528 | { u64 x91 = (x89 + x28); |
| 529 | { u64 x92 = (x91 >> 0x19); |
| 530 | { u32 x93 = ((u32)x91 & 0x1ffffff); |
| 531 | { u64 x94 = (x66 + (0x13 * x92)); |
| 532 | { u32 x95 = (u32) (x94 >> 0x1a); |
| 533 | { u32 x96 = ((u32)x94 & 0x3ffffff); |
| 534 | { u32 x97 = (x95 + x69); |
| 535 | { u32 x98 = (x97 >> 0x19); |
| 536 | { u32 x99 = (x97 & 0x1ffffff); |
| 537 | out[0] = x96; |
| 538 | out[1] = x99; |
| 539 | out[2] = (x98 + x72); |
| 540 | out[3] = x75; |
| 541 | out[4] = x78; |
| 542 | out[5] = x81; |
| 543 | out[6] = x84; |
| 544 | out[7] = x87; |
| 545 | out[8] = x90; |
| 546 | out[9] = x93; |
| 547 | }}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} |
| 548 | } |
| 549 | |
| 550 | static __always_inline void fe_sq_tl(fe *h, const fe_loose *f) |
| 551 | { |
| 552 | fe_sqr_impl(h->v, f->v); |
| 553 | } |
| 554 | |
| 555 | static __always_inline void fe_sq_tt(fe *h, const fe *f) |
| 556 | { |
| 557 | fe_sqr_impl(h->v, f->v); |
| 558 | } |
| 559 | |
| 560 | static __always_inline void fe_loose_invert(fe *out, const fe_loose *z) |
| 561 | { |
| 562 | fe t0; |
| 563 | fe t1; |
| 564 | fe t2; |
| 565 | fe t3; |
| 566 | int i; |
| 567 | |
| 568 | fe_sq_tl(&t0, z); |
| 569 | fe_sq_tt(&t1, &t0); |
| 570 | for (i = 1; i < 2; ++i) |
| 571 | fe_sq_tt(&t1, &t1); |
| 572 | fe_mul_tlt(&t1, z, &t1); |
| 573 | fe_mul_ttt(&t0, &t0, &t1); |
| 574 | fe_sq_tt(&t2, &t0); |
| 575 | fe_mul_ttt(&t1, &t1, &t2); |
| 576 | fe_sq_tt(&t2, &t1); |
| 577 | for (i = 1; i < 5; ++i) |
| 578 | fe_sq_tt(&t2, &t2); |
| 579 | fe_mul_ttt(&t1, &t2, &t1); |
| 580 | fe_sq_tt(&t2, &t1); |
| 581 | for (i = 1; i < 10; ++i) |
| 582 | fe_sq_tt(&t2, &t2); |
| 583 | fe_mul_ttt(&t2, &t2, &t1); |
| 584 | fe_sq_tt(&t3, &t2); |
| 585 | for (i = 1; i < 20; ++i) |
| 586 | fe_sq_tt(&t3, &t3); |
| 587 | fe_mul_ttt(&t2, &t3, &t2); |
| 588 | fe_sq_tt(&t2, &t2); |
| 589 | for (i = 1; i < 10; ++i) |
| 590 | fe_sq_tt(&t2, &t2); |
| 591 | fe_mul_ttt(&t1, &t2, &t1); |
| 592 | fe_sq_tt(&t2, &t1); |
| 593 | for (i = 1; i < 50; ++i) |
| 594 | fe_sq_tt(&t2, &t2); |
| 595 | fe_mul_ttt(&t2, &t2, &t1); |
| 596 | fe_sq_tt(&t3, &t2); |
| 597 | for (i = 1; i < 100; ++i) |
| 598 | fe_sq_tt(&t3, &t3); |
| 599 | fe_mul_ttt(&t2, &t3, &t2); |
| 600 | fe_sq_tt(&t2, &t2); |
| 601 | for (i = 1; i < 50; ++i) |
| 602 | fe_sq_tt(&t2, &t2); |
| 603 | fe_mul_ttt(&t1, &t2, &t1); |
| 604 | fe_sq_tt(&t1, &t1); |
| 605 | for (i = 1; i < 5; ++i) |
| 606 | fe_sq_tt(&t1, &t1); |
| 607 | fe_mul_ttt(out, &t1, &t0); |
| 608 | } |
| 609 | |
| 610 | static __always_inline void fe_invert(fe *out, const fe *z) |
| 611 | { |
| 612 | fe_loose l; |
| 613 | fe_copy_lt(&l, z); |
| 614 | fe_loose_invert(out, &l); |
| 615 | } |
| 616 | |
| 617 | /* Replace (f,g) with (g,f) if b == 1; |
| 618 | * replace (f,g) with (f,g) if b == 0. |
| 619 | * |
| 620 | * Preconditions: b in {0,1} |
| 621 | */ |
Ard Biesheuvel | 660bb8e | 2019-11-08 13:22:35 +0100 | [diff] [blame] | 622 | static noinline void fe_cswap(fe *f, fe *g, unsigned int b) |
Jason A. Donenfeld | 0ed42a6f | 2019-11-08 13:22:32 +0100 | [diff] [blame] | 623 | { |
| 624 | unsigned i; |
| 625 | b = 0 - b; |
| 626 | for (i = 0; i < 10; i++) { |
| 627 | u32 x = f->v[i] ^ g->v[i]; |
| 628 | x &= b; |
| 629 | f->v[i] ^= x; |
| 630 | g->v[i] ^= x; |
| 631 | } |
| 632 | } |
| 633 | |
| 634 | /* NOTE: based on fiat-crypto fe_mul, edited for in2=121666, 0, 0.*/ |
| 635 | static __always_inline void fe_mul_121666_impl(u32 out[10], const u32 in1[10]) |
| 636 | { |
| 637 | { const u32 x20 = in1[9]; |
| 638 | { const u32 x21 = in1[8]; |
| 639 | { const u32 x19 = in1[7]; |
| 640 | { const u32 x17 = in1[6]; |
| 641 | { const u32 x15 = in1[5]; |
| 642 | { const u32 x13 = in1[4]; |
| 643 | { const u32 x11 = in1[3]; |
| 644 | { const u32 x9 = in1[2]; |
| 645 | { const u32 x7 = in1[1]; |
| 646 | { const u32 x5 = in1[0]; |
| 647 | { const u32 x38 = 0; |
| 648 | { const u32 x39 = 0; |
| 649 | { const u32 x37 = 0; |
| 650 | { const u32 x35 = 0; |
| 651 | { const u32 x33 = 0; |
| 652 | { const u32 x31 = 0; |
| 653 | { const u32 x29 = 0; |
| 654 | { const u32 x27 = 0; |
| 655 | { const u32 x25 = 0; |
| 656 | { const u32 x23 = 121666; |
| 657 | { u64 x40 = ((u64)x23 * x5); |
| 658 | { u64 x41 = (((u64)x23 * x7) + ((u64)x25 * x5)); |
| 659 | { u64 x42 = ((((u64)(0x2 * x25) * x7) + ((u64)x23 * x9)) + ((u64)x27 * x5)); |
| 660 | { u64 x43 = (((((u64)x25 * x9) + ((u64)x27 * x7)) + ((u64)x23 * x11)) + ((u64)x29 * x5)); |
| 661 | { u64 x44 = (((((u64)x27 * x9) + (0x2 * (((u64)x25 * x11) + ((u64)x29 * x7)))) + ((u64)x23 * x13)) + ((u64)x31 * x5)); |
| 662 | { u64 x45 = (((((((u64)x27 * x11) + ((u64)x29 * x9)) + ((u64)x25 * x13)) + ((u64)x31 * x7)) + ((u64)x23 * x15)) + ((u64)x33 * x5)); |
| 663 | { u64 x46 = (((((0x2 * ((((u64)x29 * x11) + ((u64)x25 * x15)) + ((u64)x33 * x7))) + ((u64)x27 * x13)) + ((u64)x31 * x9)) + ((u64)x23 * x17)) + ((u64)x35 * x5)); |
| 664 | { u64 x47 = (((((((((u64)x29 * x13) + ((u64)x31 * x11)) + ((u64)x27 * x15)) + ((u64)x33 * x9)) + ((u64)x25 * x17)) + ((u64)x35 * x7)) + ((u64)x23 * x19)) + ((u64)x37 * x5)); |
| 665 | { u64 x48 = (((((((u64)x31 * x13) + (0x2 * (((((u64)x29 * x15) + ((u64)x33 * x11)) + ((u64)x25 * x19)) + ((u64)x37 * x7)))) + ((u64)x27 * x17)) + ((u64)x35 * x9)) + ((u64)x23 * x21)) + ((u64)x39 * x5)); |
| 666 | { u64 x49 = (((((((((((u64)x31 * x15) + ((u64)x33 * x13)) + ((u64)x29 * x17)) + ((u64)x35 * x11)) + ((u64)x27 * x19)) + ((u64)x37 * x9)) + ((u64)x25 * x21)) + ((u64)x39 * x7)) + ((u64)x23 * x20)) + ((u64)x38 * x5)); |
| 667 | { u64 x50 = (((((0x2 * ((((((u64)x33 * x15) + ((u64)x29 * x19)) + ((u64)x37 * x11)) + ((u64)x25 * x20)) + ((u64)x38 * x7))) + ((u64)x31 * x17)) + ((u64)x35 * x13)) + ((u64)x27 * x21)) + ((u64)x39 * x9)); |
| 668 | { u64 x51 = (((((((((u64)x33 * x17) + ((u64)x35 * x15)) + ((u64)x31 * x19)) + ((u64)x37 * x13)) + ((u64)x29 * x21)) + ((u64)x39 * x11)) + ((u64)x27 * x20)) + ((u64)x38 * x9)); |
| 669 | { u64 x52 = (((((u64)x35 * x17) + (0x2 * (((((u64)x33 * x19) + ((u64)x37 * x15)) + ((u64)x29 * x20)) + ((u64)x38 * x11)))) + ((u64)x31 * x21)) + ((u64)x39 * x13)); |
| 670 | { u64 x53 = (((((((u64)x35 * x19) + ((u64)x37 * x17)) + ((u64)x33 * x21)) + ((u64)x39 * x15)) + ((u64)x31 * x20)) + ((u64)x38 * x13)); |
| 671 | { u64 x54 = (((0x2 * ((((u64)x37 * x19) + ((u64)x33 * x20)) + ((u64)x38 * x15))) + ((u64)x35 * x21)) + ((u64)x39 * x17)); |
| 672 | { u64 x55 = (((((u64)x37 * x21) + ((u64)x39 * x19)) + ((u64)x35 * x20)) + ((u64)x38 * x17)); |
| 673 | { u64 x56 = (((u64)x39 * x21) + (0x2 * (((u64)x37 * x20) + ((u64)x38 * x19)))); |
| 674 | { u64 x57 = (((u64)x39 * x20) + ((u64)x38 * x21)); |
| 675 | { u64 x58 = ((u64)(0x2 * x38) * x20); |
| 676 | { u64 x59 = (x48 + (x58 << 0x4)); |
| 677 | { u64 x60 = (x59 + (x58 << 0x1)); |
| 678 | { u64 x61 = (x60 + x58); |
| 679 | { u64 x62 = (x47 + (x57 << 0x4)); |
| 680 | { u64 x63 = (x62 + (x57 << 0x1)); |
| 681 | { u64 x64 = (x63 + x57); |
| 682 | { u64 x65 = (x46 + (x56 << 0x4)); |
| 683 | { u64 x66 = (x65 + (x56 << 0x1)); |
| 684 | { u64 x67 = (x66 + x56); |
| 685 | { u64 x68 = (x45 + (x55 << 0x4)); |
| 686 | { u64 x69 = (x68 + (x55 << 0x1)); |
| 687 | { u64 x70 = (x69 + x55); |
| 688 | { u64 x71 = (x44 + (x54 << 0x4)); |
| 689 | { u64 x72 = (x71 + (x54 << 0x1)); |
| 690 | { u64 x73 = (x72 + x54); |
| 691 | { u64 x74 = (x43 + (x53 << 0x4)); |
| 692 | { u64 x75 = (x74 + (x53 << 0x1)); |
| 693 | { u64 x76 = (x75 + x53); |
| 694 | { u64 x77 = (x42 + (x52 << 0x4)); |
| 695 | { u64 x78 = (x77 + (x52 << 0x1)); |
| 696 | { u64 x79 = (x78 + x52); |
| 697 | { u64 x80 = (x41 + (x51 << 0x4)); |
| 698 | { u64 x81 = (x80 + (x51 << 0x1)); |
| 699 | { u64 x82 = (x81 + x51); |
| 700 | { u64 x83 = (x40 + (x50 << 0x4)); |
| 701 | { u64 x84 = (x83 + (x50 << 0x1)); |
| 702 | { u64 x85 = (x84 + x50); |
| 703 | { u64 x86 = (x85 >> 0x1a); |
| 704 | { u32 x87 = ((u32)x85 & 0x3ffffff); |
| 705 | { u64 x88 = (x86 + x82); |
| 706 | { u64 x89 = (x88 >> 0x19); |
| 707 | { u32 x90 = ((u32)x88 & 0x1ffffff); |
| 708 | { u64 x91 = (x89 + x79); |
| 709 | { u64 x92 = (x91 >> 0x1a); |
| 710 | { u32 x93 = ((u32)x91 & 0x3ffffff); |
| 711 | { u64 x94 = (x92 + x76); |
| 712 | { u64 x95 = (x94 >> 0x19); |
| 713 | { u32 x96 = ((u32)x94 & 0x1ffffff); |
| 714 | { u64 x97 = (x95 + x73); |
| 715 | { u64 x98 = (x97 >> 0x1a); |
| 716 | { u32 x99 = ((u32)x97 & 0x3ffffff); |
| 717 | { u64 x100 = (x98 + x70); |
| 718 | { u64 x101 = (x100 >> 0x19); |
| 719 | { u32 x102 = ((u32)x100 & 0x1ffffff); |
| 720 | { u64 x103 = (x101 + x67); |
| 721 | { u64 x104 = (x103 >> 0x1a); |
| 722 | { u32 x105 = ((u32)x103 & 0x3ffffff); |
| 723 | { u64 x106 = (x104 + x64); |
| 724 | { u64 x107 = (x106 >> 0x19); |
| 725 | { u32 x108 = ((u32)x106 & 0x1ffffff); |
| 726 | { u64 x109 = (x107 + x61); |
| 727 | { u64 x110 = (x109 >> 0x1a); |
| 728 | { u32 x111 = ((u32)x109 & 0x3ffffff); |
| 729 | { u64 x112 = (x110 + x49); |
| 730 | { u64 x113 = (x112 >> 0x19); |
| 731 | { u32 x114 = ((u32)x112 & 0x1ffffff); |
| 732 | { u64 x115 = (x87 + (0x13 * x113)); |
| 733 | { u32 x116 = (u32) (x115 >> 0x1a); |
| 734 | { u32 x117 = ((u32)x115 & 0x3ffffff); |
| 735 | { u32 x118 = (x116 + x90); |
| 736 | { u32 x119 = (x118 >> 0x19); |
| 737 | { u32 x120 = (x118 & 0x1ffffff); |
| 738 | out[0] = x117; |
| 739 | out[1] = x120; |
| 740 | out[2] = (x119 + x93); |
| 741 | out[3] = x96; |
| 742 | out[4] = x99; |
| 743 | out[5] = x102; |
| 744 | out[6] = x105; |
| 745 | out[7] = x108; |
| 746 | out[8] = x111; |
| 747 | out[9] = x114; |
| 748 | }}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} |
| 749 | } |
| 750 | |
| 751 | static __always_inline void fe_mul121666(fe *h, const fe_loose *f) |
| 752 | { |
| 753 | fe_mul_121666_impl(h->v, f->v); |
| 754 | } |
| 755 | |
| 756 | void curve25519_generic(u8 out[CURVE25519_KEY_SIZE], |
| 757 | const u8 scalar[CURVE25519_KEY_SIZE], |
| 758 | const u8 point[CURVE25519_KEY_SIZE]) |
| 759 | { |
| 760 | fe x1, x2, z2, x3, z3; |
| 761 | fe_loose x2l, z2l, x3l; |
| 762 | unsigned swap = 0; |
| 763 | int pos; |
| 764 | u8 e[32]; |
| 765 | |
| 766 | memcpy(e, scalar, 32); |
| 767 | curve25519_clamp_secret(e); |
| 768 | |
| 769 | /* The following implementation was transcribed to Coq and proven to |
| 770 | * correspond to unary scalar multiplication in affine coordinates given |
| 771 | * that x1 != 0 is the x coordinate of some point on the curve. It was |
| 772 | * also checked in Coq that doing a ladderstep with x1 = x3 = 0 gives |
| 773 | * z2' = z3' = 0, and z2 = z3 = 0 gives z2' = z3' = 0. The statement was |
| 774 | * quantified over the underlying field, so it applies to Curve25519 |
| 775 | * itself and the quadratic twist of Curve25519. It was not proven in |
| 776 | * Coq that prime-field arithmetic correctly simulates extension-field |
| 777 | * arithmetic on prime-field values. The decoding of the byte array |
| 778 | * representation of e was not considered. |
| 779 | * |
| 780 | * Specification of Montgomery curves in affine coordinates: |
| 781 | * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Spec/MontgomeryCurve.v#L27> |
| 782 | * |
| 783 | * Proof that these form a group that is isomorphic to a Weierstrass |
| 784 | * curve: |
| 785 | * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/AffineProofs.v#L35> |
| 786 | * |
| 787 | * Coq transcription and correctness proof of the loop |
| 788 | * (where scalarbits=255): |
| 789 | * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZ.v#L118> |
| 790 | * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L278> |
| 791 | * preconditions: 0 <= e < 2^255 (not necessarily e < order), |
| 792 | * fe_invert(0) = 0 |
| 793 | */ |
| 794 | fe_frombytes(&x1, point); |
| 795 | fe_1(&x2); |
| 796 | fe_0(&z2); |
| 797 | fe_copy(&x3, &x1); |
| 798 | fe_1(&z3); |
| 799 | |
| 800 | for (pos = 254; pos >= 0; --pos) { |
| 801 | fe tmp0, tmp1; |
| 802 | fe_loose tmp0l, tmp1l; |
| 803 | /* loop invariant as of right before the test, for the case |
| 804 | * where x1 != 0: |
| 805 | * pos >= -1; if z2 = 0 then x2 is nonzero; if z3 = 0 then x3 |
| 806 | * is nonzero |
| 807 | * let r := e >> (pos+1) in the following equalities of |
| 808 | * projective points: |
| 809 | * to_xz (r*P) === if swap then (x3, z3) else (x2, z2) |
| 810 | * to_xz ((r+1)*P) === if swap then (x2, z2) else (x3, z3) |
| 811 | * x1 is the nonzero x coordinate of the nonzero |
| 812 | * point (r*P-(r+1)*P) |
| 813 | */ |
| 814 | unsigned b = 1 & (e[pos / 8] >> (pos & 7)); |
| 815 | swap ^= b; |
| 816 | fe_cswap(&x2, &x3, swap); |
| 817 | fe_cswap(&z2, &z3, swap); |
| 818 | swap = b; |
| 819 | /* Coq transcription of ladderstep formula (called from |
| 820 | * transcribed loop): |
| 821 | * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZ.v#L89> |
| 822 | * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L131> |
| 823 | * x1 != 0 <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L217> |
| 824 | * x1 = 0 <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L147> |
| 825 | */ |
| 826 | fe_sub(&tmp0l, &x3, &z3); |
| 827 | fe_sub(&tmp1l, &x2, &z2); |
| 828 | fe_add(&x2l, &x2, &z2); |
| 829 | fe_add(&z2l, &x3, &z3); |
| 830 | fe_mul_tll(&z3, &tmp0l, &x2l); |
| 831 | fe_mul_tll(&z2, &z2l, &tmp1l); |
| 832 | fe_sq_tl(&tmp0, &tmp1l); |
| 833 | fe_sq_tl(&tmp1, &x2l); |
| 834 | fe_add(&x3l, &z3, &z2); |
| 835 | fe_sub(&z2l, &z3, &z2); |
| 836 | fe_mul_ttt(&x2, &tmp1, &tmp0); |
| 837 | fe_sub(&tmp1l, &tmp1, &tmp0); |
| 838 | fe_sq_tl(&z2, &z2l); |
| 839 | fe_mul121666(&z3, &tmp1l); |
| 840 | fe_sq_tl(&x3, &x3l); |
| 841 | fe_add(&tmp0l, &tmp0, &z3); |
| 842 | fe_mul_ttt(&z3, &x1, &z2); |
| 843 | fe_mul_tll(&z2, &tmp1l, &tmp0l); |
| 844 | } |
| 845 | /* here pos=-1, so r=e, so to_xz (e*P) === if swap then (x3, z3) |
| 846 | * else (x2, z2) |
| 847 | */ |
| 848 | fe_cswap(&x2, &x3, swap); |
| 849 | fe_cswap(&z2, &z3, swap); |
| 850 | |
| 851 | fe_invert(&z2, &z2); |
| 852 | fe_mul_ttt(&x2, &x2, &z2); |
| 853 | fe_tobytes(out, &x2); |
| 854 | |
| 855 | memzero_explicit(&x1, sizeof(x1)); |
| 856 | memzero_explicit(&x2, sizeof(x2)); |
| 857 | memzero_explicit(&z2, sizeof(z2)); |
| 858 | memzero_explicit(&x3, sizeof(x3)); |
| 859 | memzero_explicit(&z3, sizeof(z3)); |
| 860 | memzero_explicit(&x2l, sizeof(x2l)); |
| 861 | memzero_explicit(&z2l, sizeof(z2l)); |
| 862 | memzero_explicit(&x3l, sizeof(x3l)); |
| 863 | memzero_explicit(&e, sizeof(e)); |
| 864 | } |