blob: c1ef9917bc85e1963f4cc7f6a6356a8ba82ae148 [file] [log] [blame]
Thomas Gleixner03ead842005-11-07 11:15:37 +00001/*
Thomas Gleixner3413e182018-04-22 18:23:49 +02002 * Generic Reed Solomon encoder / decoder library
Thomas Gleixner03ead842005-11-07 11:15:37 +00003 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07004 * Copyright 2002, Phil Karn, KA9Q
5 * May be used under the terms of the GNU General Public License (GPL)
6 *
7 * Adaption to the kernel by Thomas Gleixner (tglx@linutronix.de)
8 *
Thomas Gleixner3413e182018-04-22 18:23:49 +02009 * Generic data width independent code which is included by the wrappers.
Linus Torvalds1da177e2005-04-16 15:20:36 -070010 */
Thomas Gleixner03ead842005-11-07 11:15:37 +000011{
Linus Torvalds1da177e2005-04-16 15:20:36 -070012 int deg_lambda, el, deg_omega;
13 int i, j, r, k, pad;
14 int nn = rs->nn;
15 int nroots = rs->nroots;
16 int fcr = rs->fcr;
17 int prim = rs->prim;
18 int iprim = rs->iprim;
19 uint16_t *alpha_to = rs->alpha_to;
20 uint16_t *index_of = rs->index_of;
21 uint16_t u, q, tmp, num1, num2, den, discr_r, syn_error;
22 /* Err+Eras Locator poly and syndrome poly The maximum value
23 * of nroots is 8. So the necessary stack size will be about
24 * 220 bytes max.
25 */
26 uint16_t lambda[nroots + 1], syn[nroots];
27 uint16_t b[nroots + 1], t[nroots + 1], omega[nroots + 1];
28 uint16_t root[nroots], reg[nroots + 1], loc[nroots];
29 int count = 0;
30 uint16_t msk = (uint16_t) rs->nn;
31
32 /* Check length parameter for validity */
33 pad = nn - nroots - len;
Jörn Engel1dd7fdb2007-10-20 23:14:42 +020034 BUG_ON(pad < 0 || pad >= nn);
Thomas Gleixner03ead842005-11-07 11:15:37 +000035
Linus Torvalds1da177e2005-04-16 15:20:36 -070036 /* Does the caller provide the syndrome ? */
Thomas Gleixner03ead842005-11-07 11:15:37 +000037 if (s != NULL)
Linus Torvalds1da177e2005-04-16 15:20:36 -070038 goto decode;
39
40 /* form the syndromes; i.e., evaluate data(x) at roots of
41 * g(x) */
42 for (i = 0; i < nroots; i++)
43 syn[i] = (((uint16_t) data[0]) ^ invmsk) & msk;
44
45 for (j = 1; j < len; j++) {
46 for (i = 0; i < nroots; i++) {
47 if (syn[i] == 0) {
Thomas Gleixner03ead842005-11-07 11:15:37 +000048 syn[i] = (((uint16_t) data[j]) ^
Linus Torvalds1da177e2005-04-16 15:20:36 -070049 invmsk) & msk;
50 } else {
51 syn[i] = ((((uint16_t) data[j]) ^
Thomas Gleixner03ead842005-11-07 11:15:37 +000052 invmsk) & msk) ^
Linus Torvalds1da177e2005-04-16 15:20:36 -070053 alpha_to[rs_modnn(rs, index_of[syn[i]] +
54 (fcr + i) * prim)];
55 }
56 }
57 }
58
59 for (j = 0; j < nroots; j++) {
60 for (i = 0; i < nroots; i++) {
61 if (syn[i] == 0) {
62 syn[i] = ((uint16_t) par[j]) & msk;
63 } else {
Thomas Gleixner03ead842005-11-07 11:15:37 +000064 syn[i] = (((uint16_t) par[j]) & msk) ^
Linus Torvalds1da177e2005-04-16 15:20:36 -070065 alpha_to[rs_modnn(rs, index_of[syn[i]] +
66 (fcr+i)*prim)];
67 }
68 }
69 }
70 s = syn;
71
72 /* Convert syndromes to index form, checking for nonzero condition */
73 syn_error = 0;
74 for (i = 0; i < nroots; i++) {
75 syn_error |= s[i];
76 s[i] = index_of[s[i]];
77 }
78
79 if (!syn_error) {
80 /* if syndrome is zero, data[] is a codeword and there are no
81 * errors to correct. So return data[] unmodified
82 */
83 count = 0;
84 goto finish;
85 }
86
87 decode:
88 memset(&lambda[1], 0, nroots * sizeof(lambda[0]));
89 lambda[0] = 1;
90
91 if (no_eras > 0) {
92 /* Init lambda to be the erasure locator polynomial */
Thomas Gleixner03ead842005-11-07 11:15:37 +000093 lambda[1] = alpha_to[rs_modnn(rs,
Linus Torvalds1da177e2005-04-16 15:20:36 -070094 prim * (nn - 1 - eras_pos[0]))];
95 for (i = 1; i < no_eras; i++) {
96 u = rs_modnn(rs, prim * (nn - 1 - eras_pos[i]));
97 for (j = i + 1; j > 0; j--) {
98 tmp = index_of[lambda[j - 1]];
99 if (tmp != nn) {
Thomas Gleixner03ead842005-11-07 11:15:37 +0000100 lambda[j] ^=
Linus Torvalds1da177e2005-04-16 15:20:36 -0700101 alpha_to[rs_modnn(rs, u + tmp)];
102 }
103 }
104 }
105 }
106
107 for (i = 0; i < nroots + 1; i++)
108 b[i] = index_of[lambda[i]];
109
110 /*
111 * Begin Berlekamp-Massey algorithm to determine error+erasure
112 * locator polynomial
113 */
114 r = no_eras;
115 el = no_eras;
116 while (++r <= nroots) { /* r is the step number */
117 /* Compute discrepancy at the r-th step in poly-form */
118 discr_r = 0;
119 for (i = 0; i < r; i++) {
120 if ((lambda[i] != 0) && (s[r - i - 1] != nn)) {
Thomas Gleixner03ead842005-11-07 11:15:37 +0000121 discr_r ^=
122 alpha_to[rs_modnn(rs,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700123 index_of[lambda[i]] +
124 s[r - i - 1])];
125 }
126 }
127 discr_r = index_of[discr_r]; /* Index form */
128 if (discr_r == nn) {
129 /* 2 lines below: B(x) <-- x*B(x) */
130 memmove (&b[1], b, nroots * sizeof (b[0]));
131 b[0] = nn;
132 } else {
133 /* 7 lines below: T(x) <-- lambda(x)-discr_r*x*b(x) */
134 t[0] = lambda[0];
135 for (i = 0; i < nroots; i++) {
136 if (b[i] != nn) {
Thomas Gleixner03ead842005-11-07 11:15:37 +0000137 t[i + 1] = lambda[i + 1] ^
Linus Torvalds1da177e2005-04-16 15:20:36 -0700138 alpha_to[rs_modnn(rs, discr_r +
139 b[i])];
140 } else
141 t[i + 1] = lambda[i + 1];
142 }
143 if (2 * el <= r + no_eras - 1) {
144 el = r + no_eras - el;
145 /*
146 * 2 lines below: B(x) <-- inv(discr_r) *
147 * lambda(x)
148 */
149 for (i = 0; i <= nroots; i++) {
150 b[i] = (lambda[i] == 0) ? nn :
151 rs_modnn(rs, index_of[lambda[i]]
152 - discr_r + nn);
153 }
154 } else {
155 /* 2 lines below: B(x) <-- x*B(x) */
156 memmove(&b[1], b, nroots * sizeof(b[0]));
157 b[0] = nn;
158 }
159 memcpy(lambda, t, (nroots + 1) * sizeof(t[0]));
160 }
161 }
162
163 /* Convert lambda to index form and compute deg(lambda(x)) */
164 deg_lambda = 0;
165 for (i = 0; i < nroots + 1; i++) {
166 lambda[i] = index_of[lambda[i]];
167 if (lambda[i] != nn)
168 deg_lambda = i;
169 }
170 /* Find roots of error+erasure locator polynomial by Chien search */
171 memcpy(&reg[1], &lambda[1], nroots * sizeof(reg[0]));
172 count = 0; /* Number of roots of lambda(x) */
173 for (i = 1, k = iprim - 1; i <= nn; i++, k = rs_modnn(rs, k + iprim)) {
174 q = 1; /* lambda[0] is always 0 */
175 for (j = deg_lambda; j > 0; j--) {
176 if (reg[j] != nn) {
177 reg[j] = rs_modnn(rs, reg[j] + j);
178 q ^= alpha_to[reg[j]];
179 }
180 }
181 if (q != 0)
182 continue; /* Not a root */
183 /* store root (index-form) and error location number */
184 root[count] = i;
185 loc[count] = k;
186 /* If we've already found max possible roots,
187 * abort the search to save time
188 */
189 if (++count == deg_lambda)
190 break;
191 }
192 if (deg_lambda != count) {
193 /*
194 * deg(lambda) unequal to number of roots => uncorrectable
195 * error detected
196 */
Jörn Engeleb684502007-10-20 23:16:32 +0200197 count = -EBADMSG;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700198 goto finish;
199 }
200 /*
201 * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo
202 * x**nroots). in index form. Also find deg(omega).
203 */
204 deg_omega = deg_lambda - 1;
205 for (i = 0; i <= deg_omega; i++) {
206 tmp = 0;
207 for (j = i; j >= 0; j--) {
208 if ((s[i - j] != nn) && (lambda[j] != nn))
209 tmp ^=
210 alpha_to[rs_modnn(rs, s[i - j] + lambda[j])];
211 }
212 omega[i] = index_of[tmp];
213 }
214
215 /*
216 * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
217 * inv(X(l))**(fcr-1) and den = lambda_pr(inv(X(l))) all in poly-form
218 */
219 for (j = count - 1; j >= 0; j--) {
220 num1 = 0;
221 for (i = deg_omega; i >= 0; i--) {
222 if (omega[i] != nn)
Thomas Gleixner03ead842005-11-07 11:15:37 +0000223 num1 ^= alpha_to[rs_modnn(rs, omega[i] +
Linus Torvalds1da177e2005-04-16 15:20:36 -0700224 i * root[j])];
225 }
226 num2 = alpha_to[rs_modnn(rs, root[j] * (fcr - 1) + nn)];
227 den = 0;
228
229 /* lambda[i+1] for i even is the formal derivative
230 * lambda_pr of lambda[i] */
231 for (i = min(deg_lambda, nroots - 1) & ~1; i >= 0; i -= 2) {
232 if (lambda[i + 1] != nn) {
Thomas Gleixner03ead842005-11-07 11:15:37 +0000233 den ^= alpha_to[rs_modnn(rs, lambda[i + 1] +
Linus Torvalds1da177e2005-04-16 15:20:36 -0700234 i * root[j])];
235 }
236 }
237 /* Apply error to data */
238 if (num1 != 0 && loc[j] >= pad) {
Thomas Gleixner03ead842005-11-07 11:15:37 +0000239 uint16_t cor = alpha_to[rs_modnn(rs,index_of[num1] +
Linus Torvalds1da177e2005-04-16 15:20:36 -0700240 index_of[num2] +
241 nn - index_of[den])];
242 /* Store the error correction pattern, if a
243 * correction buffer is available */
244 if (corr) {
245 corr[j] = cor;
246 } else {
247 /* If a data buffer is given and the
248 * error is inside the message,
249 * correct it */
250 if (data && (loc[j] < (nn - nroots)))
251 data[loc[j] - pad] ^= cor;
252 }
253 }
254 }
255
256finish:
257 if (eras_pos != NULL) {
258 for (i = 0; i < count; i++)
259 eras_pos[i] = loc[i] - pad;
260 }
261 return count;
262
263}